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Problem 1.  Consider a SISO-system in a one-degree-of-freedom control 
configuration.  The connection between the real and nominal system is 
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By using the Nyquist stability criterion derive a condition to the system to be robustly 
stable. 
 
Solution.  In the one-degree-of-freedom configuration ry FF =  and the loop transfer 
function of the nominal system is  yGFL = .  The Nyquist curve is seen in the figure 
 

  
 
 
At each point )( ωiL  a circle with radius GL∆  describes the model uncertainty such 
that the real curve is ceratinly inside the circle.  Assuming that the nominal system is 
stable (no poles in RHP), the closed loop system is robustly stable exactly when the 
Nyquist curve does not encircle the critical point (-1,0).  That can be expressed as (see 
figure) 
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and further 
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The result is the same as in the textbook formulas (6.28) and (6.29). 
 
 
Problem 2.  Consider the first order process 
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with parameter uncertainties such that  3,,2 ≤≤ τθk .  The system is modelled with  
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in which the nominal model is chosen to be the first order model without delay 
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Discuss possible candidates for the function )(sG∆ . 
 
Solution. 
To be exact, an accurate uncertainty area in each frequency of the complex function 

)( ωiGP  should be determined (corresponding to the parameter variations).  This is 
very difficult, however, and in practice an approximate solution with uncertainty 
circles is used; see the solution to problem 1 and the equation 
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The largest relative error must be determined 
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(Π  means all possible models when the parameters vary within the given intervals). 
 
Then we can take 
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To calculate )(ωIl choose the values 2, 2.5 and 3 for each variable ( τθ ,,k ).  That 
does not necessarily describe the worst possible situation, but it is a step to the right 
direction.  For the functions )(ωIl we obtain 2733 = curves, which are shown in the 
figure 
 



  
The curve )(ωIl  must at each freqiency be larger than the dotted curves.  It is seen 
that the value of )(ωIl  in small frequencies is 0.2 and 2.5 in large frequencies.  For a 
candidate of G∆  try a first order model, which corresponds to this behaviour 
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From the solid line it is seen that this is pretty good except near the frequency 1=ω  
where )(1 sG∆ is a little too small to cover all uncertainties.  Increase the magnitude a 
bit near that particular frequency 
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which is good (dash-dotted line in the figure).   
  
 
 
Problem 3.  Consider the process described in Exercise 5, Problem 1 with the 
exception that the process model is uncertain.  The true system is 
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in which the relative uncertainty has been modeled as 
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Is the controlled (closed loop) system robustly stable? 
 
Solution.   
 
The process model and controller were 
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As noticed in problem 27 the determination of the relative error G∆  is difficult.  Often 
a simple error model is used, e.g. the first order transfer function 
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where r0 is the relative error of the stationary state, 1/t  is approximately that angular 
frequency, in which the relative error reaches the 100% level, and r∞ is the relative 
error in high frequencies (typically 2≥∞r ).   
 
In the problem the relative error of the process model has been assumed to be 0.33 in 
small frequencies, about. 1 in frequency 0.1 rad/s and 5.25 in high frequencies. 
 
The system is robustly stable, if it holds for all frequencies  (textbook formula (6.29)) 
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in which the complementary sensitivity function is 
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From the figure it is seen that the system is not robustly stable, because the 
complementary sensitivity function T1 exceeds G∆/1  in frequencies above 0.1.  
 
By decreasing the gain of the  PI-controller from 1.13 to 0.31 (trial and error result) a 
robustly stable closed-loop system is obtained (curve T2). 



 
 
Problem 4.  Let a closed-loop SISO-system be stable.  Prove that the maximum delay 
that can be added to the process without causing closed-loop instability is 
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where PM is the phase margin of the (original) system and ωc is the gain crossover 
frequency. 
 
Solution. 
Let G be the original transfer function.  In the gain crossover frequency it holds 
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When pure delay is added to the process 
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which means that the gain crossover frequency remains the same.  For the phase  
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At the stability limit 
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from which 
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