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 Econometrica, Vol. 50, No. 5 (September, 1982)

 GENERALIZED INSTRUMENTAL VARIABLES ESTIMATION

 OF NONLINEAR RATIONAL EXPECTATIONS MODELS'

 BY LARS PETER HANSEN AND KENNETH J. SINGLETON

 This paper describes a method for estimating and testing nonlinear rational expectations
 models directly from stochastic Euler equations. The estimation procedure makes sample
 counterparts to the population orthogonality conditions implied by the economic model
 close to zero. An attractive feature of this method is that the parameters of the dynamic
 objective functions of economic agents can be estimated without explicitly solving for the
 stochastic equilibrium.

 1. INTRODUCTION

 THE ECONOMETRIC IMPLICATIONS of dynamic rational expectations models in

 which economic agents are assumed to solve quadratic optimization problems,
 subject to linear constraints, have been analyzed extensively in [11, 12, 25, 29,
 and 30]. Linear-quadratic models lead to restrictions on systems of constant
 coefficient linear difference equations, which provide complete characterizations
 of the equilibrium time paths of the variables being studied. Hence, the parame-
 ters of these models can be estimated using the rich body of time series
 econometric tools developed for the estimation of restricted vector difference
 equations [e.g., 11, 20, and 32]. Once the linear-quadratic framework is aban-
 doned in favor of alternative nonquadratic objective functions, dynamic rational
 expectations models typically do not yield representations for the variables that
 are as convenient from the standpoint of econometric analysis. Indeed, in many
 models, closed-form solutions for the equilibrium time paths of the variables of
 interest have been obtained only after imposing strong assumptions on the
 stochastic properties of the "forcing variables," the nature of preferences, or the
 production technology. See, for example, the models in Merton [24], Brock [4],
 and Cox, Ingersoll, and Ross [5].

 The purpose of this paper is to propose and implement an econometric
 estimation strategy that circumvents the theoretical requirement of an explicit
 representation of the stochastic equilibrium, yet permits identification and esti-

 mation of parameters of economic agents' dynamic (nonquadratic) objective
 functions, as well as tests of the over-identifying restrictions implied by the
 theoretical model. The procedures we propose do not require a complete, explicit
 representation of the economic environment and, in particular, do not require
 strong a priori assumptions about the nature of the forcing variables. Conse-
 quently, estimation and inference can be conducted when only a subset of the
 economic environment is specified a priori. While our strategy involves specifying
 the objective functions of a subset of agents, it is distinct from specifying the

 'This research was supported in part by NSF Grant SES-8007016. We wish to thank Robert
 Engle, Robert King, Scott Richard, and two anonymous referees for helpful comments on earlier
 drafts of this paper, and Ravi Jagannathan for research assistance.
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 1270 L. P. HANSEN AND K. J. SINGLETON

 decision rules (e.g., dynamic demand or supply schedules) of a subset of agents
 without specifying the entire economic environment.2 The latter approach is
 characteristic of many applications of limited information methods to conven-
 tional simultaneous equations models. Lucas [21] has criticized this approach by
 noting that, under the assumption of rational expectations, the dynamic decision
 rules of economic agents depend explicitly on the stochastic specification of the
 forcing variables and possibly the structural specification of the entire economic
 environment.

 The basic idea underlying our estimation strategy is as follows. The dynamic
 optimization problems of economic agents typically imply a set of stochastic
 Euler equations that must be satisfied in equilibrium. These Euler equations in
 turn imply a set of population orthogonality conditions that depend in a
 nonlinear way on variables observed by an econometrician and on unknown
 parameters characterizing preferences, profit functions, etc. We construct nonlin-
 ear instrumental variables estimators for these parameters in the manner sug-
 gested by Amemiya [1, 2], Jorgenson and Laffont [18], and Hansen [10] by
 making sample versions of the orthogonality conditions close to zero according
 to a certain metric. An important feature of these estimators is that they are
 consistent and have a limiting normal distribution under fairly weak assumptions
 about the stochastic processes generating the observable time series. Also, more
 orthogonality conditions are typically available for use in estimation than there
 are parameters to be estimated and, in this sense, the models are "over-
 identified." The overidentifying restrictions can be tested using a procedure,
 justified in Hansen [10], that examines how close sample versions of population
 orthogonality conditions are to zero.

 Other authors have proposed using stochastic Euler equations to estimate
 parameters (but1not test restrictions) in the context of models containing linear-
 quadratic optimization problems (e.g., Hayashi [16] and Kennan [19]). By focus-
 ing on the Euler equations in these linear models, some of the restrictions implied
 by the model are ignored at the gain of computational simplicity (see Hansen
 and Sargent [13]). In addition to computational simplicity, there is perhaps a
 more compelling reason for using instrumental variables procedures in the
 nonlinear environments considered here. Namely, there is the added difficulty of
 obtaining a complete characterization of the stochastic equilibrium under weak
 assumptions about the forcing variables.3 Fair and Taylor [7] proposed an
 alternative, approximate maximum likelihood procedure that can be applied to

 2By the economic environment we mean a specification of preferences, technology, and the
 stochastic process underlying the forcing variables. By a decision rule we mean a rule used by
 economic agents to determine the current period "decision" as a function of the current "state" of the
 economy.

