ELEC-E8412

Exercise No 05

Power Electronics

09.11.2023

Problem 1:

A buck converter has an input of 12 V and an output of 3 V. The load resistor is 6 Ω , the f_{sw} is 400 kHz, L = 5 μ H, and C =10 μ F.

Determine

- a) duty ratio
- b) average and peak inductor currents
- c) average source current
- d) peak and average diode current

Problem 2:

A buck converter has an input of 50 V and an output of 25 V. The f_{sw} is 100 kHz, and the output power to a load resistor is 125 W. Determine

- a) duty ratio
- b) value of inductance to limit the peak inductor current to 6.25 A.
- c) minimum inductor current

Problem 3:

A boost converter circuit has the following parameters:

 $V_{in} = 5 V$, $V_{out} = 20 V$, and $P_{out} = 40 W$, $f_{sw} = 85 \text{ kHz}$.

Minimum value of the inductor current must be at least 80% of the average inductor current.

Determine the duty ratio and the minimum inductor value.

Problem 4:

A boost converter circuit has the following parameters:

$$V_{in}$$
 =20 V, D =0.6, R =12.5 Ω , L=10 μ H, C =40 μ F, f_{sw} =200 kHz.

Determine

- a) V_{out}
- b) Average, maximum, and minimum inductor currents.
- c) Average current in the diode