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We compare the performance of maximum likelihood (ML) and simulated method of moments (SMM) estimators
for dynamic discrete choice models. We construct and estimate a simplified dynamic structural model of education that
captures some basic features of educational choices in the United States in the 1980s and early 1990s. We use estimates
from our model to simulate a synthetic data set and assess the ability of ML and SMM to recover the model parameters
on this sample. We investigate the performance of alternative tuning parameters for SMM.

1. INTRODUCTION

Economic science uses economic theory to guide the interpretation of economic data and
to shape policy. Kenneth Wolpin is a model economic scientist who integrates theory and
data in a rigorous fashion. He summarizes his philosophy toward empirical research in Wolpin
(2013). He is a major contributor to structural econometrics with particular emphasis on the
study of dynamic discrete choice models. His contributions are both methodological and em-
pirical. His methodological research focuses on promoting methods to increase the reliabil-
ity of algorithms for structural estimation (Eckstein and Wolpin, 1989; Keane et al., 2011)
and developing techniques to simplify their empirical implementation. His research on inter-
polation methods to solve dynamic discrete choice models with a large state space (Keane
and Wolpin, 1994) is a prominent example. In his empirical contributions, he extensively
applies theory-motivated methods to investigate many important issues such as educational
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attainment (Keane and Wolpin, 1997; Eckstein and Wolpin, 1999), the role of credit constraints
in educational attainment (Keane and Wolpin, 2001), and labor market dynamics (Lee and
Wolpin, 2006, 2010).

This article contributes to the literature on estimating dynamic discrete choice models. It
investigates the empirical performance of widely used versions of simulated method of moments
(SMM), a computationally tractable method for estimating complex structural models. SMM
estimates parameters by fitting a vector of empirical moments to their theoretical counterparts
simulated from a structural model (McFadden, 1989). We compare its performance against
standard maximum likelihood (ML) estimation.2

We estimate a deliberately simplified dynamic discrete choice model of schooling based on
a sample of white males from the National Longitudinal Survey of Youth of 1979 (NLSY79)
using ML. Our model is more restrictive compared to standard dynamic discrete choice models
(Keane and Wolpin, 1997, 2001) with respect to the number of choices and the timing of
decisions and outcomes. We restrict agents to binary choices at a sequence of decision nodes.
This allows us to evaluate the likelihood analytically, without the need for any simulation or
interpolation (Keane, 1994), which provides a clean comparison of ML against simulation-
based estimation methods such as SMM. Using the estimates of model parameters, we simulate
a synthetic data set. In a series of Monte Carlo studies, we compare estimates based on our
precisely calculated ML with those from widely used, computationally tractable versions of
SMM. Because our synthetic sample is derived from real data, our analysis provides useful
lessons on the performance of SMM for the estimation of structural models.3

SMM has been used to estimate models of job search (Flinn and Mabli, 2008), educational
and occupational choices (Adda et al., 2011, 2013), household choices (Flinn and Del Boca,
2012), stochastic volatility models (Andersen et al., 2002; Raknerud and Skare, 2012), and
dynamic stochastic general equilibrium models (Ruge-Murcia, 2012). SMM can be used for
any model, however complex or difficult to compute the likelihood, as long as it is possible to
simulate it. Under conditions presented in the literature, the SMM estimator is consistent and
asymptotically normal (Gouriéroux and Monfort, 1997). If the score vector for SMM happens
to be correctly specified, then SMM is asymptotically efficient (Gallant and Tauchen, 1996;
Gouriéroux et al., 1993).4

Implementing any estimation strategy requires numerous choices. In the case of SMM, users
have discretion in selecting (a) the moments used in estimation, (b) the number of replications
used to compute the simulated moments, (c) the moment weighting matrix, and (d) the algorithm
used for optimization. It is unclear how such choices affect the performance of the SMM
estimator and how they depend on the structure of the model estimated. We propose diagnostic
tools to test their validity.

We suggest a Monte Carlo procedure that allows SMM users to gain confidence for their
particular implementation of the algorithm. We present a new optimization algorithm for
solving derivative-free nonlinear least-squares problems that is well suited for conventional
SMM implementations. A benchmarking exercise demonstrates significant speed improvements

2 Alternative estimation methods have been proposed to overcome the rigidities and complexities of ML estima-
tion. Most require the analyst to characterize the likelihood function but simplify its computation. One of the most
popular methods, simulated ML (SML), substitutes the exact likelihood function with a simulated one. An example is
the Hajivassiliou-Geweke-Keane (HGK-SML) estimator (Geweke, 1989; Hajivassiliou and McFadden, 1998; Keane,
1994) used for multinomial probit estimation. Approximations of the dynamic programming problem have often been
combined with SML in models with a large state space (Keane and Wolpin, 1994). Another popular method is the
conditional choice probabilities (CCP) algorithm first proposed by Hotz and Miller (1993) and recently extended to
allow for unobserved heterogeneity (Arcidiacono and Miller, 2011). Using CCP, a consistent estimator of the model pa-
rameters can be derived without the need of the full solution of the dynamic programming problem. The CCP method,
however, restricts the flexibility of the estimable models by imposing assumptions that limit the expectation formation
of agents and restrict the stationarity of the environment. SMM is a more general alternative to ML estimation.

3 As in Skrainka (2012), we use simulation experiments in realistic settings to investigate the finite sample behavior
of widely used estimators.

4 See Nickl and Pötscher (2010) and Gach and Pötscher (2011) for recent additional results.
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ESTIMATION OF DYNAMIC MODELS 333

compared to the algorithms commonly used in the literature. Combining state-of-the-art op-
timization methods with parallel computing allows analysts to perform our proposed Monte
Carlo exercise even in computation-intensive models.

We present our schooling model in Section 2. Section 3 presents baseline results. Section 4
outlines our Monte Carlo study and compares the performance of ML and SMM estimation.
Section 5 concludes.

2. DYNAMIC MODEL OF EDUCATIONAL CHOICES

This section presents a computationally tractable dynamic discrete choice model of education
and establishes conditions under which it is identified. We specify a model with a simple state
space by assuming that agents move from one schooling state to the next. Agents are assumed to
have two choices at each decision node. The value of each state is determined by its immediate
rewards and costs and by the expected future value of all feasible states made available by a
choice. Agents have private information on their own type and form expectations about future
states with respect to their current information set.

Our simple specification comes at the expense of a less realistic empirical analysis of the
dynamics of schooling choices compared to those of Keane and Wolpin (1997, 2001) and
Johnson (2013). We restrict agents to binary choices, and our model is based on educational
states. We make these assumptions because they allow us to evaluate the likelihood without
any simulation, which provides a clean comparison of ML estimation with simulation-based
alternatives.

2.1. Setup. Given the current state s ∈ S = {s1, . . . , sN}, letSv(s) ⊆ S denote the set of visited
states and S f (s) ⊆ S the set of feasible states that can be reached from s. We collect the choice
set of the agent in state s in�(s) = {s′ | s′ ∈ S f (s)}. We consider binary choices only, so�(s) has
at most two elements. Ex post, the agent receives per period rewards R(s′) = Y(s′) − C(s′, s)
defined as the difference between per period earnings, Y(s′), and the costs C(s′, s) associated
with moving from state s to state s′. The costs combine monetary expenses such as tuition and
psychic costs (e.g., Cunha et al., 2005). We can only identify the differences in the costs for two
alternative states. We thus normalize the cost of one of the exits to zero. In the subsequent
analysis it is useful to explicitly distinguish between the nonzero (ŝ′) and zero cost (s̃′) exits
from s. We collect the subset of states with a costly exit in Sc. We assume earnings and costs
are separable functions of observed covariates X(s) ∈ X for earnings and Q(ŝ′, s) ∈ Q for costs.
There is a stochastic component (UY (s),UC(ŝ′, s)) to each of them. Earnings are expressed as

Y(s) = μs(X(s)) + UY (s).(1)

The costs of going from state s to state ŝ′ are defined by

C(ŝ′, s) = Kŝ′,s(Q(ŝ′, s)) + UC(ŝ′, s).(2)

Some variables in Q(ŝ′, s) and X(s′) might be the same. Their distinct elements constitute the
exclusion restrictions.