 3The procedures discussed in this paper are also of use in quadratic optimization environments
 when it is important to allow conditional variances to be dependent on variables in the information
 set. Allowing for these dependencies complicates decision rule derivation and does not permit use of
 conventional asymptotic distribution theory results for instrumental variables estimators. See Section
 3 for further discussion of these issues.
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 INSTRUMENTAL VARIABLES ESTIMATION 1271

 an equation system that includes a set of stochastic Euler equations. By imposing
 certainty equivalence on the nonlinear rational expectations model, they circum-
 vent some of the difficulties in obtaining a complete characterization of the
 stochastic equilibrium. The instrumental variables procedure proposed here
 avoids their approximations for an important class of models.

 The remainder of this paper is organized as follows. In Section 2 the class of
 stochastic Euler equations that can be used in estimation is discussed, and then
 an example from the literature on multi-period asset pricing is presented. In
 Section 3 the generalized instrumental variables estimator is formulated, and its
 large sample properties are discussed. In Section 4 this estimator is compared to
 the maximum likelihood estimator in the context of a nonlinear model of stock
 market returns. This discussion contrasts the orthogonality conditions exploited
 by the instrumental variables estimator with those exploited by the maximum
 likelihood estimator when a specific distributional assumption is made. In
 Section 5 results from applying the generalized instrumental variables estimator
 to this stock return model are presented. Finally, some concluding remarks are
 made in Section 6.

 2. THE IMPLICATIONS OF RATIONAL EXPECTATIONS MODELS
 USED IN CONSTRUCTING ESTIMATORS

 Discrete-time models of the optimizing behavior of economic agents often lead
 to first-order conditions of the form:

 (2.1) Eth(xt+? bo) = 0,

 where xt+n is a k dimensional vector of variables observed by agents and the
 econometrician as of date t + n, bo is an 1 dimensional parameter vector that is
 unknown to the econometrician, h is a function mapping Rk X R' into Rm, and

 Et is the expectations operator conditioned on agents' period t information set, It.
 Expectations are assumed to be formed rationally and, hence, Et denotes both
 the mathematical conditional expectation and agents' subjective expectations as
 of date t. For the purposes of this paper, we shall think of equation (2.1) as
 emerging from the first-order conditions of a representative agent's utility maxi-
 mization problem in an uncertain environment. Our procedures can also be
 applied with some modification to models of panel data in which (2.1) represents
 the first-order conditions associated with the optimum problems of heteroge-
 neous agents, so long as the heterogeneity is indexed by individual characteristics
 observed by the econometrician. More generally, our approach to estimation is
 appropriate for any model that yields implications of the form (2.1) with x
 observed. This latter qualification does rule out some models in which the
 implied Euler equations involve unobservable forcing variables.

 An example will be useful both for interpreting (2.1) and understanding the
 estimation procedure discussed in Section 3. Following Lucas [22], Brock [4],
 Breeden [3], and Prescott and Mehra [26], suppose that a representative con-
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 1272 L. P. HANSEN AND K. J. SINGLETON

 sumer chooses stochastic consumption and investment plans so as to maximize

 - 00

 (2.2) Eo E i8tU(Ct) X
 t=O

 where Ct is consumption in time period t, fi Ee (0, 1) is a discount factor, and
 U(.) is a strictly concave function. Further, suppose that the consumer has the

 choice of investing in a collection of N assets with maturities Mj, j= 1, . .. , N.
 Let Qjt denote the quantity of asset j held at the end of date t, Pj, the price of
 asset j at date t, Rjt the date t payoff from holding a unit of an M1-period asset
 purchased at date t -MA1j, and W, (real) labor income at date t.4 All prices are
 denominated in terms of the consumption good. The feasible consumption and
 investment plans must satisfy the sequence of budget constraints

 N N

 (2.3) Ct + 2Pjt Qjt < Rjt Qjt - M + Wt.
 j23 j=1

 The maximization of (2.2) subject to (2.3) gives the first-order necessary
 conditions (Lucas [22], Brock [4], Prescott and Mehra [26]):

 (2.4) Pjt U(t) A (j]= 1, . . ., N).

 If, for example, the jth asset is a default-free, zero coupon bond with term to

 maturity Mj, then Rjt+M in (2.4) equals the real par value of the bond at date
 t + Mj. Alternatively, if ' t denotes the quantity of shares of stock of a firm held
 at date t, Djt denotes the dividend per share of stock j at date t, and Mj = 1, then
 Rjt+I= (Pjt+I + Djt +) and (2.4) becomes

 (2.5) Pjt U'(Ct ) = fEt[(Pjt+ I + Djt+ 1) U'(Ct+ 1)

 with Pjt interpreted as the exdividend price per share. Note that (2.5) is a
 generalization of the model studied by Hall [9] in which preferences were
 quadratic and real interest rates were assumed to be constant over time.

 Estimation and testing using (2.4) or (2.5) requires that the function U be
 explicitly parameterized. For the moment, we assume only that preferences are
 described by a vector of parameters -y, U(-, y), in order to emphasize the
 generality of our estimation strategy. At this level of generality, the representative
 agent assumption plays a critical role in the derivation of (2.4) and (2.5).

