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Hints for Problem Set 2

1. A firm sells a product in a market where there are two types of consumers, θ ∈{
θH , θL

}
. Assume that the mass of consumers is normalized to one, and there are

equally many of both types of consumers. All consumers have a unit demand, and

θ denotes the reservation value of consumer type θ. Let θH = 12 and θL = 5. The

marginal cost of production is c = 1.

(a) Find the profit maximizing price for the firm.

Solution.

Payoffs of the consumers (agents) are ui(θ, q, t) = θiv(q)− ti for both i = H,L.1

The profit of the firm (payoff of the principal) is simply uP (θ, q, t) = t− c(q).

Setting t < 5 is not optimal as everybody would buy the product also for t = 5.

Setting t ∈ (5, 12) is not optimal either as high types would by also for t = 12.

Neither type wil not buy the product for t > 12. This would yield zero profit

and is not optimal. The firm will only sell to the high types by setting t = 12

for profit uP = 12/2− 1/2 = 5.5. This is higher than the profit uP = 5− 1 = 4

for selling to everyone at t = 5.

(b) The firm then considers producing an additional, lower quality version of the

good (a ”damaged good”). The damaged version of the good can be produced

at constant marginal cost c = 1.5, and the reservation value of that good is 4

for the high type, and 3 for the low type. Find the optimal prices for the two

versions of the product for the firm that wants to maximize its profit.

Solution.

Given this setup, the problem of the firm is to maximize its profit (payoff) by

designing a menu of prices for both qualities. In the maximization, the firm must

ensure that the menu is both incentive compatible ie. high type chooses (qH , tH)

and low type chooses (qL, tL), and that both types want to participate meaning

that individual rationality constraint is satisfied.

1Note that here v(q) = 1 if the consumer buys the good, and v(q) = 0 is she doesn’t.

1



The problem of the firm is given by:

max
(qL,tL),(qH ,tH)

λ(tH − c(qH)) + (1− λ)(tL − c(qL))

s.t. θH − tH ≥ θHD − tL (ICH)

θLD − tL ≥ θL − tH (ICL)

θH − tH ≥ 0 (IRH)

θLD − tL ≥ 0, (IRL)

where λ = 1/2, c(qH) = 1 and c(qL) = 1.5. From lecture notes we know that in

these sort of problems the IC for the high type must bind and that the IR for

the low type must bind. These two constrains imply the other constraints are

satisfied and we can write the problem followingly:

max
(qL,tL),(qH ,tH)

λ(tH − c(qH)) + (1− λ)(tL − c(qL))

s.t. θH − tH = θHD − tL (ICH)

θLD − tL = 0, (IRL)

We do not need to take the maximum of this problem because we can simply

solve for the transfers from the two constraints. We get that tH = 11 and tL = 3.

(c) Should the firm introduce the damaged version of the good? Why? What are the

welfare implications of introducing the damaged version?

Solution.

In part a) the profits of the firm were 5.5. In part b) they are: 1
211 + 1

23− 0.5−
0.75 = 5.75. Introducing the damaged good is thus optimal for the firm. In part

a) the good was sold only to high types and they got zero consumer surplus. In

part b) the good is sold to both types. The low types make no consumer surplus

but the high types makes a consumer surplus of 1. Everyone is better off!

2. Amazon.com has a single cover price for the books that it sells, but it has a menu of

different delivery options ranging from 1-2 days to two weeks. Let’s have a model of

second-degree price discrimination to explain this.

(a) Assume that buyers have different valuations for fast delivery. This is captured

by a parameter θ, where value θ = θH captures consumers with high valuation for

fast delivery and θ = θL captures consumers with low valuation for fast delivery.

Let s denote the actual delivery time and assume the following payoff function:

v (θ, s) =

{
θ (1− s) , if s ≤ 1

0 otherwise.

Interpret this payoff function (i.e. invent a story that rationalizes the function).
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Solution.

Suppose you have an exam date at s = 1 and need a book to study. Students who

study more get a better grade and thus higher payoff. High type students spend

more time studying per day than low types and thus benefit more from getting

the book earlier. If the book arrives after the exam, it has no value to students.