We assume a factor structure on the unobservables by postulating that a low-dimensional
vector of latent factors θ is the sole source of dependency among the unobservables of the model
(Hansen et al., 2004; Cunha et al., 2005):

UY (s) = θ′αs + ε(s) UC(ŝ′, s) = θ′ϕŝ′,s + η(ŝ′, s).

The individual-specific factors θ are known to agents but unknown to the econometrician,
whereas the idiosyncratic shocks ε(s) and η(ŝ′, s) are unknown to the econometrician and only
known by the agents at different stages of the decision process. The idiosyncratic shocks are
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334 EISENHAUER, HECKMAN, AND MOSSO

independent but not identically distributed. We thus generalize the i.i.d. innovation assumption
in Keane and Wolpin (1997). The impact of these traits on earnings and costs is given by the
factor loadings (αs, ϕŝ′,s). We allow for unobservable correlations in outcomes and choices across
states through θ and the loadings vary by states.

Following Carneiro et al. (2003), Cunha et al. (2010), and Heckman et al. (2013), we assume
access to a J -dimensional vector of individual measures M (such as test scores or behavioral
indicators) proxying individual factors θ. We use the measures as noisy signals of the factors θ:

M(j) = μj (X(j)) + θ′γj + ν(j) for j = 1, . . . , J.(3)

We assume that ε(s), η(ŝ′, s), and ν(j) are mutually independent for all j, s, ŝ′. In measurement
system (3), we interpret the unobserved factors as individual-specific traits.

We assume that agents are risk neutral and maximize discounted lifetime rewards when
making their educational choices. When an agent makes his educational choice to proceed from
state s to s′, he knows the stochastic component of the transition η(ŝ′, s) but not future earnings
ε(s′). The assumed timing of the arrival of information is as follows:

ε(s′) realized
Y (s′) received
C(s′, s) paid

η(ŝ , s′) realized
s′′′′ ∈ Ω(s′) picked

optimally

s′ s′′s .

The agents know X(s), Q(ŝ′, s), and θ for all s. Under this timeline, we define I(s) as the
information set of the agent in state s by specifying all components known in the state:

for all s ∈ Sv(s) η(ŝ′, s); ε(s)
for ŝ′ ∈ S f (s) η(ŝ′, s)
and for all s X(s); Q(ŝ′, s); θ

⎫⎬
⎭ ∈ I(s).

The agents in state s know the costs associated with a transition to any feasible state s′. We
assume that the agent uses the distributions for the earnings shocks ε(s), denoted by FE,s(ε(s)),
and for the transition costs shock η(ŝ′, s), denoted by FH,ŝ′,s(η(ŝ′, s)), to form expectations about
future states. The distributions of the shocks can vary across states.5

We define the agent’s value function at state s, given the available information in s, recursively
as

V (s) = Y(s) + max
s′∈�(s)

{
1

1 + r

(− C(s′, s) + E[V (s′)
∣∣ I(s) ]

)}
.(4)

5 We differ from Keane and Wolpin (1997) in our specification of the distribution of the unobserved components. In
their specification, agents have different initial conditions for each state variable. The distribution of initial conditions
is multinomial with five components. They assume that there are only four types (values) of initial conditions in the
population. Serial dependence is induced through the persistence of the initial conditions as determinants of current
state variables. In addition, at each age, the agent receives five shocks associated with the rewards of each choice.
The shocks are joint normally distributed, and serially uncorrelated, and they are assumed to be i.i.d. over time.
In our model, we allow for state dependence in the distribution of the unobservables by letting earnings and cost
shocks be drawn from normal distributions with different variances at each state and at each transition. Moreover, we
allow unobserved portions of cost and return functions to be contemporaneously and serially correlated through their
common dependence on the factors θ. Our θ are normally distributed so we have a continuum of types. The Keane and
Wolpin (1997) specification of persistent heterogeneity is a version of a factor model in which all factor loadings are
implicitly determined (through Bellman iterations) by the parameters of the deterministic portions of cost and return
functions and the distribution functions of unobserved variables and the sample distribution of observables. In our
approach, the factor loadings are specified independently of the parameters of the deterministic portions of the cost
and return functions and the sample distribution of observed variables.
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ESTIMATION OF DYNAMIC MODELS 335

For future reference, we define the continuation value of state s as the second term on the
right-hand side of (4):

CV (s) = max
s′∈�(s)

{
1

1 + r

(− C(s′, s) + E[V (s′)
∣∣ I(s) ]

)}
.(5)

The agent’s policy function determines the optimal transitions. An agent in s chooses his next
feasible state s′ according to the following rule:

s′ =
{

ŝ′ if E
[
V (ŝ′)

∣∣ I(s)
]− C(ŝ′, s) > E

[
V (s̃′)

∣∣ I(s)
]

s̃′ otherwise.
(6)

We now define the returns to schooling and the concept of the option value.

2.2. Returns to Education. We define the ex ante and ex post net returns to schooling. The net
return (NR) to schooling includes per period earnings and costs associated with each educational
choice and the option value of future opportunities (discussed in the next subsection). The
ex ante net returns are defined before the unobservable components of future earnings are
realized. They depend on agents’ expectations and determine their choices. Standard methods
for computing rates of return such as Mincer coefficients or internal rates of returns ignore costs
and option values of future opportunities. They are only interpretable for terminal choices and
ex post realized earnings streams.6 We define the ex ante net return of ŝ′ over s̃′ for an agent
currently in state s as

E
[
V (ŝ′) − V (s̃′)

∣∣ I(s)
]− C(ŝ′, s)

E
[
V (s̃′)

∣∣ I(s)
] = NRa(ŝ′, s̃′, s).(7)

We also define the ex ante gross return (GR), which includes all future earnings but omits all
costs related to educational choices. Define the gross value of a state s recursively as

Ṽ (s) = Y(s) + 1
1 + r

(
E[Ṽ (s′)

∣∣ I(s) ]
)
,

where state s′ ∈ �(s) maximizes the discounted future rewards according to the policy function
defined in Equation (6). Although agents do not base their educational choices upon the gross
returns, they are important, as they are defined in terms of earnings streams only and are the
focus of much applied work reporting rates of return. We define the ex ante gross return of ŝ′

over s̃′ for an agent in s as

E
[
Ṽ (ŝ′) − Ṽ (s̃′)

∣∣ I(s)
]

E
[
Ṽ (s̃′)

∣∣ I(s)
] = GRa(ŝ′, s̃′, s).(8)

We formulate the net and gross ex post returns in the same way but use the value functions that
include the realizations of the earnings shock. The ex post returns can be used to evaluate an
agent’s regret of his educational choice.

2.3. Option Values of Schooling. Consider a high school enrollee who is contemplating
whether to either graduate or drop out. Part of his evaluation of the benefits of high school
graduation is the option to start college. From the perspective of state s, the option value of s′

6 See Heckman et al. (2006a) for a discussion of conventional methods for estimating rates of return and their
economic interpretation.
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336 EISENHAUER, HECKMAN, AND MOSSO

is defined as the difference between the value of taking the optimal choice when moving from
s′ and the fallback value of the zero cost exit s̃ ′′. The zero cost exit is usually associated with
maintaining the current education level, for example, remaining a high school graduate and not
enrolling in college. Then the option value7 of feasible state s′ from the perspective of s is

OV (s′, s) = 1
1 + r

E

[
E

[
max

s′′∈�(s′)

{
V (s′′) − C(s′′, s′)

}∣∣∣I(s′)
]

− E

[
V (s̃′′)

∣∣ I(s′)
]∣∣∣∣∣ I(s)

]

= 1
1 + r

E

[
max

s′′∈�(s′)

{
V (s′′) − C(s′′, s′)

}
︸ ︷︷ ︸

value of options arising from s′

− V (s̃′′)︸ ︷︷ ︸
fallback value

∣∣∣∣∣ I(s)

]
.(9)

We define the option value contribution OVC(s′, s) = OV (s′,s)
E [V (s′) | I(s)] as the relative share of

the option value in the overall value of a state. This component is not reported in standard
calculations of the Mincer return or the internal rate of return.