 4This income term W, could emerge under the assumption that labor is supplied inelastically. In
 this case W, can be thought of as not being controllable by the representative consumer. Alterna-
 tively, we can introduce a period t labor supply variable L4 into the specification of U and let

 U(Ct, Lt)-=U, (Ct ) -U2(4t)

 where L, is a choice variable of the consumer. For this case, W, = L4wt where wt is the real wage rate
 at period t.
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 INSTRUMENTAL VARIABLES ESTIMATION 1273

 Rubinstein [28] has shown, however, that (2.4) and (2.5) can implicitly accommo-
 date certain types of heterogeneity when agents' preference functions are mem-
 bers of the HARA class. In Sections 4 and 5, we consider in detail the special
 case of (2.5) with a constant relative risk averse preference function. Using a
 theorem in Rubinstein [28], this version of (2.5) can be derived from a model in
 which agents are allowed to have different stochastic endowment streams.

 Relation (2.4) can be used to construct the h function specified in (2.1).

 Suppose the econometrician has observations on Pi and Rj for a subset of m of
 the assets (m < N) with maturities n , n2, . .. ., nm, and on consumption C. Since

 C, and Pjt are known to agents at time t, (2.4) implies

 (2.6) Et[3 An/ J, ) Xjt+n(f j = 0,

 where Xjt+n/ = nt + t, for j = 1, .. ., m. Let n = nm and x' =(Xlt+n,
 ... Xmt + n,, Ct*') where the n * constituents of Ct* are observable functions
 of Ct and the distinct values of Ct + n , i = 1, . . . , n. For example, U'(Ct + n )/
 U'(Ct) in (2.6) may involve the functio'n Ct + n / Ct. Then the function h (xt + n,, bo)
 in (2.1) is given by

 U' (CtIn) X11tfl - 1

 UA(n I t+n) Xlt+n -1

 Notice that x has m + n* coordinates.
 We can interpret

 Ut+n = h(xt+n?bo)

 as the disturbance vector in our econometric estimation. The matrix Eutut' is
 assumed to have full rank. This assumption implicitly imposes some structure

 on the link between u and the "forcing variables" not observed by the

 econometrician that enter, for example, through the production technology. The
 autocovariance structure of u depends on the nature of the assets being studied.
 If the m assets are stocks and n1 through n equal unity, for example, then

 h (xt + I, bo) is constructed from the Euler equations by setting Xjt + 1 = (Pjt + 1 +
 Djlt +)/Pt. In this case, u is serially uncorrelated, since observations on xt ,
 s ? 0, are contained in It and Et[h(xt+ 1, bo)] = 0. On the other hand, if n > 1 for
 somej, as in the model of the term structure of bond prices implied by (2.4), the
 condition Ej[h(xt+n, bo)] = 0 does not preclude serial correlation in u. This can
 be seen by noting that x + - is not necessarily included in It if nj > 1. The
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 1274 L. P. HANSEN AND K. J. SINGLETON

 presence of serial correlation in u leads to a more complicated asymptotic
 covariance matrix for our proposed estimator, but it does not affect consistency
 (see Section 3).

 Before describing our estimation strategy in detail, we briefly consider what is
 perhaps a more "natural" approach to estimation in order to help motivate our
 approach. A possible way of proceeding with estimation is: (i) to explicitly
 specify the rest of the economic environment, including the production technol-
 ogy and the stochastic properties of the forcing variables; (ii) to solve for an
 equilibrium representation for the endogenous variables in terms of past endoge-
 nous variables and current and past forcing variables; and (iii) to estimate the
 parameters of tastes, technology, and the stochastic process governing the forcing
 variables using a full information procedure such as maximum likelihood. This
 approach will yield an exact relationship among current and past endogenous
 variables and current and past forcing variables. To avoid an implication of a
 stochastic singularity among variables observed by the econometrician, it can be
 assumed that the econometrician does not have observations on some of the
 forcing variables. This approach is viable if both the form of (2.1) and the
 stochastic specification of the forcing variables are relatively simple. To allow for
 a general representation of the forcing variables, explicitly solve for an equilib-
 rium representation of the observables, and proceed to estimate the parameters
 of tastes and technology together with the parameters of the forcing processes
 appears to be an overly ambitious task outside of linear environments.5 For this
 reason we adopt an alternative estimation strategy that can be viewed as an
 extension to nonlinear environments of the procedures of McCallum [23] and
 Cumby, Huizinga, and Obstfeld [6] for estimating linear rational expectations
 models.

 3. ESTIMATION

 In this section we describe how to estimate the vector bo using a generalized
 instrumental variables procedure. The basic idea underlying our proposed esti-
 mation strategy is to use the theoretical economic model to generate a family of
 orthogonality conditions. These orthogonality conditions are then used to con-

 struct a criterion function whose minimizer is our estimate of bo. This criterion
 function is constructed in a manner that guarantees that our parameter estimator
 is consistent, asymptotically normal, and has an asymptotic covariance matrix
 that can be estimated consistently. The orthogonality conditions also can be used
 to construct a test of the overidentifying restrictions implied by the theoretical
 model. We elaborate on each of the steps in the following discussion.