Note that throughout my solution I assume that consumers value faster delivery

and thus θi > 0.

(b) Let the cost of delivery at time s be c (s) = 2 (1− s)2 for 0 ≤ s ≤ 1 and c (s) = 0

for s > 1. Does this function make sense?

Solution. Yes. The sooner the delivery, the more consumers need to pay; the

cost of delivery is decreasing in delivery time s because c′(s) = −4(1− s) ≤ 0 for

s ∈ [0, 1]. If the delivery is after the exam, nobody is willing to pay for it.

(c) What are the first best delivery times for the two types of buyers? I.e. how

would the seller choose ŝH and ŝL for θH and θL respectively if she could see the

type of the buyer? What would the corresponding prices t̂H and t̂L be for those

delivery times?

Solution. First-best levels are found by equating marginal cost and marginal

utility for both types:

c′(s) = −4(1− s) = −θ =
∂v(θ, s)

∂s

=⇒ ŝH = 1− θH

4
and ŝL = 1− θL

4

The transfers are found by plugging this into the utility function. Thus:

t̂H = θH(1− sHFB) =
(θH)2

4

t̂L = θL(1− sLFB) =
(θL)2

4

(d) Would the menu {
(
ŝH , t̂H

)
,
(
ŝL, t̂L

)
} be incentive compatible if the seller does

not see θ?

Solution.

No, the menu is not incentive compatible. The first-best offer derived in part c)

leaves high type with no surplus but by mimicking the low type, she would get:

θH(1− ŝL)− t̂L = (θH − θL)
θL

4
> 0

Mimicking is possible because the type of the consumer is private information!

(e) Suppose that fraction λ of the buyers are of type θH and (1− λ) are of type

θL. Solve for the profit maximizing incentive compatible menu of delivery times

and prices for the seller. For what parameter values should the seller offer two
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different delivery times?

Solution. Again we know that for the low type the IR constraint binds and for

the high type the IC constraint binds.

The IR constraint for the low type is:

θL(1− ŝL)− t̂L = 0

tL = θL(1− sL)

The IC constraint for the high types is:

θH(1− ŝH)− t̂H = θH(1− ŝL)− t̂L

tH = θH(1− sH)− (θH − θL)(1− sL)

The problem is then to maximize profit subject to binding ICH and IRL by

choosing optimal delivery times sH and sL, that is:

max
sL,sH

λ(tH − c(sH)) + (1− λ)(tL − c(sL))

s.t. tH = θH(1− sH)− (θH − θL)(1− sL)

tL = θL(1− sL)

Plug in the constraints, take the derivative with respect to delivery times. From

this you get that:

sHSB = 1− θH

4

sLSB = 1 +
λθH − θL

4(1− λ)

The allocation of the high type is not distorted. The book is delivered to the low

type before the exam (s ≤ 1) only if:

λ ≤ θL

θH

You get this inequality by checking when the second term in RHS of the optimal

delivery time for low type is negative. Finally, the optimal transfers can be

calculated by inserting optimal delivery times sHSB, s
L
SB into the expressions for

the transfers above (see IC for high type and IR for low type).

3. A monopolist sells two products i ∈ {1, 2}. There is a unit mass (continuum) of

consumers, who each have independent valuations for the two goods. Assume that

the valuations are uniformly distributed over the unit interval, i.e. vi ∼ U [0, 1],

i = 1, 2. The production cost is assumed to be zero for the seller.

(a) Suppose the monopolist sells the two products only separately, i.e. sets separate

prices p1 and p2 for the two products, and lets each consumer decide which prod-

uct(s) to buy. Compute optimal separate prices and the corresponding profit.
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Solution. For the a) part the key is simply to derive the demand curves from

the valuations of the consumer, which are uniformly distributed between 0 and

1. We already did this last time. The demand for both products individually are

given by:

qi = 1− pi

The maximization problem is simply:

max p1q1 + p2q2

s.t. q1 = 1− p1
q2 = 1− p2

Plug in constraints and take partial derivatives with respect to prices. This yields

p1 = p2 = 1
2 .