2.4. Identification. Our model is semiparametrically identified using a straightforward ex-
tension of the arguments in Heckman and Navarro (2007). The main arguments of the proof,
presented in Web Appendix A (http://heckman.uchicago.edu/MLvsSMM>>, consist of using
(a) a limit set argument to identify the joint distribution of earnings and measurements free of
selection (“identification at infinity”), (b) the measurement system on the factor structure that
facilitates identification of the joint distribution of factors, (c) the choice structure and exclusion
restrictions to identify the distribution of costs in the final choice equation, and (d) backward
induction to identify relevant distributions in all states showing that the future value function
acts as an exclusion restriction in current choices. We can identify all of the parameters of the
model including the discount rate.

3. BASELINE ESTIMATES

We fit the model on a sample of 1,418 white males from the NLSY79 using ML estimation.8

Figure 1 shows the decision tree for our model.
All agents start in high school and decide to either drop out or finish. If they finish high school,

they can enroll in college immediately or remain high school graduates with the option to enroll
in college later or not at all. Conditional on early or late college enrollment, agents can either
graduate or drop out. At each decision node, we designate the lower transition to be the zero
cost exit. Our addition of the distinction between late and early enrollment is the only place in
the model where time is introduced. We do this to improve the fit of the model and incorporate
an important feature of the data on education.

For every state s, agents work in the labor market and receive earnings Y(s). When agents
pursue higher education by transitioning to the costly state ŝ′, they incur cost C(ŝ′, s). Agents
face uncertainty about components of future earnings and costs when determining the ex ante
value of each state V (s) given the information available to them. As noted in Section 2, we
assume that the agent knows his type and all past, present, and future covariates including
local labor market conditions. His expectations about the distributions of all future shocks are
assumed to be consistent with their actual realizations.

Following Carneiro et al. (2003) and Heckman et al. (2006b), we assume that the agent’s type
vector θ is summarized by cognitive and noncognitive abilities. We use the scores on the Armed
Services Vocational Aptitude Battery (ASVAB) as noisy measures on cognitive abilities. For

7 Weisbrod (1962) was the first to analyze option values in the context of schooling and human capital accumulation.
8 See Web Appendix B and Bureau of Labor Statistics (2001) for a description of our sample and the NLSY79.
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ESTIMATION OF DYNAMIC MODELS 337

NOTES: Ȳ refers to average annual earnings in the state in 2005 $. Obs. refers to the number of observations in the state.

FIGURE 1

DECISION TREE

noncognitive skills, we rely on Rotter scores (administered in 1979), on the Rosenberg scores
(administered in 1980), and on indicators of risky behaviors such as drug and alcohol use.

In a state s, we assign each agent a duration D(s) based on the number of periods spent in
that state. For an agent who spent four years in college, the duration of the college enrollment
state will be four. We set the duration for an agent’s counterfactual state to the median duration
among the agents who actually visit that state. Let Y(t, s) denote the observed earnings in the
NLSY79 at time t for an agent in state s. We collapse all Y(t, s) within state s into one discounted
average,

Y(s) =
∑D(s)

t=1

( 1
1+r

)t−1
Y(t, s)∑D(s)

t=1

( 1
1+r

)t−1 .

We do the same for time-varying covariates in X(s) and Q(ŝ′, s). This setup differs from standard
dynamic discrete choice models as the timing of earnings within each state does not matter. We
do not estimate the discount factor r and instead set r = 0.04.9

We discuss the construction of our sample in Web Appendix B. The NLSY79 only has data
up to approximately age 45. We extend the duration of the terminal states up to age 65 using
parameters estimated on the available sample to project earnings in unobserved years. The high
school enrollment state characterizes initial conditions in our model. We assume earnings and
costs are functions of standard individual characteristics and local economic conditions.10

9 Heckman and Navarro (2007) and Web Appendix A present conditions under which r is identified.
10 In each state, earnings depend on the number of children in the household, parental education (as the maximum

between the mother’s and father’s education), indicators for the presence of a baby (child less than three years old) in
the household, marriage status, urban residence at age 14, the region of residence (North East, North Central, South,
and West), hourly wage, and unemployment levels in the state of residence for the relevant age group (we use two
age groups, younger than 30 years old or older). For the cost equations, we exclude the indicator for marriage and the
regional dummies, adding instead an indicator for whether the family is intact or not, the number of siblings, and state-
level tuition for public two- and four-year colleges for the transitions to college enrollment states. The state representing
the conclusion of high school is estimated using only an intercept, the two factors, and an unobservable component. All
transition and outcome equations also include the cognitive and noncognitive factor and an idiosyncratic unobserved
component.
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338 EISENHAUER, HECKMAN, AND MOSSO

TABLE 1
CROSS-SECTION MODEL FIT

Average Earnings State Frequencies

State Observed ML Observed ML

High school finishing 0.77 0.78 0.83 0.86
High school dropout 2.29 2.57 0.17 0.14
Early college enrollment 1.18 1.40 0.42 0.40
High school graduation 2.51 2.48 0.42 0.45
Early college graduation 7.47 6.77 0.33 0.29
Early college dropout 4.55 3.84 0.08 0.11
Late college enrollment 2.72 2.54 0.12 0.14
High school graduation (cont’d) 4.29 3.83 0.29 0.32
Late college graduation 4.84 6.16 0.05 0.08
Late college dropout 4.89 4.95 0.07 0.06

NOTES: Earnings are discounted using the within-state duration and measured in units of $10,000. Statistics are calculated
on the NLSY79 sample and for ML based on 50,000 simulated agents using the parameter estimates. State frequencies
are unconditional.

Figure 1 presents the average annual earnings and the number of observations by state.
Earnings are low during the year of graduation ($7,747). High school graduates earn $42,919,
which is almost twice as much as high school dropouts ($22,878). Our distinction between
early and late college enrollment is important. Early enrollees earn much less while in
college ($11,781) compared with late enrollees ($27,192). Also, early college graduation boosts
average annual earnings to $74,646 compared with only $48,408 for late graduation. In the
case of late college enrollment, the difference in earnings among graduates and dropouts is
minor: $48,408 compared with $48,866. This explains why, in our sample, the number of late
college dropouts (95) is actually larger than of late college graduates (77). For the case of early
enrollment (589), the vast majority are graduates (471). The Mincer coefficient is 0.116.11

3.1. Model Fit. Table 1 shows the fit of the model estimated by ML for model fit statistics
that are typically used in the literature. Average earnings and state frequencies are well fit by
our model. Small discrepancies show up for terminal states. Terminal states are populated by
very few agents, which requires us to constrain the outcome and cost parameters of terminal
college states to be the same for early and late transitions.

Comparing the fit of the model with cross-section moments is a weak criterion for a dynamic
model. A more exacting criterion is to predict sequences of educational choices (Heckman,
1981). We follow Heckman and Walker (1990) and Heckman (1984) and use χ2 goodness-of-fit
tests to examine our model’s performance. In Table 2, we report the p -value of a joint test of
the relative share of agents for each state for all realizations of selected covariates.12 For most
cells the fit is good.

One exception (at a 5% significance level) is Parental Education, where we fail to fit the ob-
served patterns for early college enrollment and early college graduation. For Broken Home, we
overpredict the relative share of individuals from a broken home among high school dropouts.
For all other variables and states, the p -values indicate that the model is consistent with the
data. Because tests within covariates across all states are not independent, we use a Bonferroni
test to evaluate the joint hypothesis that the predicted covariate distributions fit at each state.
The test is based on the maximum χ2 statistic over all states for each covariate. A 5% Bonferroni
test is passed by all covariates besides Parental Education. Here, the poor prediction for early
college graduates leads to an overall rejection.