 Let ut + = h (x, + n, bo) and consider again the first-order conditions

 (3.1) Ej[ut+n] = 0,

 with the additional assumption that the m constituents of ut,n have finite second

 5Even in linear environments this is a nontrivial econometric endeavor. See Hansen and Sargent
 [11, 12] and Sargent [30] for a discussion of these issues in linear environments.
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 INSTRUMENTAL VARIABLES ESTIMATION 1275

 moments. Also, let zt denote a q dimensional vector of variables with finite
 second moments that are in agents' information set and observed by the
 econometrician; and define the function f by

 (3.2) f(xt+W,tz b) = h(Xt+n,b) 0 Zt,

 where f maps R k x R q X R ' into R r r = m - q, and 0 is the Kronecker product.
 Then an implication of (3.1), (3.2), and the accompanying assumptions is that

 (3X3) ES f (Xt + n 9 Zt) bo) 0 ?

 where E is the unconditional expectations operator.6 Equation (3.3) represents a

 set of r population orthogonality conditions from which an estimator of bo can be
 constructed, provided that r is at least as large as the number of unknown
 parameters, 1.

 We proceed by constructing an objective function that depends only on the

 available sample information {(x +n, Z1), (X2+n, Z2)' . . . (XT+n, ZT)} and the
 unknown parameters. Let go(b) = E [f(x, +n,Z,, b)], where b E R' and it is as-
 sumed that the left-hand side does not depend on t. Note that (3.3) implies that

 go has a zero at b = bo. Thus, if the model underlying (3.1) is true, then the
 method of moments estimator of the function go,

 I I T
 (3.4) gT(b) = I E f(Xt+ngztb)

 t= 1

 evaluated at b = b0, gT(bo), should be close to zero for large values of T. Given
 this fact, and the assumption that f is continuous in its third argument, it is

 reasonable to estimate bo by selecting bT from a parameter space 52 C R' that
 makes gT in (3.4) "close" to zero. In this paper, we follow Amemiya [1,2],
 Jorgenson and Laffont [18], and Hansen [10] and choose bT E 2 to minimize the
 function JT given by

 (3.5) JT(b) = gT(b)'WTgT(b),

 where WT is an r by r symmetric, positive definite matrix that can depend on
 sample information. The choice of the weighting matrix WT defines the metric

 used in making gT close to zero.
 Sufficient conditions for strong consistency and asymptotic normality of

 estimators constructed in this fashion are provided in Hansen [10].7 A few key

 6A researcher may wish to use a (possibly different) subvector of z to form the orthogonality
 conditions for each element of utn. Modifications to the following analysis to account for this
 possibility are straightforward.

 7Hansen [101 assumes that the parameter space is compact, that continuity conditions are satisfied
 for the 3h/ab, and that the stochastic process {(x,,Z,)),=I is stationary and ergodic. Presumably
 these assumptions can be relaxed, perhaps along the dimensions proposed by White [331 for
 cross-sectional analysis. In relaxing these assumptions it is important to consider the impact not only
 on estimation, but on model specification as well. Many theoretical rational expectations models rely
 on some form of stationarity to derive time invariant relationships.
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 1276 L. P. HANSEN AND K. J. SINGLETON

 observations are important. First, it is not necessary to specify how E,[u,+nu,+nt]
 depends on elements in the information set as of time t. That is, we can allow

 Ut+n to be conditionally heteroskedastic and can conduct statistical inference
 without explicitly characterizing the dependence of the conditional variances on
 the information set. In the context of the asset pricing models discussed in
 Section 2, for example, this feature of our estimation procedure allows the
 conditional variances of asset yields to fluctuate with movements of variables in
 the conditioning information set. Thus, we can accommodate the assumption in
 Cox, Ingersoll, and Ross [5] that the conditional variances of interest rates vary
 with the level of past interest rates.

 Second, we can think of these estimators as instrumental variables estimators

 where Zt denotes the vector of instruments. For this reason, we refer to our
 estimators as generalized instrumental variables estimators. We require only that
 the z's be "predetermined" as of time period t; they need not be "econo-
 metrically exogenous." For example, current and lagged x's can be chosen.
 Furthermore, as noted in Section 2, u will generally be serially correlated when
 n > 1. Our estimators will be consistent even when the disturbances are serially
 correlated and the instruments are not exogenous. From the standpoint of

 obtaining a consistent estimator, a researcher is given considerable latitude in

 selecting zt.
 Third, the asymptotic covariance matrix for these generalized instrumental

 variables estimators depends on the choice of weighting matrix WT. It is possible
 to choose WT "optimally" in the sense of constructing an estimator with the

 smallest asymptotic covariance matrix among the class of estimators employing
 alternative choices of weighting matrices WT. More precisely, assume that h is

 differentiable, and that the vector of instruments Zt is chosen such that the matrix

 D?= E a (Xt+nWbo)0Zt],

 has full rank. Also, assume that the weighting matrix WT converges almost surely

 to a limiting constant matrix W0 of full rank. Let

 SO = E ES L (Xt+n zt, bo)f(xt+n-j zt-j bo)]
 j= -n+ 1

 with the number of population autocovariances, n, determined by the order of

 the moving average disturbance term ut. Assuming that S0 has full rank,
 Hansen's [10] Theorems 3.1 and 3.2 imply that the smallest asymptotic covari-
 ance matrix for an estimator bT that minimizes (3.5) is obtained by letting W0 be

 Wo* = S0 -. The resulting asymptotic covariance matrix is (D6Wo* DO)f
 In order to implement this "optimal" procedure and to conduct asymptotically

 valid inference we need consistent estimators of Do and Wo*. These matrices can
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 INSTRUMENTAL VARIABLES ESTIMATION 1277

 be estimated using8

 DT = E a4 (Xt+n bT) 0 Zt,

 (3.6) RT(j) = T _ f(Xt+ n,zt,bT)f(xt+n-j,zt]j,bT)',
 t= I+j

 WT = RT(O)+ E [RT() + RT(j)']1}
 j=1

 Note that to compute WT in actual applications, a consistent estimator bT of bo is
 needed. This can be obtained by initially using a suboptimal choice of WT in
 minimizing (3.5) to obtain bT. Then this bT can be employed to calculate WT
 using the formulas supplied above. Once WT is calculated, b* can be obtained by
 minimizing (3.5) with WT substituted for WT. Thus, the "optimal" estimation
 procedure requires two steps.

