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Problem 5.1: Newton’s Method for a Quadratic Problem

Consider the following quadratic optimization problem

min.
x

f(x) = x⊤Ax (1)

with variable vector x ∈ Rn, and where A ∈ Rn×n is a positive semidefinite (PSD) matrix.

(a) Not all PSD matrices are symmetric. Show that if the PSD matrix A in (1) is not symmetric,
we can always replace it with a symmetric PSD matrix B such that x⊤Ax = x⊤Bx.

(b) Show that Newton’s method converges in one iteration when applied to the problem (1).

(c) Show that Newton’s method converges in one iteration when applied to the following quadratic
problem with an additional linear term:

min.
x

f(x) = x⊤Ax− b⊤x (2)

with variables x ∈ Rn. Assume that A ∈ Rn×n is a symmetric PSD matrix and b ∈ Rn.

Solution.

(a) If A ∈ Rn×n is PSD but not symmetric, we can replace it with a symmetric PSD matrix
B ∈ Rn×n such that the following holds:

x⊤Ax = x⊤Bx

To this end, let us write A as a sum of the following two terms

A =
A+A⊤

2
+

A−A⊤

2

Thus, the quadratic form x⊤Ax becomes

x⊤Ax = x⊤
(
A+A⊤

2
+

A−A⊤

2

)
x

= x⊤
(
A+A⊤

2

)
x︸ ︷︷ ︸

term 1

+ x⊤
(
A−A⊤

2

)
x︸ ︷︷ ︸

term 2

(3)

Let us evaluate term 2 in expression (3). We get

1

2
x⊤(A−A⊤)x =

1

2
(x⊤A− x⊤A⊤)x

=
1

2
(x⊤Ax− x⊤A⊤x)

=
1

2
(x⊤Ax− x⊤Ax) = 0

As term 2 evaluates to zero, it can be dropped completely from (3), which then becomes:

x⊤Ax = x⊤
(
A+A⊤

2

)
x (4)

Now, we can notice that

B =
A+A⊤

2

1
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in (4) is a symmetric matrix. Using this notation, we can rewrite (4) as

x⊤Ax = x⊤Bx (5)

Therefore, B is indeed positive semidefinite based on the equivalence (5) (this holds because
A is PSD by definition). To verify this from the expression (4), we can write

x⊤Bx =
1

2
x⊤(A+A⊤)x

=
1

2
(x⊤A+ x⊤A⊤)x

=
1

2
(x⊤Ax+ x⊤A⊤x)

=
1

2
(x⊤Ax+ x⊤Ax)

=
1

2
(2x⊤Ax)

= x⊤Ax

≥ 0

which holds for all x ∈ Rn since A is PSD. Thus, we can always transform any quadratic
form x⊤Ax with a PSD matrix A to one where A ∈ Rn×n is PSD and symmetric.

(b) Let f(x) = x⊤Ax. Recall that the update rule for Newton’s method is defined as

xk+1 = xk −H−1(xk)∇f(xk) (6)

By computing the gradient ∇f(x) and Hessian H(x) of f(x), we get (see, e.g. equation (93)
in the Matrix Cookbook)

∇f(x) = ∇(x⊤Ax)

= Ax+A⊤x

= Ax+Ax

= 2Ax (7)

and
H(x) = ∇2f(x) = A+A⊤ = 2A (8)

where we used the fact that A is symmetric. Now, if we substitute (7) and (8) computed at
some iteration k to (6), we get

xk+1 = xk −A−1Axk = xk − xk = 0 (9)

Now, if we start at any point x0 ∈ Rn, the update rule (9) gives us x1 = 0 in one iteration.
By substituting x1 = 0 to the gradient (7), we get

∇f(x1) = 2Ax1 = 0

Since f(x) = x⊤Ax is convex (as A ⪰ 0), the first order condition ∇f(x1) = 0 is both
necessary and sufficient for global optimality. Thus, we obtain the optimal solution x1 = 0
in one iteration regardless of the initial starting point x0 ∈ Rn.

(c) Let f(x) = x⊤Ax− b⊤x. Computing the gradient and Hessian of f(x) in (2), we get

∇f(x) = ∇(x⊤Ax− b⊤x)

= Ax+A⊤x− b

= Ax+Ax− b

= 2Ax− b (10)
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and
H(x) = ∇2f(x) = A+A⊤ = 2A (11)

where we used the fact that A is symmetric. Now, assume that we start with a random initial
point x0 ∈ Rn. By substituting the gradient (10) and Hessian (11) computed ad x0 to (6), we get

x1 = x0 −
1

2
A−1(2Ax0 − b)

= x0 −A−1Ax0 +
1

2
A−1b = 0

= x0 − x0 +
1

2
A−1b

=
1

2
A−1b (12)

Now, by substituting x1 = (1/2)A−1b to the gradient (10), we get

∇f(x1) = 2A(1/2)A−1b− b

= AA−1b− b

= b− b

= 0

Since f(x) = x⊤Ax − b⊤x is convex (as A ⪰ 0), the first order condition ∇f(x1) = 0 is both
necessary and sufficient for global optimality, and we get the optimal solution x1 = (1/2)A−1b in
one iteration regardless of the starting point x0 ∈ Rn.

Problem 5.2: Affine Invariance of Newton’s Method

Consider the following unconstrained optimization problem

min.
x

f(x) (13)

where f : Rn → R is a twice differentiable function. Show that Newton’s method applied to
problem (13) is affine invariant, meaning that the progress of Newton’s method is independent of
affine transformations of the original problem (e.g., scaling, translation, and rotation).

Solution.

Recall that the update rule in Newton’s method is

xk+1 = xk −∇2f(xk)
−1∇f(xk) (14)

Note that we use ∇2f(x) to represent the Hessian of f (as this allows to differentiate from the
Hessian of g, ∇2g(x)). Let x = Ay + b where A ∈ Rn×n is nonsingular and b ∈ Rn. Define the
function g : Rn → R as

g(y) = f(Ay + b) = f(x)

By computing the gradient and Hessian of g(y), we get

∇g(y) = A⊤∇f(Ay + b) and ∇2g(y) = A⊤∇2f(Ay + b)A

The Newton update of g at yk is

yk+1 = yk −∇2g(yk)
−1∇g(yk)

= yk − (A⊤∇2f(Ayk + b)A)−1A⊤∇f(Ayk + b)

= yk −A−1∇2f(Ayk + b)−1(A⊤)−1A⊤∇f(Ayk + b)

= yk −A−1∇2f(Ayk + b)−1∇f(Ayk + b) (15)
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By first multiplying both sides of (15) with the scaling matrix A, and then adding the vector b to
both sides we get

Ayk+1 + b = Ayk + b−∇2f(Ayk + b)−1∇f(Ayk + b) (16)

which is exactly the same as
xk+1 = xk −∇2f(xk)

−1∇f(xk) (17)

since x = Ay + b. Therefore, the progress of Newton’s method is independent of problem scaling,
as both (16) and (17) have exactly the same progress. To make this point extra clear, if we apply
Newton’s method to g at yk to obtain yk+1, we can compute the corresponding xk+1 simply by
applying the affine transformation

xk+1 = Ayk+1 + b

and we would get exactly the same xk+1 if we applied Newton’s method to f at xk.
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