11 Web Appendix C presents additional descriptive statistics and estimates of conventional internal rates of return.
12 In the χ2 test, the predicted covariate distributions depends on estimated parameters. We do not adjust the test

statistic to account for parameter estimation error as suggested by Heckman (1984) because the adjustments are usually
slight (Heckman and Walker, 1990).

 14682354, 2015, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/iere.12107 by A

alto U
niversity, W

iley O
nline L

ibrary on [30/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ESTIMATION OF DYNAMIC MODELS 339

TABLE 2
CONDITIONAL MODEL FIT (P VALUES)

State Number of Children Baby in Household Parental Education Broken Home

High school dropout 0.77 0.26 0.37 0.03
High school finishing 0.88 0.73 0.55 0.35
High school graduation 0.91 0.94 0.65 0.91
High school graduation (cont’d) 0.95 0.33 0.40 0.85
Early college enrollment 0.46 0.54 0.01 0.15
Early college graduation 0.06 0.86 0.00 0.14
Early college dropout 0.33 0.27 0.54 0.75
Late college enrollment 0.80 0.23 0.90 0.60
Late college graduation 0.90 0.39 0.90 0.60
Late college dropout 0.89 0.42 0.91 0.76

NOTES: We simulate a sample of 50,000 agents based on the estimates of the model.

FIGURE 2

ABILITY DISTRIBUTIONS BY FINAL EDUCATION

3.2. Economic Implications. We now present the economic implications of our baseline
results. We first discuss the impact of unobserved abilities on educational choices and earnings
and then turn to the role of psychic costs and option values for the net returns to schooling. We
conclude with a counterfactual policy evaluation.

3.2.1. Impact of abilities. Figure 2 shows the share of agents in each of the final states by
deciles of the overall factor distribution. The distributions of abilities differ substantially across
schooling outcomes. Early college graduates (COEE) are strong in cognitive and noncognitive
abilities. High school dropouts (HSD) are weak in both. High school graduates who never enroll
in college (HSG) are weak in cognitive abilities but quite strong in noncognitive abilities.

Figure 3 shows the transition probabilities to each state by factor deciles. Higher cognitive
skills increase the likelihood of continued educational achievement for all choices. The effect of
noncognitive abilities is mixed. Although they clearly increase the likelihood of finishing high
school, higher noncognitive skills decrease the probability of late college enrollment (condi-
tional on working after high school graduation). Delay of college enrollment is associated with
lower levels of noncognitive skills.

3.2.2. Returns to education. Figure 4 presents the ex ante net return to schooling by factor
deciles. The effect of latent skills on returns differs by state. The return of finishing high school
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340 EISENHAUER, HECKMAN, AND MOSSO

NOTES: We simulate a sample of 50,000 agents based on the estimates of the model. In each subfigure, we condition on
the agents who actually visit the relevant decision state.

FIGURE 3

TRANSITION PROBABILITIES BY ABILITIES
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ESTIMATION OF DYNAMIC MODELS 341

NOTES: We simulate a sample of 50,000 agents based on the estimates of the model. In each subfigure, we condition on
the agents who actually visit the relevant decision state.

FIGURE 4

EX ANTE NET RETURNS BY ABILITIES
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342 EISENHAUER, HECKMAN, AND MOSSO

TABLE 3
COSTS

State Mean 2nd Decile 5th Decile 8th Decile

High school finishing −2.38∗∗ −5.52∗∗∗ −2.40∗∗ 0.79∗
Early college enrollment 2.73 −0.65 2.69 6.10
Early college graduation 1.82 −3.88 1.89 7.61
Late college enrollment 5.53∗∗ 1.72 5.48∗∗ 9.37∗∗
Late college graduation 1.13 −4.72 1.35 7.32

NOTES: We simulate a sample of 50,000 agents based on the estimates of the model. We condition on the agents who
actually visit the relevant decision state. Costs are in units of $100,000. We determine the accuracy of our estimates
using the simulation approach proposed by Krinsky and Robb (1986, 1990) with 1,200 replications. Level of significance:
***1%, **5%, *10%.

is strongly affected by the noncognitive factor. Usually the effect of cognitive skills is more
pronounced. Nevertheless, our estimates show evidence of strong complementarity between
abilities and schooling for most states. Figure 4 also presents median returns. The median net
return for early college enrollment is around zero, and the return of delayed enrollment is even
negative (−21%). College dropouts pay the cost of college without benefiting from the much
larger returns of graduating. The returns from graduating late (10%) are much smaller than
for those graduating early (50%). We report the difference between net and gross returns in
Figure 4.

Psychic costs are crucial determinants of net returns. For example, the median gross return
for early and late college enrollment is positive, whereas the median net return is negative in
both cases. As only agents with a positive net return choose to continue their education, this
follows directly from our estimates (and the data) as more than half of the agents who are faced
with the decision to enroll in college refrain from doing so.

We estimate the overall costs associated with each educational choice. Our estimated costs
combine monetary expenses such as tuition and psychic costs. Table 3 reports the average
costs associated with each transition. It reports the second, fifth, and eighth decile of their
distribution to document their substantial heterogeneity. Costs are key components of the net
returns; ignoring them results in strongly biased estimates. The largest costs are associated with
early and late college enrollment. These are the only states with psychic as well as monetary
costs from tuition. Enrolling early costs the equivalent of $273,000 compared with $553,000
for late enrollment. At least 20% of agents have negative schooling costs in most states. They
experience psychic benefits. For high school graduation, even the average cost is negative.
Psychic costs play a dominant role in explaining schooling decisions. This is an unsatisfactory
feature of the models in the literature; see, for example, Cunha et al. (2005) and Abbott et al.
(2013).

Ex ante and ex post returns do not necessarily agree because agents cannot predict their
future earnings. Decisions that are optimal for an agent ex ante might be suboptimal ex post.
For this reason, we calculate the percentage of agents experiencing regret, that is, those agents
for whom the ex post and ex ante returns do not agree in sign.13 A substantial share of late
college enrollees (34%) regret the decision to graduate. For finishing high school, the share is
much smaller (4%). However, 24% of high school dropouts regret their decision.

3.2.3. Option values of schooling. Our structural model allows us to calculate the option
values of educational choices.14 We defined the option value in Equation (9) as the difference in
the value associated with the optimal continuation of choices versus the fallback value. Figure 5
shows the option values conditional on the deciles of the factor distributions, their median

13 See Web Appendix C for additional results on ex post returns and regret.
14 Other models taking into account option values have been proposed by Comay et al. (1973), Cunha et al. (2007),

Heckman et al. (2014a), and Trachter (2014). See also Cameron and Heckman (1993).
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ESTIMATION OF DYNAMIC MODELS 343

NOTES: We simulate a sample of 50,000 agents based on the estimates of the model. In each subfigure, we condition on
the agents who actually visit the relevant decision state. In units of $100,000.

FIGURE 5

OPTION VALUES BY ABILITIES

(OV ), and their contribution to the total value of each state (OVC). The option values make a
sizable contribution to the overall value of the states and vary by abilities.

Early college enrollment has the highest option value, as graduation yields a large gain
in earnings compared to dropping out. As the net returns to college graduation increase in
cognitive and noncognitive abilities, so does the option value of college enrollment.

3.2.4. Policy analysis. Counterfactual policy analysis is one of the main motivations for the
estimation of dynamic structural models (Wolpin, 2013). We investigate the impact of a 50%
reduction in tuition cost on agents’ college-going decisions. We simulate 50,000 agents from
our model and compare their educational choices under the baseline regime and the policy
alternative. Agents are forward-looking, and due to the sequential decision tree, reducing tuition
for college attendance already increases high school graduation rates by one percentage point
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344 EISENHAUER, HECKMAN, AND MOSSO

as its option value increases. Overall college enrollment increases by roughly 10 percentage,
points as many high school graduates now decide to enroll in college. The increase is evenly split
between early and late enrollment. However, there are considerable differences in graduation
rates among those induced to enter into college depending on the time of enrollment. About
half of the new early enrollees will eventually graduate, whereas only a quarter of the late
enrollees will do so as well.