 The optimal properties of the bT estimator proposed above are, in one sense,
 weak. Nowhere did we offer any precise suggestions about how to choose zt
 optimally from the information set as of time t. The solution to this problem is
 discussed in Hansen and Singleton [15].9 The general solution for Zt may not be
 operational because it requires the researcher to make precise assumptions about
 the entire economic environment. Nevertheless, there are potentially important
 special cases in which the optimal choice of Zt can be used for estimation of
 models like (2.1).

 Before concluding this section, we consider a straightforward way of testing
 the restrictions implied by the model. The estimation procedure sets the I linear
 combinations of the r orthogonality conditions associated with the first-order

 conditions to the minimization problem (3.5) equal to zero in estimating bo:

 (3.7) [ ab WT gT(b) = 0.

 Ix r rX r rX I

 8If n > 1, then WT in (3.6) is not positive definite by construction. Alternative spectral estimators
 that are positive definite by construction are available [e.g., 10 and 13]; however, these estimators do
 not exploit the fact that the defining sum for S only involves a finite number of terms.

 In practice, one may wish to remove the product of the sample means gT(bT)gT(bT)' from the
 cross-products f(X1 + n, Zt, bT)f(xt + n-z s, bT)' when computing RT(i) in (3.6). Under the null
 hypothesis, this adjustment has no effect on the asymptotic properties of the test statistics or
 parameter estimates. Under some alternative hypotheses, not all elements of gT(bT) are expected to
 be near zero. In these circumstances the sample mean corrections may have important effects on the
 values of the test statistics and, hence, the power of the tests.

 9For an extensive discussion of optimal instrument selection in linear environments, see Hansen
 and Sargent [131 and Hayashi and Sims [17].
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 1278 L. P. HANSEN AND K. J. SINGLETON

 Thus, when r > 1, there are r - 1 remaining linearly independent orthogonality
 conditions that are not set to zero in estimation, but should be close to zero if the
 model restrictions are true. To test these overidentifying restrictions, we invoke a
 theorem in Hansen [10] that implies that T times the minimized value of (3.5) for
 an optimal choice of WT is asymptotically distributed as a chi-square with r - 1
 degrees of freedom. It follows that the minimized value of the second step
 objective function can be used to test the nonlinear rational expectations model
 (3.1). The particular r - 1 orthogonality conditions underlying this test are

 determined by the choice of the matrix premultiplying gT(b) in (3.7), which in
 turn was chosen to make bT "optimal." If one has a priori reasons for believing
 that another set of r linear combinations of gT(b) should hold, then the
 overidentifying restrictions associated with these conditions can also be tested
 using the results from Hansen's [10] Lemma 4.1.

 4. COMPARISON TO MAXIMUM LIKELIHOOD

 Amemiya [2] has noted in a somewhat different context that maximum
 likelihood estimators will, in general, be asymptotically more efficient than
 nonlinear instrumental variables procedures if the distributional assumptions are
 specified correctly. On the other hand, maximum likelihood estimates may fail to
 be consistent if the distribution of the observable variables is misspecified. In this
 section we illustrate the second point in the context of the stock return model in
 Section 2.

 For the purposes of this illustration and the empirical example in Section 5, we
 assume that preferences are of the constant relative risk averse type,

 (ct)"
 U(Ct)= , yKl.

 In this case, the marginal utility is given by

 U (Ct) = (Ct),a a =_ -y- 1.

 If the m assets considered in Section 2 are stocks, then (2.6) simplifies to

 (4.1) Et[ /8(Xk+I)'xi, l I = 1 (j = 1,2, . .. , m),

 where Xkt +? is the ratio of consumption in time period t + 1 to consumption in
 time period t, and the one-period real return xjt l is given by (Pj,+ I + Djt+ 1)/Pjt.
 Grossman and Shiller [8] have discussed some empirical implications of this
 specification of the stock price model.

