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Problem 6.1: Convergence of Gradient Methods

Consider the quadratic function f : Rn → R defined as

f(x) =
1

2
x⊤Qx (1)

where Q ∈ Rn×n is a positive definite symmetric matrix. Suppose that f(x) is minimized with a
Gradient method using the update rule

xk+1 = xk − αk∇f(xk) (2)

and exact line search where the stepsize αk at iteration k is computed as the minimum α of

θ(α) = f(xk − α∇f(xk)) (3)

Let λ and λ be the minimum and maximum eigenvalues of the (Hessian) matrix Q, respectively.
Show that for all iterations k, we have

f(xk+1) ≤
(
λ− λ

λ+ λ

)2

f(xk) or
f(xk+1)

f(xk)
≤
(
λ− λ

λ+ λ

)2

(4)

Hint: For an arbitrary xk calculate the next step according to the Gradient method. You also
need to calculate the optimal step size α. Once you have done those, apply Kantorovich inequality.
Let Q ∈ Rn×n be a positive definite symmetric matrix. Then, for any vector y ∈ Rn with y ̸= 0,
we have

(y⊤y)2

(y⊤Qy)(y⊤Q−1y)
≥ 4λλ

(λ+ λ)2
(5)

where λ and λ are the minimum and maximum eigenvalues of Q, respectively.

Solution.

To simplify notation, let us denote the gradient of f at xk as

gk = ∇f(xk) = ∇(
1

2
x⊤
k Qxk) = Qxk (6)

We can see that (4) holds if gk = 0, so assume that gk ̸= 0.

Let us first compute the optimal stepsize αk from (3). By taking the derivate of (3) and setting it
to zero, we get

θ′(α) = −g⊤k ∇f(xk − αgk)

= −g⊤k Q(xk − αgk)

= −g⊤k Qxk + αg⊤k Qgk

= −g⊤k gk + αg⊤k Qgk = 0

and solving for α, we get the optimal stepsize at iteration k as

αk =
g⊤k gk
g⊤k Qgk

(7)
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Now, from (1) and (2) we have

f(xk+1) =
1

2
(xk − αkgk)

⊤Q(xk − αkgk)

=
1

2
(x⊤

k − αkg
⊤
k )Q(xk − αkgk)

=
1

2
(x⊤

k Qxk − αkx
⊤
k Qgk − αkg

⊤
k Qxk + α2

kg
⊤
k Qgk)

=
1

2
(x⊤

k Qxk − 2αkg
⊤
k Qxk + α2

kg
⊤
k Qgk)

=
1

2
(x⊤

k Qxk − 2αkg
⊤
k gk + α2

kg
⊤
k Qgk) (8)

and substituting the optimal stepsize (7) to (8) we get

f(xk+1) =
1

2

(
x⊤
k Qxk − 2

(g⊤k gk)
2

g⊤k Qgk
+

(g⊤k gk)
2

(g⊤k Qgk)2
g⊤k Qgk

)
=

1

2

(
x⊤
k Qxk − (g⊤k gk)

2

g⊤k Qgk

)
(9)

Now, by writing

f(xk) =
1

2
x⊤
k Qxk

=
1

2
x⊤
k QQ−1Qxk

=
1

2
(Qxk)

⊤Q−1(Qxk)

=
1

2
g⊤k Q

−1gk (10)

and substituting (10) to (9), we get

f(xk+1) = f(xk)−
1

2

(g⊤k gk)
2

g⊤k Qgk

= f(xk)−
(g⊤k gk)

2 1
2g

⊤
k Q

−1gk

(g⊤k Qgk)(g⊤k Q
−1gk)

= f(xk)−
(g⊤k gk)

2f(x)

(g⊤k Qgk)(g⊤k Q
−1gk)

=

(
1− (g⊤k gk)

2

(g⊤k Qgk)(g⊤k Q
−1gk)

)
f(xk) (11)

To proceed with the proof, we need the following Kantorovich inequality. Let Q ∈ Rn×n be a
positive definite symmetric matrix. Then, for any vector y ∈ Rn with y ̸= 0, we have

(y⊤y)2

(y⊤Qy)(y⊤Q−1y)
≥ 4λλ

(λ+ λ)2
(12)

where λ and λ are the minimum and maximum eigenvalues of Q, respectively. Now, by applying
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the Kantorovich inequality (12) to (11), we get

f(xk+1) ≤
(
1− 4λλ

(λ+ λ)2

)
f(xk)

=

(
(λ+ λ)2 − 4λλ

(λ+ λ)2

)
f(xk)

=

(
λ
2
+ 2λλ+ λ2 − 4λλ

(λ+ λ)2

)
f(xk)