4. COMPARISON OF ML AND SMM

We use the baseline estimates of our structural parameters to simulate a synthetic sample
of 5,000 agents. This sample captures important aspects of our original data such as model
complexity and sizable unobserved variation in agent behaviors. We disregard our knowledge
about the true structural parameters and estimate the model on the synthetic sample by ML and
SMM to compare their performance in recovering the true structural objects. We first describe
the implementation of both estimation procedures. Then we compare their within-sample model
fit and assess the accuracy of the estimated returns to education and policy predictions. Finally,
we explore the sensitivity of our SMM results to alternative tuning parameters such as choice
of the moments, number of replications, weighting matrix, and optimization algorithm.

We assume the same functional forms and distributions of unobservables for ML and SMM.
Measurement, outcome, and cost equations (1) to (3) are linear-in-parameters. Recall that Sc

denotes the subset of states with a costly exit.

M(j) = X(j)′κj + θ′γj + ν(j) ∀ j ∈ M

Y(s) = X(s)′βs + θ′αs + ε(s) ∀ s ∈ S
C(ŝ′, s) = Q(ŝ′, s)′δŝ′,s + θ′ϕŝ′,s + η(ŝ′, s) ∀ s ∈ Sc.

All unobservables of the model are normally distributed:

η(ŝ′, s) ∼ N (0, ση(ŝ′,s)) ∀ s ∈ Sc ε(s) ∼ N (0, σε(s)) ∀ s ∈ S
θ ∼ N (0, σθ) ∀ θ ∈ � ν(j) ∼ N (0, σν(j)) ∀ j ∈ M.

The unobservables (ε(s), η(ŝ′, s), ν(j)) are independent across states and measures. The two fac-
tors θ are independently distributed. This still allows for unobservable correlations in outcomes
and choices through the factor components θ (Cunha et al., 2005).

4.1. The ML Approach. We now describe the likelihood function, its implementation, and
the optimization procedure.

For each agent, we define an indicator function G(s) that takes value 1 if the agent visits state
s. Let ψ ∈ � denote a vector of structural parameters and � the subset of states visited by agent
i. We collect in D = {{X(j)}j∈M, {X(s),Q(ŝ′, s)}s∈S} all observed agent characteristics. Then the
likelihood for observation i is given by

∫
�

⎡
⎢⎣∏

j∈M

f
(
M(j)

∣∣ D, θ;ψ
)︸ ︷︷ ︸

Measurement

∏
s∈S

⎧⎪⎨
⎪⎩f
(
Y(s)

∣∣ D, θ;ψ
)︸ ︷︷ ︸

Outcome

Pr
(
G(s) = 1

∣∣ D, θ;ψ
)︸ ︷︷ ︸

Transition

⎫⎪⎬
⎪⎭

1{s∈�}⎤⎥⎦dF (θ),(10)

where � is the support of θ. After taking the logarithm of Equation (10) and summing across
all agents, we obtain the sample log likelihood.
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ESTIMATION OF DYNAMIC MODELS 345

Let φσ(·) denote the probability density function and �σ(·) the cumulative distribution
function of a normal distribution with mean zero and variance σ. The density functions for
measurement and earning equations take a standard form conditional on the factors and other
relevant observables:

f
(
M(j) | θ,X(j)

) = φσν(j)

(
M(j) − X(j)′κj − θ′γj

) ∀ j ∈ M

f
(
Y(s) | θ,X(s)

) = φσε(s)

(
Y(s) − X(s)′βs − θ′αs

) ∀ s ∈ S.

The derivation of the transition probabilities has to account for forward-looking agents who
make their educational choices based on the current costs and expectations of future rewards.
Agents know the full cost of the next transition and the systematic parts of all future earnings
and costs (X(s)′βs,Q(ŝ′, s)′δŝ′,s). They do not know the values of future random shocks. Agents
at state s decide whether to transition to the costly state ŝ′ or the no-cost alternative s̃′. Their
ex ante valuations T (s′) incorporate expected earnings and costs and the continuation value
CV (s′) from future opportunities. Given our functional form assumptions, the ex ante value of
state s′ is

T (s′) =
{

X ′(ŝ′)βŝ′ + θ′αŝ′ − Q(ŝ′, s)′δŝ′,s − θ′ϕŝ′,s + CV (ŝ′) if s′ = ŝ′

X ′(s̃′)βs̃′ + θ′αs̃′ + CV (s̃′) if s′ = s̃′.

The ex ante state evaluations and distributional assumptions characterize the transition prob-
abilities:

Pr
(
G(s′) = 1

∣∣ D, θ;ψ
) =

{
�ση(ŝ′ ,s)

(T (ŝ′) − T (s̃′)) if s′ = ŝ′

1 −�ση(ŝ′ ,s)
(T (ŝ′) − T (s̃′)) if s′ = s̃′.

Finally, the continuation value of s is

CV (s) =
[
�ση(ŝ′ ,s)

(T (ŝ′) − T (s̃′))
]

×
∫ T (ŝ′)−T (s̃′)

−∞
[T (ŝ′) − η]

φση(ŝ′ ,s)
(η)

�ση(ŝ′ ,s)
(T (ŝ′) − T (s̃′))

dη

+
[
1 −�ση(ŝ′ ,s)

(T (ŝ′) − T (s̃′))
]

× T (s̃′),

where we integrate over the conditional distribution of η(ŝ′, s) as the agent chooses the costly
transition to ŝ′ only if T (ŝ′) − η(ŝ′, s) > T (s̃′).

We compare ML against SMM for statistical and numerical reasons. ML estimation is fully
efficient as it achieves the Cramér–Rao lower bound. The numerical precision of the overall
likelihood function is very high, with accuracy up to 15 decimal places. This guarantees at least
three digits of accuracy for all estimated model parameters. We discuss the numerical properties
of the likelihood and bounds on approximation error in Web Appendices D and E. We use
Gaussian quadrature to evaluate the integrals of the model.15 We maximize the sample log
likelihood using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (Press et al., 1992).

4.2. The SMM Approach. We present the basic idea of the SMM approach and the details
of the criterion function. Then we discuss the choice of tuning parameters. The goal in the
SMM approach is to choose a set of structural parameters ψ to minimize the weighted distance
between selected moments from the observed sample and a sample simulated from a structural
model. The criterion function takes the following form:

�(ψ) = [f̌ − f̂ (ψ)
]′

W−1[f̌ − f̂ (ψ)
]
,(11)

15 See Judd and Skrainka (2011) for a comparison of alternative integration strategies.
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346 EISENHAUER, HECKMAN, AND MOSSO

where f̌ represents a vector of moments computed on the observed data and f̂ (ψ) denotes an
average vector of moments calculated from R simulated data sets and W is a positive definite
weighting matrix. We define f̂ (ψ) as

f̂ (ψ) = 1
R

R∑
r=1

f̂ r(ur;ψ).

The simulation of the model involves the repeated sampling of the unobserved components
ur = {{ε(s), η(ŝ′, s)}s∈S} determining agents’ outcomes and choices. We repeat the simulation
R times for fixed ψ to obtain an average vector of moments. f̂ r(ur;ψ) is the set of moments
from a single simulated sample. We solve the model through backward induction and simulate
5,000 educational careers to compute each single set of moments. We keep the conditioning on
exogenous agent characteristics implicit in Equation (11).

We account for θ by estimating a vector of factor scores based on M that proxy the latent
skills for each participant (Bartlett, 1937). The scores are subsequently treated as ordinary
regressors in the estimation of the auxiliary models. We use the true factors in the simulation
steps, assuring that SMM and ML are correctly specified.

The random components ur are drawn at the beginning of the estimation procedure and
remain fixed throughout. This avoids chatter in the simulation for alternative ψ , where changes
in the criterion function could be due to either ψ or ur (McFadden, 1989).

To implement our criterion function, it is necessary to choose a set of moments, the number
of replications, a weighting matrix, and an optimization algorithm. Later, we investigate the
sensitivity of our results to these choices.