 Maximum likelihood estimation requires that additional distributional assump-
 tions be imposed on the model. Suppose that the stochastic process x' = (xl,
 x2, ... ., xm,xk) is lognormally distributed, and that X= log x is stationary,

This content downloaded from 
������������130.233.35.153 on Tue, 09 Nov 2021 12:42:25 UTC������������� 

All use subject to https://about.jstor.org/terms



 INSTRUMENTAL VARIABLES ESTIMATION 1279

 indeterministic, and of full rank. Further, suppose for simplicity that the
 econometrician chooses to estimate a and ,B in (4.1) using observations only on x
 or, equivalently, X. Then asymptotically efficient parameter estimates can be
 obtained from a restricted version of the Wold moving average representation

 Xt+j = *(L)Vt+l + A

 where +(L) is a k X k infinite order matrix polynomial in the lag operator L,
 with J(O) = I,

 E[ Vt+ I I Xt ' Xt- ,, . .. ] 0, E[ Vt+ I Vt+ I I Xt,'Xt- I...*. ] 2,

 I has full rank, and ,u is a k dimensional vector of constants.10 To derive the
 restrictions on +(L) and It implied by (4.1), we first note that

 log[ I3(Xkt+)aXjt+?I] = log / + aXkt+I + Xjt+lI

 Thus, from the Wold moving average representation, it follows that, for j = 1,
 2, . .. , m,

 (4.2) E[log[ /8(xkt+ I)axjt+ l Xtl,Xt- 1, . . ]

 =log ,l + ap *k(L) ] vt + [ j(L) Vt + alik + lij

 where *jI(L) and Jk(L) are the jth and last rows of +(L), respectively, ' =
 I t,, ... , ,ik], and [ ]+ denotes the annihilation operator that instructs us to
 ignore negative powers of L. Also, the conditional variances satisfy the relation-
 ship

 (4.3) var{ log[ ,8(xkt+ I) xjt+ s ] |Xt, Xt- I,***}

 = var[aVkt+l + Vjt+I]

 = a2akk + ajj + 2aakj,

 ]j= 1,.. ., m, where I = [aj and var denotes the variance operator. Finally,
 using an iterated expectations argument, it can be shown that (4.1) implies

 (4.4) E[ /(Xkt+l)aXt+l lXtXt-Xi, . .. I* = 1

 for j = 1, 2, . . . , m, as long as Xt E It. Combining equations (4.2), (4.3), and

 'OA good reference on covariance stationary processes and Wold's Decomposition Theorem is
 Rozanov [27].
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 1280 L. P. HANSEN AND K. J. SINGLETON

 (4.4), gives the restrictions

 log , a 2gkk + 0j, + 2aakj +
 log/+ 2 lk A=0

 (4.5)

 - tj(L) -a k(L) L =o. L +

 for j = 1,2, ... , m. We can estimate the parameters of 2, ',, a, and /8 by
 imposing the restrictions (4.5), using maximum likelihood with a Gaussian

 density function, and employing observations on X1,X2,.. .,XT+I (see, e.g.,
 Hansen and Singleton [14]).

 The restrictions given in (4.5) together with relation (4.2) imply a logarithmic
 form of relation (4.4), namely,

 (4.6) E[log /3 + a logxk+,l + logxj+,l I Xt,X1_,l ...

 - a 2 kk- -jj-2 2aukj
 2

 By the law of iterated expectations, it follows that the random variable

 t+ I =log A + akt+ ( + Xjt+ +(a2akk jj + 2aakj)

 satisfies the orthogonality conditions

 (4.7) E[ Ujt+ l] = 0; E[ Ujt+ Xt-s] = 0;
 forj = 1,2, . . ., m and s > 0.

 From the first-order conditions of the likelihood function, it can be seen that

 the method of maximum likelihood implicitly uses the logarithmic orthogonality
 conditions (4.7). The validity of these orthogonality conditions is crucially
 dependent on x being lognormally distributed. For other distributional assump-
 tions, the logarithmic form of the orthogonality conditions (4.7) will generally not
 hold. Consequently, the maximum likelihood estimators of a and /B obtained
 from (4.7) under the assumption of lognormality will generally not be consistent
 if this distributional assumption is incorrect. In contrast, the procedures which
 we proposed in Section 3 do not require that the distribution of x be specified a
 priori and, in particular, they do not require that the logarithmic form of the

 orthogonality conditions hold. Instead, we work directly with the orthogonality
 conditions implied by (4.1).

 5. EMPIRICAL RESULTS

 To illustrate the use of the generalized instrumental variables estimator, we
 estimated the parameters of preferences, a and /3, for the model of stock prices
 discussed in Section 4. Two different measures of consumption were considered:
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 INSTRUMENTAL VARIABLES ESTIMATION 1281

 nondurables plus services (NDS) and nondurables (ND)." The monthly, season-
 ally adjusted observations on aggregate real consumption of nondurables and

 services were obtained from the Federal Reserve Board. Real per capita con-
 sumption series were constructed by dividing each observation of these series by
 the corresponding observation on population, published by the Bureau of Cen-
 sus. Each measure of consumption was paired with three sets of stock returns:
 the equally-weighted average return on all stocks listed on the New York Stock
 Exchange (EWR), the value-weighted average of returns on the New York Stock

 Exchange (VWR), and equally-weighted average returns on the stocks of three

 two-digit SEC industries. The industries chosen were chemicals (SEC code 28),

 transportation and equipment (SEC code 37), and other retail trade (SEC codes

 50-52 and 54-59). The aggregate return data were obtained from the CRSP
 tapes and the industry return data were obtained from Stambaugh [31]. Nominal
 returns were converted to real returns, which appear in (4.1), by dividing by the

 implicit deflator associated with the measure of consumption.