=

(
λ
2 − 2λλ+ λ2

(λ+ λ)2

)
f(xk)

=

(
(λ− λ)2

(λ+ λ)2

)
f(xk) (13)

Dividing both sides by f(xk) (f(xk) > 0 since Q is PD), we finally get

f(xk+1)

f(xk)
≤
(
λ− λ

λ+ λ

)2

(14)

Notice that if we denote the condition number of the (Hessian) matrix Q as

κ =
λ

λ

we can rewrite (14) as

f(xk+1)

f(xk)
≤
(
κ− 1

κ+ 1

)2

(15)

from which we can clearly see how the convergence rate of the Gradient method depends on the
condition number κ of the corresponding (Hessian) matrix Q. For large condition numbers κ, the
right side of (15) evaluates close to 1, which implies poor convergence rate.

Problem 6.2: Effect of Scaling on Gradient Method Convergence

Consider the following unconstrained optimization problem

min.
x

f(x) = (x1 − 2)2 + 5(x2 + 6)2 (16)

where we denote the (quadratic) objective function f : R2 → R of (16) as

f(x) = (x1 − 2)2 + 5(x2 + 6)2 (17)

Suppose that we want to solve the problem (16) with a Gradient method using the update rule

xk+1 = xk − αk∇f(xk) (18)

and exact line search where the stepsize αk at iteration k is computed as the minimum α of

θ(α) = f(xk − α∇f(xk)) (19)

(a) Evaluate the convergence rate of the Gradient method applied to problem (16) with an
arbitrary starting point. Hint: Use the the results of Exercise 6.1.

(b) Can you solve the problem faster by first modifying the objective function (17) and then
applying the Gradient method to the modified problem? Hint: Try to find a variable
substitution that gives the best convergence rate according to the results of Exercise 6.1.
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Solution.

(a) We will derive an upper bound for the convergence rate of the Gradient method applied to
(16) based on the result of Exercise 6.1. To this end, notice that we have similar conditions:
the objective function is quadratic, although we have an additional affine term. Nevertheless,
we can write f(x) in the form

f(x) =
1

2
x⊤Qx+ c⊤x+ b

=
1

2
[x1 x2]

[
2 0
0 10

] [
x1

x2

]
+ [−4 60]

[
x1

x2

]
+ 184

and we use the exact line search just like in 6.1. Notice that Q corresponds to the Hessian
of f(x) as in Exercise 6.1. To verify this, computing the gradient and the Hessian of f(x)
yields

∇f(x) =

(
2x1 − 4
10x2 + 60

)
and ∇2f(x) =

(
2 0
0 10

)
= Q (20)

and we can compute the eigenvalues of the Hessian from the eigenvalue equation

(∇2f(x)− λI)v = 0

which has a solution if and only if

det(∇2f(x)− λI) = 0 ⇔ (2− λ)(10− λ) = 0

and we get λ = 10 and λ = 2. Thus, by substituting these values to (14), we get

f(xk+1)

f(xk)
≤
(
λ− λ

λ+ λ

)2

=

(
10− 2

10 + 2

)2

=
4

9

For example, it takes about 22 iterations to converge to optimum (x1, x2) = (2,−6) starting
from the point x0 = (4,−5). The progress is shown in Figure 1

(b) If we perform a change of variables y1 = (x1 − 2) and y2 =
√
5(x2 + 6), we can write the

objective function as
f(y) = y21 + y22

By computing the gradient and the Hessian of f(y), we get

∇f(y) =

(
2y1
2y2

)
and ∇2f(y) =

(
2 0
0 2

)
(21)

and we can compute the eigenvalues of the Hessian from the eigenvalue equation

(∇2f(y)− λI)v = 0

which has a solution if and only if

det(∇2f(y)− λI) = 0 ⇔ (2− λ)(2− λ) = 0

and we get λ = 2 and λ = 2. Thus, by substituting these values to (14), we get

f(yk+1)

f(yk)
≤
(
λ− λ

λ+ λ

)2

=

(
2− 2

2 + 2

)2

= 0

Thus, the Gradient method will converge to the optimum in one iteration, regardless of the
starting point as long as we use the exact line search. Thus, we can solve the modified problem
using the Gradient method in one iteration to get the optimal solution (y1, y2) = (0, 0), from
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which we can compute the optimal solution to the original problem by simple substitution:
x1 = y1 + 2 = 2 and x2 = y2/

√
5− 6 = −6. The convergence plot is shown in Figure 2
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Figure 1: Convergence of Gradient method in part (a)
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Figure 2: Convergence of Gradient method in part (b)
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