(b) Suppose next that the monopolist sells the two products as a bundle only (pure

bundling). What is the demand function for the bundle, i.e. the total quantity

bought at a given bundle price pb? To derive that demand, it is helpful to draw

a unit square with axes v1 and v2 that represents the set of possible player types.

For a given bundle price pb, what is the region in that figure representing those

consumers that buy? The demand is then just the area of that region. What

would be the profit of the seller if she chooses bundle price pb = p1 + p2, where

p1 and p2 are the ones you derived in a)? Would buyers be better or worse off?

Solution.

The key here is to derive what is the demand (as a function of the price) for the

bundle. As suggested in the problem great way to think about this is to draw a

unit square with the axis representing the valuations for the two products. This

is illustrated in the figure below
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From the figure we see that the demand is simply the whole region minus the tri-

angle in the bottom-left region of the graph. Thus we have that q12 = (1− 1
2p12

2).

If the bundle price is above 1 then demand is the triangle in the up-right corner:

q12 = (1−(p12−1))2
2 .

Bundle price would be one if we would use the individual prices derived above.

We are asked to evaluate whether consumer are on average better off with bundle

pricing. In general the consumers who have a high valuation for both good prefer

bundling while those who have a high valuation for one good and low valuation

for the other prefer seperate selling.

Formally the consumer surplus with seperate pricing is given by:

CSsep =

∫ 1

p1

(v1 − p1)dv1 +

∫ 1

p2

(v2 − p2)dv2 =
1

4

With bundling the consumer surplus is given by:

CSbun =

∫ p12

0
[

∫ 1

p12−v2
(v1 + v2 − p12)dv1]dv2 +

∫ 1

p12

[

∫ 1

0
(v1 + v2 − p12)dv1]dv2

= 1− p12 +
1

6
p12

3 =
1

6

where the first part represents consumers who have valuation: v2 < p12 and

v1 > p12 − v1 and the second part consumers with valuation: v2 > p12 and

1 > v1 > 0.

Consumers would be worse off if the price of the bundle would be one but the

welfare effects might be different when the price of the bundle is set optimally.

(c) What is the optimal bundle price pb and the associated profit for the seller? (in

the case where the good is sold only as a bundle)

Solution.

First we need to determine whether the optimal bundle price will be above or

below 1. With bundling the demand becomes more elastic and this implies that

the bundle price must be below 1. This can be shown by considering how a

small price increase by ε would affect demand in the case of selling the products

seperately and in the case of selling the bundle.

Given the demand derived above for the case were the bundle price is below
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one the maximization problem is:

max p12q12

s.t. q12 = (1− 1

2
p12

2)

Plugging in the constraints and taking partial derivative with respect to the

bundle price yields: p12 =
√

2
3 .

(d) Finally, consider mixed bundling, where the seller offers prices (p1, p2, pb), i.e.

p1 the price of good 1 separately, p1 the price of good 2 separately, and pb the

price of the bundle containing both goods. Derive the demands for products 1

and 2 and for the bundle for the given (p1, p2, pb). Again, utilize the graphical

representation suggested in (b).

Solution.

Here I start deriving the demand by considering the consumer who is indiffer-

ent between buying the bundle and buying a single product. The indifferent

consumer must satisfy:

vi − pi = v1 + v2 − p12

From this we can derive:

v̂1 = p12 − p2
v̂2 = p12 − p1

From now on I denote both individual prices just by p. Adding these two lines

and also the individual price lines to the graph in previous page we get:

Now the graph is split into nine different regions that I denote ”boxes”. Demand

7



for individual products are given by Box 1 and 9. The area in these two boxes is

simply q1 = q2 = (p12− p)(1− p). The demand for the bundle is simply the sum

of box 2, 3, 6 and half of box 5. We get that q12 = (1− p12 + p)2− 1
2(2p− p12)2.