We select our set of moments in the spirit of the efficient method of moments (EMM), which
provides a systematic approach to generate moment conditions for the generalized method of
moments (GMM) estimator (Gallant and Tauchen, 1996). Gallant and Tauchen (1996) propose
using the expectation under the structural model of the score from an auxiliary model as the
vector of moment conditions. We do not directly implement EMM but follow a Wald approach
instead, as we do not minimize the score of an auxiliary model but a quadratic form in the differ-
ence between the moments on the simulated and observed data. Nevertheless, we draw on the
recent work by Heckman et al. (2014b) as an auxiliary model to motivate our moment choice.16

Heckman et al. (2014b) develop a sequential schooling model that is a halfway house between
a reduced form treatment effect model and a fully formulated dynamic discrete choice model
such as ours. They approximate the underlying dynamics of the agents’ schooling decisions by
including observable determinants of future benefits and costs as regressors in current choice.
We follow their example and specify these dynamic versions of Linear Probability (LP) models
for each transition. In addition, we include mean and standard deviation of within-state earn-
ings and the parameters of ordinary least squares (OLS) regressions of earnings on covariates
to capture the within-state benefits to educational choices. We add state frequencies as well.
Overall, we start with a total of 440 moments to estimate 138 free structural parameters.

We set the number of replications R to 30 and thus simulate a total of 150,000 educational
careers for each evaluation of the criterion function. The weighting matrix W is a matrix with
the variances of the moments on the diagonal and zero otherwise. We determine the latter by
resampling the observed data 200 times. We exploit that our criterion function has the form

16 If the weighting matrices are appropriately chosen and the auxiliary model is correctly specified, then both
approaches are asymptotically equivalent to ML (Gouriéroux et al., 1993). The EMM approach requires analytical
derivatives for the auxiliary model, which is a very time-consuming, error-prone, and tedious task for large and complex
models. For this reason, the EMM approach is not commonly used to estimate dynamic discrete choice models but
widely applied to fit stochastic volatility models. In the latter case, several tractable auxiliary models such as ARCH and
GARCH are readily available (Andersen et al., 1999). See Carrasco and Florens (2002) for an accessible comparison
of EMM to other simulation-based methods and additional references.
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ESTIMATION OF DYNAMIC MODELS 347

TABLE 4
CROSS-SECTION MODEL FIT

Average Earnings State Frequencies

State Observed ML SMM Observed ML SMM

High school finishing 0.78 0.76 0.78 0.86 0.84 0.86
High school dropout 2.50 2.53 2.54 0.14 0.16 0.14
Early college enrollment 1.45 1.42 1.45 0.41 0.41 0.41
High school graduation 2.46 2.44 2.45 0.45 0.43 0.45
Early college graduation 6.81 6.99 6.67 0.29 0.30 0.29
Early college dropout 3.91 3.97 4.02 0.12 0.11 0.12
Late college enrollment 2.51 2.55 2.52 0.13 0.13 0.13
High school graduation (cont’d) 3.88 3.83 3.79 0.32 0.30 0.32
Late college graduation 6.03 6.21 6.19 0.07 0.07 0.07
Late college dropout 5.10 4.89 5.05 0.06 0.06 0.06

ML SMM

RMSE 0.05058 0.05748

NOTES: Earnings are discounted using the within-state duration and measured in units of $10,000. Statistics calculated for
ML and SMM approaches based on 50,000 simulated agents using the parameter estimates. RMSE = root-mean-square
error.

of a standard nonlinear least-squares problem in our optimization. Due to our choice of the
weighting matrix, we can rewrite Equation (11) as

�(ψ) =
I∑

i=1

(
f̌ i − f̂ i(ψ)

σ̂i

)2

,

where I is the total number of moments, f i denotes moment i, and σ̂i its bootstrapped standard
deviation.

Our criterion is not a smooth function of the model parameters. Small changes in the struc-
tural parameters cause some simulated agents to change their educational choices, resulting in
discrete jumps in our set of moments (Smith and Keane, 2004). Thus we cannot use gradient-
based methods for optimization and rely on derivative-free alternatives instead. Moré and Wild
(2009) show that model-based solvers perform better than standard derivative-free direct search
solvers used in the existing literature; see Adda et al. (2011, 2013) and Del Boca et al. (2014)
for applications of derivative-free direct search solvers. From the class of model-based solvers,
we choose the Practical Optimization Using No Derivatives for Sums of Squares (POUNDerS)
algorithm (Munson et al., 2012). POUNDerS exploits the special structure of the nonlinear
least-squares problem within a derivative-free trust-region framework and forms a smooth
approximation model of the objective function to converge to a minimum.17

4.3. Results. We compare ML and SMM estimation to learn whether our version of SMM
is a good substitute for ML. First, we compare basic model fit statistics. Second, we study the
estimates for the returns to education and perform a counterfactual policy exercise. Finally, we
explore alternative choices for the set of moments, weighting matrix, number of replications,
and optimization algorithm.

4.3.1. Model fit. Table 4 shows the average annual earnings for each state and the conditional
state frequencies. Overall, both estimation approaches fit these aggregate statistics quite well.
The model fit for the average earnings among late college graduates and late college dropouts

17 See Nocedal and Wright (2006) for a discussion of the nonlinear least-squares problem and Kortelainen et al.
(2010) for a detailed description of the underlying mechanics of POUNDerS.
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348 EISENHAUER, HECKMAN, AND MOSSO

TABLE 5
CONDITIONAL MODEL FIT (P VALUES)

Number of Baby in Parental Broken
Children Household Education Home

State SMM ML SMM ML SMM ML SMM ML

High school dropout 0.90 0.75 0.83 0.95 0.26 0.56 0.65 0.62
High school finishing 0.99 0.99 0.99 0.99 0.96 0.99 0.97 0.89
High school graduation 0.84 0.72 0.99 0.99 0.86 0.99 0.40 0.50
High school graduation (cont’d) 0.67 0.90 0.98 0.98 0.90 0.98 0.37 0.42
Early college enrollment 0.04 0.49 0.98 0.97 0.87 0.94 0.39 0.58
Early college graduation 0.63 0.91 0.81 0.86 0.07 0.06 0.89 0.58
Early college dropout 0.42 0.72 0.99 0.99 0.86 0.99 0.40 0.50
Late college enrollment 0.27 0.62 0.99 0.94 0.14 0.25 0.84 0.96
Late college graduation 0.56 0.11 0.97 0.99 0.07 0.06 0.72 0.97
Late college dropout 0.71 0.77 0.62 0.17 0.08 0.89 0.45 0.89

TABLE 6
ECONOMIC IMPLICATIONS

Gross Return Net Return

State True ML SMM True ML SMM

High school finishing 28% 35% 33% 66% 62% 138%
Early college enrollment 14% 18% 18% −2% −1% −4%
Early college graduation 71% 75% 61% 48% 48% 93%
Late college enrollment 28% 30% 29% −23% −21% −58%
Late college graduation 22% 22% 16% 9% 6% 24%

ML SMM

RMSE 0.03416 0.29775

NOTES: Statistics calculated for ML and SMM approaches based on 50,000 simulated agents using the parameter
estimates. RMSE = root-mean-square error calculated in units of 100%.

is slightly worse than for the other states, as the agent count in those states is low. This problem
affects the SMM estimates more than ML. The state frequencies are matched very well in both
cases.

We report the root-mean-square error (RMSE) based on the difference between the simu-
lated and observed statistics. There are only minor discrepancies for both estimation approaches.
Nevertheless, they are slightly smaller for the ML results.

We apply χ2 goodness-of-fit tests (Heckman, 1984; Heckman and Walker, 1990) to the esti-
mated and actual probabilities. In Table 5, we report the p -value of a joint test of the relative
share of agents within each state conditional on all possible realizations of selected covariates.18

Overall, the level of p -values is high. For ML estimation, all p -values indicate that our model
is consistent with the data at the 5% significance level. In the case of SMM, we do not pass
the test conditional on Number of Children only among early college enrollees. Because tests
within covariates across all states are not independent, we use a Bonferroni test to evaluate the
joint hypothesis that the predicted covariate distributions fit at each state. The test is based on
the maximum χ2 statistic over all states for each covariate. We pass a 5% Bonferroni test for all
covariates and both estimation approaches.