 Following the notation adopted in Section 4, we let

 I _ P _t+ + Dlt+ I Ct+ 1

 Xt+1- Pi C,
 and

 h(xt+ I, bo) = (X2t+ 1) aXlt+ I-1,

 where bo = (a, /8). The vector of instruments zt was formed using lagged values
 of Xt+1. For this specification of the process {(xt +I, zt); t = 1,2,.... }, the
 stationarity assumption accommodates certain types of real growth in consump-

 tion. The number of lagged values of xt + included in Zt, NLAG, was chosen to
 be 1, 2, 4, or 6. As NLAG is increased, more orthogonality conditions are
 employed in the estimation. Furthermore, the asymptotic covariance matrix

 becomes smaller, and the number of overidentifying restrictions being tested
 increases. 12

 Table I displays the parameter estimates obtained using the aggregate return
 series for the period February, 1959 through December, 1978.

 " Using a separation argument like that for labor supply discussed in note 4, it is possible to argue
 that the restrictions hold for a measure of a subset of aggregate consumption. For instance, suppose

 that Cl, and C2, are two different components of consumption at time period t and that the function
 U is given by

 U(Cl,, C2t) = (CJ) + U2(C2t).

 In this case, the restrictions we test are appropriate when Cl is used as the measure of consumption.
 The two choices for C, considered correspond to two potentially different assumptions about the
 separability of U.

 12To be more precise, the asymptotic covariance matrix will not increase as more orthogonality
 conditions are used. Using more orthogonality conditions may, at some point, lead to estimators with
 less desirable small sample properties.
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 TABLE I

 INSTRUMENTAL VARIABLE ESTIMATES FOR THE PERIOD 1959:2-1978:12

 Cons Return NLAG a SE(&) A3 SE( /) x2 DF Prob

 NDS EWR 1 -.9457 .3355 .9931 .0031 4.9994 1 .9746

 NDS EWR 2 -.9281 .2729 .9929 .0031 7.5530 3 .9438
 NDS EWR 4 -.7895 .2527 .9925 .0031 9.1429 7 .7574
 NDS EWR 6 -.8927 .2138 .9934 .0030 15.726 11 .8484
 NDS VWR 1 -.9001 .3130 .9979 .0025 1.1547 1 .7174
 NDS VWR 2 -.8133 .2298 .9981 .0025 3.2654 3 .6475
 NDS VWR 4 -.6795 .1855 .9973 .0024 6.3527 7 .5008

 NDS VWR 6 -.7958 .1763 .9980 .0023 14.179 11 .7767
 ND EWR 1 -.9737 .1245 .9922 .0031 5.9697 1 .9854
 ND EWR 2 -.9664 .1074 .9919 .0031 8.9016 3 .9694
 ND EWR 4 -.9046 .0926 .9918 .0031 11.084 7 .8650
 ND EWR 6 -.9466 .0793 .9422 .0030 15.663 11 .8459
 ND VWR 1 -.8985 .1057 .9971 .0025 1.5415 1 .8756
 ND VWR 2 -.8757 .0856 .9974 .0025 3.2654 3 .6475
 ND VWR 4 -.8174 .0742 .9967 .0024 7.8776 7 .5008

 ND VWR 6 -.8514 .0629 .9973 .0024 14.938 11 .8147

 The estimates of a range from -.95 to -.68 when ND is used as the measure
 of consumption, and from -.97 to -.82 when ND is used as the measure of

 consumption. The estimated standard errors for a, SE(a), are smaller when
 consumption is measured as ND than when consumption is measured as NDS.

 As expected, all of the estimates of /8 exceed .99 but are less than unity. The
 chi-square tests are also displayed in Table I, where the number of overidentify-
 ing restrictions is indicated by DF and Prob is the probability that a X2(DF)
 random variate is less than the computed value of the test statistic under the
 hypothesis that the restrictions (3.1) are satisfied. These tests provide greater

 evidence against the model when EWR is included as the return, and when the
 instrument vector is formed from a small number of lagged values of x.

 For comparison, we present some results in Table II from estimating a and /3
 using the method of maximum likelihood under the assumption that x is

 lognormally distributed. They were obtained using the procedure described in

 Section 4 assuming that log x has a sixth-order vector autoregressive representa-

 tion. The corresponding estimates of a and P3 from the two methods of estimation
 are similar. However, the estimated standard errors of a and /3 from the
 instrumental variables procedure are smaller than the corresponding standard
 errors from the maximum likelihood procedure.'3 Three possible explanations for
 this result are that the asymptotic standard errors are being estimated impre-
 cisely, the economic model of stock returns is misspecified, or the auxiliary
 assumptions underlying the maximum likelihood procedure are incorrect. The
 maximum likelihood procedure assumes that x is lognormally distributed and
 that the lag length specification of the vector autoregression is correct. Since the

 13Analytical differentiation, as opposed to numerical differentiation, was used to calculate the
 standard errors.
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 INSTRUMENTAL VARIABLES ESTIMATION 1283

 TABLE II

 MAXIMUM LIKELIHOOD ESTIMATES FOR THE PERIOD 1959:2-1978:12

 Nondurables Plus Services Nondurables

 Equally Value Equally Value

 Weighted Weighted Weighted Weighted

 Returns Returns Returns Returns

 a -.5194 -.9349 -.7643 -.9327
 (.4607) (.3341) (.2203) (.1579)

 A

 B .9957 .9995 .9957 .9988
 (.0037) (.0028) (.0036) (.0028)

 x2 12.5854 17.8716 14.4456 18.8846

 DF 11 11 11 11

 Prob. .6787 .9154 .7907 .9368

 sum of lognormally distributed random variables is not lognormally distributed,
 it seems implausible that both (and perhaps either) the value weighted and (or)
 the equally weighted stock return indices are lognormally distributed. Also, the
 lag length specification does not emerge from any theoretical consideration. The
 generalized instrumental variables procedure does not require that either one of
 these auxiliary assumptions be satisfied.14 On the other hand, the maximum
 likelihood estimates provide a more complete characterization of the stochastic
 process x when the lognormality and the lag length specifications are correct.

