Biomedical Ultrasonics Course: Lab Plan Session

Advisors: Àlex Drago-González¹, Jussi Kiviluoto¹, Ona Westerlund¹, Professor: Heikki J. Nieminen¹

1. Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland

Thursday, November 1, 2023 U413c

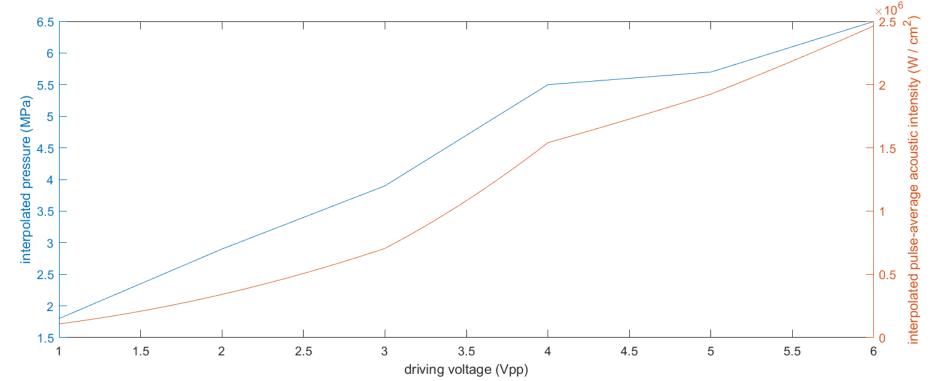
Contact: alex.dragogonzalez@aalto.fi, medusa.aalto.fi

Allows us to record very fast phenomena (acoustic timescales). Match of acoustic and optical focus (G1,G2) V1612 5x MAGNIFICATION

BEFORE RECORDING VIDEOS, PIXEL SIZE HAS TO BE MEASURED

Parameter	Specification	Benefit	
Sensor Resolution	1 Mpx: 1280 x 800	Widescreen format keeps object in the frame longer	
Sensor Size	35.8mm x 22.4mm	Compatible with F-Mount and EOS lenses at full resolution	
Pixel Size	28 Micron	High light sensitivity	
Bit Depth	12 bits	4,096 gray levels for optimal image quality	
Minimum Exposure	1 µs standard, up to 265 ns with FAST option Helps eliminate		

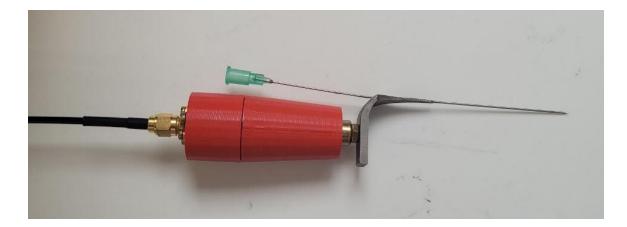
RESOLUTION						
		v2512	v2012	v1612	v1212	
H	v	Max FPS	Max FPS	Max FPS	Max FPS	
1280	800	25,700	22,600	16,600	12,600	
1280	720	28,500	25,100	18,400	14,000	
1024	800	30,500	26,900	19,700	15,000	
1024	512	47,400	41,800	30,700	23,400	
896	800	33,700	29,800	21,800	16,600	
768	768	39,100	34,750	25,300	19,300	
640	480	70,100	62,500	45,500	34,700	
512	512	75,600	67,800	49,100	37,500	
512	384	99,800	89,550	65,000	49,600	
384	256	171,650	115,100	112,300	85,700	
256	256	206,300	188,500	135,400	103,500	
256	128	380,100	347,800	253,000	193,900	
128	64	663,250	651,150	538,400	415,500	
128	32	663,250	651,150	626,850	551,700	
128	16	663,250	651,150	626,850	551,700	


Focuses ultrasonic waves to generate an ellipsoide of highpressure (acoustic focus). Heat, strain, ...

- f = 2.5 MHz
- Translation stage (µm)
- Continuous & Burst mode
- 0 < Vpp < 6V
- 0 < PPP < 6.5 MPa
- 0 < PLan < 1.6 MPa

If you save PD and Vpp, you can compute PPP and PLan.*

* Credit to Dr. Maxime Fauconnier

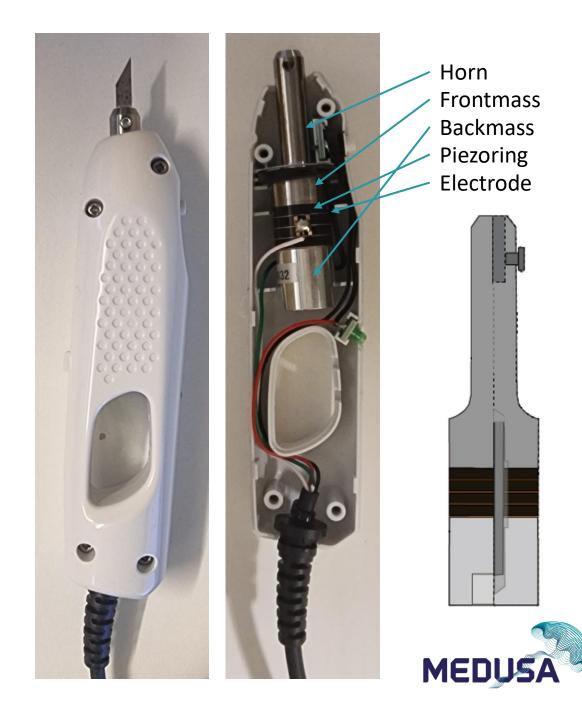

Ultrasonically Actuated Medical Needle

- Total Acoustic Power (TAP)
- Frequency Range
- Displacement @ Needle Tip
- Needle Size

~0.5 - 3 W

~28 – 36 kHz

~200 um peak to peak in air 21G = 0.819 mm diameter



Ultrasonic knife

- Langevin type bolt-clamped transducer
- Model Honda ZO-91
- Operating frequency: 40 kHz
- Output power: 30 W

Discussion

Now, let's sit in our respective groups and start discussing about the experiment you want to do.

In 30 minutes, a 2 min presentation will be done in front of the advisors and professors.