4.3.2. Economic implications. Table 6 presents the median ex ante gross returns GRa(ŝ′, s̃′, s)
and net returns NRa(ŝ′, s̃′, s) of pursuing a higher education by transitioning from s to ŝ′. Both

18 In the χ2 test, the predicted conditional distributions depends on estimated parameters. We do not adjust the test
statistic to account for parameter estimation error as suggested by Heckman (1984) because the adjustments are usually
slight (Heckman and Walker, 1990).
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ESTIMATION OF DYNAMIC MODELS 349

TABLE 7
STANDARD DEVIATIONS OF RANDOM COST SHOCKS

σ̂η(ŝ′ ,s)

State True ML SMM

High school finishing 0.27 0.24 0.61
Early college enrollment 0.20 0.19 0.47
Early college graduation 0.61 0.60 1.30
Late college enrollment 0.22 0.20 0.56
Late college graduation 0.61 0.60 1.30
RMSE 0.016 0.496

NOTE: RMSE = root-mean-square error.

types of returns capture all current and future earnings. However, they differ with regard to
their inclusion of current and future costs. Their systematic parts are included in the calculation
of the NRa(ŝ′, s̃′, s) but not the GRa(ŝ′, s̃′, s), as we discussed in Subsection 2.2.

The estimates for the gross returns GRa(ŝ′, s̃′, s) are similar for the two approaches and close
to their true values. However, for the net returns NRa(ŝ′, s̃′, s), only the ML results are close
to the truth. The SMM results are off by up to a factor of 2. For example, the true net return
of finishing high school is 66%, whereas SMM estimates 138%. The RMSE is roughly one
order of magnitude larger for SMM than ML estimation. This difference is solely driven by the
discrepancies in the net returns.

Table 7 sheds light on the poor performance of our SMM approach in the estimation of
the net returns. In contrast to the gross returns, these returns include the current costs and the
systematic part of all future costs of educational choices. SMM is unable to detect the systematic
differences in the cost faced by agents. We overestimate the variance of the unobserved com-
ponent determining choices ση(ŝ′ ,s)

. Too much of the agents’ decisions is attributed to random
cost shocks and not their systematic differences. This translates into an excess net return, as we
underestimate the cost associated with future educational choices. Despite encouraging values
for model fit criteria, SMM fails to accurately estimate the net return to educational choices.

We also explore the impact of a 50% reduction in tuition cost on agents’ college-going
decisions. We simulate 50,000 agents from our model and compare their educational choices
under the baseline regime and the policy alternative using the results from the two estimation
approaches. Based on the ML results, all policy predictions line up with the underlying truth.
This is only partly true for the SMM estimation, where the predicted graduation rate for those
induced to enroll in college late is too optimistic. Only a quarter will actually graduate, whereas
the SMM results forecast about half. The SMM’s failure to distinguish between the systematic
and unsystematic cost components driving educational choices translates into (partly) flawed
policy conclusions as well.

We now investigate the poor performance of our application of SMM and start with some
evidence that we indeed recover a global minimum of our criterion function. Figure 6 shows the
value of�(ψ) around our SMM estimates as we perturb all parameters in a random direction in
t increments. All perturbations increase the discrepancies between the observed and simulated
sample. However,�(ψ̂) is not zero because of remaining differences between estimated and true
structural parameters. Even if we set ψ̂ = ψ∗, then �(ψ∗) evaluates at 434 (horizontal dashed
line) due to the random variation in agents’ behaviors and state experiences. The moments
provide noisy information about the data-generating process due to the random components.
The more variation due to unobservables, the less information is contained in the data. As it
turns out, the value of the criterion function evaluated at our estimates ψ̂ is actually slightly
smaller than �(ψ∗).

Next we consider alternative choices for (a) set of moments f̂ (ψ), (b) number of replications
R, (c) weighting matrix W , and (d) optimization algorithm.
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350 EISENHAUER, HECKMAN, AND MOSSO

NOTE: Investigation using estimation sample of 5,000 agents with 30 replications.

FIGURE 6

CRITERION FUNCTION

4.3.3. Set of moments. We use the sequential schooling model of Heckman et al. (2014b) to
inform our choice of moment conditions in the spirit of EMM estimation (Gallant and Tauchen,
1996). For our baseline, we match a number of conditional moments such as parameters of
OLS regressions for within-state earnings and LP models characterizing the state transitions.
We explicitly include determinants of future costs and earnings among the regressors in the LP
models to capture the dynamics of agents’ educational choices. We add aggregate statistics of the
data such as average earnings and their standard deviations as well as state frequencies. In Table
8, we study the effects of using alternative sets of moment conditions. In particular, we specify
a cross-sectional version in which we do not include future outcome covariates in the models
of educational choice. We also study three alternative sets of dynamic moments. We increase
their number from 440 up to 868, adding moments that provide additional information about
the observed agent transitions. We thereby hope to improve the estimation of the systematic
differences in the psychic cost of educational choices. We add a dynamic Probit model for
each transition (Alt. A) and correlations of state outcomes and each covariate (Y(s),X(s)),
between outcomes over time (Y(s),Y(s′)), and correlations of choice indicators with current
cost covariates (G(s′),Q(ŝ′, s)) (Alt. B).

We also report the value of the criterion function at the true structural parameters�(ψ∗). Its
difference from zero is solely driven by the presence of the random disturbances ur. The final
values of our criterion function are always below�(ψ∗), which gives us further confidence that
we have attained a global minimum in those cases.

We show the implications of alternative moments for the estimated median ex ante gross
and net returns to education in Table 9. Once dynamic moments are included in the criterion
function, the effect of adding even more is rather small. The estimates for the gross and net
returns are all very similar. However, when using only cross-sectional moments for the criterion
function, the performance of SMM deteriorates and its ability to recover the net returns is
undermined further.

We assess the information content of selected moments f̂ i and investigate the effect of
perturbations around ψ̂ . In Figure 7, we perturb the intercept in the structural earnings equation
for early college graduates in t increments. This has a direct effect on average earnings in that
state (Figure 8a). However, agents are forward-looking, and these changes also affect moments
associated with earlier decisions such as finishing high school (Figure 8b). This is true even
though the immediate benefits of doing so (Figure 8c) are unaffected. Agents change their
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ESTIMATION OF DYNAMIC MODELS 351

TABLE 8
SET OF MOMENTS

Cross-Section Moments Dynamic (Panel) Moments

Sets Base Base Alt. A Alt. B

Outcome models

Means
√ √ √ √

Standard deviations
√ √ √ √

Ordinary least squares
√ √ √ √

Correlations
√

Choice models

State frequencies
√ √ √ √

Linear probability
Cross section

√
Dynamic

√ √ √
Probit

Dynamic
√ √

Correlations
√

Overall statistics

Number of moments 222 440 690 868
Number of replications 50 50 50 50
Weighting matrix diagonal variance matrix
Algorithm POUNDerS

Quality of fit measures

�(ψ̂) 130.69 383.49 666.57 798.33
�(ψ∗) 222.12 434.07 685.94 847.64

NOTES: Alt. = Alternative.

early educational choices due to the increase in the option value of finishing high school, which
includes the expected future value of potentially graduating from college.

4.3.4. Number of replications. For a given set of structural parameters, we create multiple
simulated data sets from which we calculate the moments. Averaging over those moments, we
reduce the effect of random components determining agents’ choices and state experiences.
In Figure 8, we show the value of the criterion function at the true structural parameters
ψ∗ for different numbers of replications R. The difference from zero is solely driven by the
random components determining agents’ choices and outcomes. If the model is simulated only
once, then �(ψ∗) takes value 825. Initially, increases in R result in a large drop of �(ψ∗).
However, this effect levels off after more than 20 replications. Afterwards, the value of �(ψ∗)
oscillates around 435. In a finite sample, differences between f̌ and f̂ (ψ∗) remain even for a
very large number of replications. Although the random values of (ε(s), η(ŝ′, s)) wash out in the
simulated moments, their particular realizations remain relevant in the finite observed data.19

For our baseline estimates we set R = 30. Further increases do not change model fit or economic
implications.