 Table II also presents the likelihood ratio tests of the restrictions implied by
 the lognormal version of the model, where the unrestricted model is an unre-
 stricted sixth-order vector autoregression. In contrast to the instrumental vari-

 ables results, the maximum likelihood results provide more evidence against the
 restrictions when VWR is used than when EWR is used. For a more complete
 description of the maximum likelihood estimation and a more comprehensive set
 of results, see Hansen and Singleton [14].

 If the Euler equation (4.1) holds for a given measure of consumption and all of
 the stocks listed on the NYSE, then versions of (4.1) must also hold simulta-
 neously for the equally- and value-weighted aggregate returns. In Table III we

 present the results from estimating a and ,B using the orthogonality conditions
 implied by the respective versions of (4.1) for EWR and VWR, with the z vector
 formed using lagged values of EWR, VWR, and the consumption ratio. Note
 that these estimates of a are smaller than the corresponding estimates in Table I.
 Also, the estimated standard errors for at are smaller than the corresponding

 14Another attractive feature of the generalized instrumental variables procedure is that it requires
 a numerical search over a smaller parameter space than is required from the maximum likelihood
 procedure.
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 TABLE III

 INSTRUMENTAL VARIABLES ESTIMATION WITH MULTIPLE RETURNS

 Equally- and Value-Weighted Aggregate Returns 1959:2-1978:12

 Cons. NLAG a SE(a) /3 SE( f3) x2 DF Prob.

 NDS 1 -.6875 .2372 .9993 .0023 17.804 6 .9933
 NDS 2 -.3624 .1728 .9995 .0022 24.230 12 .9811
 NDS 4 -.3502 .1540 .9989 .0021 39.537 24 .9760
 ND 1 -.7211 .0719 .9989 .0023 19.877 6 .9971
 ND 2 -.5417 .1298 .9988 .0022 24.421 12 .9822
 ND 4 -.5632 .1038 .9982 .0021 40.176 24 .9795

 Three Industry-Average Stock Returns 1959:2-1977:12

 Cons. NLAG &c SE(a) 1 SE(fl) x2 DF Prob.

 NDS 1 -.9993 .2632 .9941 .0028 19.591 13 .8941
 NDS 4 -.4600 .1388 .9961 .0024 82.735 49 .9982
 ND 1 -.9557 .0898 .9935 .0028 22.302 13 .9491
 ND 4 -.8085 .0506 .9962 .0023 82.013 49 .9978

 estimates in Table I when consumption is measured as NDS, and they are
 comparable for the models using ND.'5 Finally, there is considerably more
 evidence against the models when the overidentifying restrictions associated with
 EWR and VWR are tested simultaneously than when separate tests are con-
 ducted.

 Table III also presents the results from estimating a and ,B using the three

 industry-average returns simultaneously. In these cases, the coordinates of x,+1
 are the three real stock returns and the consumption ratio, the Zt vector was

 formed using lagged values of x + I, and the sample period was February, 1959
 through December, 1977. The point estimates for a obtained using industry
 returns are smaller than the corresponding estimates in Table I. At the same
 time, the industry return data provides more evidence against the restrictions,
 since the models with NLAG = 4 are rejected at the one per cent significance
 level.

 To summarize, all of the models considered yield economically plausible

 estimates of a and /P. The test results for the single-return models are mixed, with
 marginal confidence levels close to unity occurring for small values of NLAG
 but not for large values. In contrast, the test statistics for the multiple-return
 models all have probability values of .95 or larger, except one. Thus, the latter
 results provide considerably more evidence against the stock pricing model with
 constant relative risk averse preferences.

 15One qualification to the four lag results in Table III should be mentioned. When NLAG = 4,
 twenty-six and fifty-one orthogonality conditions are used to estimate the parameters a and /3 for the
 aggregate and industry models, respectively. The quality of the consistent estimator of the weighting
 matrix may deteriorate when the number of orthogonality conditions being used is large. In such
 cases, one may wish to take the large sample approximations less seriously in evaluating the
 parameter estimates and the restrictions implied by the model.
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 INSTRUMENTAL VARIABLES ESTIMATION 1285

 6. CONCLUSIONS

 In this paper we have discussed a procedure for estimating the parameters of
 nonlinear rational expectations models when only a subset of the economic
 environment is explicitly specified a priori. We also described how to test the
 over-identifying restrictions implied by the particular economic model being
 estimated. The advantages of these procedures are that they circumvent the need
 for explicitly deriving decision rules, and they do not require the specification of
 the joint distribution function of the observable variables. The techniques are
 appropriate for any dynamic model whose econometric implications can be cast
 in terms of a set of orthogonality conditions. As an application of these

 procedures, we estimated the parameters characterizing preferences in a model
 relating the stochastic properties of aggregate consumption and stock market
 returns.

 Carnegie-Mellon University

 Manuscript received May, 1981; revision received February, 1982.
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