(e) You can take it as given that the seller will in such a case always choose p1 = p2 :=

ps. What would be the optimal prices (ps, pb) in the case of mixed bundling?

Solution.

The problem of the firm is then to maximize the following the expression:

max 2p[(p12 − p)(1− p)] + p12[(1− p12 + p)2 − 1

2
(2p− p12)2]

Taking the partial derivative with respect to the bunde price and the individual

price yields: p = 2
3 and p12 = 1

3(4−
√

2).

(f) Which mode of pricing (separate, pure bundling, mixed bundling) is best for the

seller?

Solution.

Mixed bundling is the best for the firm. To show this calculate profits in parts

a), c) and e) given the optimal prices.

4. A monopoly firm operates in a market with a sesonally varying demand. The inverse

demand function in season i ∈ {s, w} is given by:

pi = αi − βiqi,

where αs = 10, αw = 8, βs = 1, βw = 2. There is a constant marginal cost of

production so that producing qi units in season i costs cqi, where c = 1.

(a) Assume first that there is no capacity constraint for the firm. What is the opti-

mal production level and correponding price for each season?

Solution.

Let’s consider the optimal price for summer firts. The optimization problem is

(I have already plugged in the inverse demand):

max qs(10− qs)− qs

Taking derivative with respect to qs yields qs = 4.5 and ps = 5.5. Going through

the same steps with winter we get that qw = 7
4 and qw = 18

4

(b) Keep on assuming that there is no capacity constraint for the firm. If the firm

must use the same price in both seasons, what is the total quantity sold over the

two seasons for given price p? What is the optimal price p?

Solution.

Now the optimization probelm of the firm is:

max pqs + pqw − qw − qs

s.t. qs = 10− p

qw = 4− p

2
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The optimal price is p = 31
6 .

(c) Assume next that there is a fixed capacity level k. The capacity sets the max-

imum output that the firm can produce in either season: qi ≤ k for i ∈ {s, w}.
What is the optimal production level and correponding price for each season as

a function of k?

Solution.

Now the optimization probelm of the firm is:

max pqs + pqw − qw − qs

s.t. ps = 10− qs
pw = 8− 2 ∗ qw

qs ≤ k

qw ≤ k

Setting up the Lagrangian:

L = qs(10− ps) + qw(8− 2q1)− qw − qs + λ1(k − qs) + λ2(k − qw)

Taking derivative with respect to qs and λi yields:

qs =
9 + λ1

2

qw =
7 + λ2

4

qs ≤ k

qw ≤ k

If the capacity constraints do not bind then λi = 0 and the solution is as in

part a). If the capacity constraints binds then the firm produces the maximum

amount and the prices are ps = 10− k and pw = 8− 2k.

(d) Assume now that the firm must choose its production capacity to serve the

market, and it costs fk to build k units of capacity. The firm maximizes its total

profits over the two seasons, and can choose different prices in the two seasons.

For what values of f is the capacity constraint binding in the high season only?

Solve the optimal capacity and supply levels for the two seasons both in the case

where the capacity constraint binds only in one season and where it binds in

both seasons.

Solution.

If capacity constraint binds only in the high season we have qs = k and ps =

10−k. The firms problem in the high season is max (10− k)k − k − fk. We get

that k = 9−f
2 . For this solution to be valid it must be that the demand in the
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low-season is lower than the optimal k derived before. This holds when:

qw ≤ k =
9− f

2
9

4
≤ k =

9− f
2

9

2
≥ f

If this holds for the low season the firms problem in the low season ismax (8− 2qw)qw − qw.

We get that qw = 7
4 . Note the cost of capacity can ignored in the low season

optimization problem because this cost is allocated fully to the high season which

generates the marginal revenue from added capacity. The prices for both seasons

can be simply read from the corresponding demand curves.

If the capacity constraint binds in both seasons then we have qw = qs = k.

The optimization problem is then the following:

max k(10− k) + k(8− 2k)− k − k − fk

Maximizing this with respect to k yields k = 16−f
6 . Prices can again be read off

from the demand curve. The price for the high season will be higher than for

the low season.
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