4.3.5. Weighting matrix. Our optimization algorithm is only guaranteed to converge to local
minimizers. Figure 9 plots the surface of our criterion function around ψ∗ for two alternative
choices of W given the true values of ur. Thus, f̌ = f̂ (ψ∗) and �(ψ∗) evaluates initially to zero

19 See Kristensen and Salanié (2013) for a comprehensive statistical analysis of estimation methods, where the
objective function is approximated through simulation or discretization.
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352 EISENHAUER, HECKMAN, AND MOSSO

TABLE 9
ROBUSTNESS OF ECONOMIC IMPLICATIONS OF ALTERNATIVE IMPLEMENTATIONS OF SMM

Cross-Section Moments Dynamic (Panel) Moments

State True Base Base Alt. A Alt. B

Gross return

High school finishing 28% 38% 33% 34% 35%
Early college enrollment 14% 18% 18% 19% 19%
Early college graduation 71% 74% 61% 67% 61%
Late college enrollment 28% 17% 29% 25% 26%
Late college graduation 22% 18% 16% 19% 14%

Net return

High school finishing 66% 154% 138% 137% 137%
Early college enrollment −2% −4% −4% −4% −4%
Early college graduation 48% 89% 93% 94% 93%
Late college enrollment −23% −72% −58% −55% −56%
Late college graduation 9% 16% 24% 22% 24%

NOTES: Statistics calculated for SMM based on 50,000 simulated agents using the parameter estimates.

FIGURE 7

PARAMETER PERTURBATIONS, OUTCOME
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ESTIMATION OF DYNAMIC MODELS 353

NOTE: Investigation using estimation sample of 5,000 agents with varying number of replications.

FIGURE 8

ROLE OF REPLICATIONS

NOTE: Investigation using estimation sample of 5,000 agents with one replication and alternative weighting matrices.

FIGURE 9

ALTERNATIVE WEIGHTING MATRICES

regardless of the weighting matrix used. Then we perturb all the structural parameters in a
random direction in t increments. We show the surface of�(ψ) when either the identity matrix
(Figure 10a) or the diagonal matrix with the variances of the moments (Figure 10b) is used.
Choosing the identity matrix for W results in multiple local minima, whereas using the variances
smoothes the overall surface of the criterion function.

4.3.6. Optimization algorithm. Because we repeat the SMM estimation many times for our
Monte Carlo study, we benefit from a fast optimization algorithm. In Figure 10, we compare
the performance of POUNDerS to the standard Nelder–Mead algorithm (Nelder and Mead,
1965) applied by Del Boca et al. (2014) and French and Jones (2011) among others. We perturb
our estimates ψ̂ and run the two algorithms as implemented in the Toolkit for Advanced
Optimization (TAO; Munson et al., 2012) to investigate their relative performance. Following
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354 EISENHAUER, HECKMAN, AND MOSSO

NOTE: Investigation using estimation sample of 5,000 agents with 30 replications and all tuning parameters of the
algorithms set to their default values.

FIGURE 10

OPTIMIZATION ALGORITHMS

Moré and Wild (2009) the solvers are tested using their default options.20 Both algorithms
are derivative-free but differ in their search strategy and how they exploit the structure of the
criterion function. Nelder–Mead applies a direct search method, whereas POUNDerS forms an
approximation model within a trust region, which exploits the special structure of our nonlinear
least-squares problem. We show a minute-by-minute account of the criterion function �(ψ)
over five hours.

The POUNDerS algorithm attains a lower bound of �(ψ) ≈ 385 after about two and a half
hours and terminates. With the Nelder–Mead algorithm, the criterion function still takes a value
of�(ψ) ≈ 2, 050 after five hours. Even after 36 hours, the Nelder–Mead solution�(ψ) ≈ 1,126
is still about three times as large as the POUNDerS solution.

We are unable to improve the SMM results by using alternative tuning parameters. Our
discussion cautions that inspection of model fit statistics alone does not guarantee accurate
economic implications. For our model, large unobserved variation in educational choices trans-
lates into a noisy criterion function, which leaves SMM unable to recover the true returns to
education. The structural variances of the unobserved cost shocks are poorly estimated; we are
unable to correctly distinguish between the systematic and unsystematic cost components of
educational choices.

Our results do not discredit SMM as a useful tool for the estimation of complex economic
models. Our results are highly model dependent, but our diagnostics are not. We now outline a
Monte Carlo exercise that allows SMM users to build confidence in their particular implemen-
tation in any applied setting.

4.3.7. Monte Carlo exercise to gain confidence in an SMM algorithm. Let M(ψ) denote
the structural model parametrized by ψ , which is fit to the observed data Dobs to produce an
estimated set of parameters ψ̂obs using SMM.

20 We are aware that performance can change for other choices. However, our practical experience throughout this
project lines up with the results from this stylized presentation. We illustrate the relative performance of the two
algorithms using a single processor only. Both algorithms allow parallel implementations as well (Lee and Wiswall,
2007; Munson et al., 2012).
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ESTIMATION OF DYNAMIC MODELS 355

Step 1: Simulate a synthetic sample Dsyn from M(ψ̂obs) using the estimated results.
Step 2: Fit M(ψ) on the synthetic sample Dsyn using SMM to produce ψ̂ syn.
Step 3: Compare ψ̂obs to the results from the synthetic sample ψ̂ syn.

Using the initial estimates as the parametrization for the Monte Carlo exercise ensures that
important features of the data-generating process, in our case the large unobserved variability
in agent behaviors, are accounted for. In Step 2, it is crucial to follow the same estimation
approach applied to the original data as closely as possible, for example, choice of starting
values. Combining the application of fast state-of-the-art optimization algorithms with parallel
computing allows for such an analysis even in computation-intensive models.

This exercise showcases the performance of the estimator in a favorable setting as the model
is correctly specified. If the structural parameters ψ̂ syn are successfully recovered, this is encour-
aging but does not provide a definite proof of the performance in the observed data. A failure,
however, offers reason for concern. The algorithm might be improved, for example, by varying
the set of moments used to test SMM.

5. CONCLUSION

We compare the performance of SMM and ML estimation in dynamic discrete choice models.
We estimate a simplified dynamic model of educational choices, which emphasizes the role of
unobserved heterogeneity, psychic costs, and option values for the net returns to schooling. The
primary value of the model comes as input to the simulation study that is the core of this article.

We estimate our model on a sample of white males from the NLSY79. We discuss its im-
plications for schooling decisions and present estimates of option values by cognitive and
noncognitive factors. Given our estimates, we simulate a synthetic sample, creating a realistic
setting to compare ML and SMM estimation. Our model allows for ML estimation without the
need for any simulation in the likelihood function, which provides a clean comparison of ML
against simulation-based estimation methods such as SMM. ML and SMM pass standard model
fit tests. However, although the ML estimates are close to the true structural objects of interest,
our version of SMM fails to recover the true net returns to education and policy effects. The
SMM is unable to distinguish between systematic and unsystematic cost components driving
educational choices.

We investigate alternative tuning parameters for implementing our SMM procedure. We
specify alternative sets of moment conditions and show how the benefit of additional moments
depends on the unique information they provide. Moments that capture the dynamics of agent
behavior are crucial for getting reliable estimates of dynamic models. A large replication count
in the simulation step reduces the effect of random noise in the measurement of the criterion
function. An appropriate choice of the weighting matrix smoothes the surface of the criterion
function and reduces the risk of local minima. Based on our analysis, we recommend that
more exacting model specification tests and Monte Carlo evidence be provided to verify the
performance of SMM in any application.
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