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 Econometrica, Vol. 84, No. 1 (January, 2016), 365-370

 COMMENT ON "CONSTRAINED OPTIMIZATION APPROACHES
 TO ESTIMATION OF STRUCTURAL MODELS"

 By Fedor Iskhakov, Jinhyuk Lee, John Rust,
 Bertel Schjerning, and Kyoungwon Seo1

 We revisit the comparison of mathematical programming with equilibrium con-
 straints (MPEC) and nested fixed point (NFXP) algorithms for estimating structural
 dynamic models by Su and Judd (2012). Their implementation of the nested fixed
 point algorithm used successive approximations to solve the inner fixed point prob-
 lem (NFXP-SA). We redo their comparison using the more efficient version of NFXP
 proposed by Rust (1987), which combines successive approximations and Newton-
 Kantorovich iterations to solve the fixed point problem (NFXP-NK). We show that
 MPEC and NFXP are similar in speed and numerical performance when the more
 efficient NFXP-NK variant is used.

 Keywords: Structural estimation, dynamic discrete choice, NFXP, MPEC, succes-
 sive approximations, Newton-Kantorovich algorithm.

 1. INTRODUCTION

 In "Constrained Optimization Approaches to Estimation of Struc-

 tural Models," Su and Judd (2012; hereafter SJ) proposed a constrained op-
 timization approach for maximum likelihood estimation of infinite horizon dy-
 namic discrete choice models - mathematical programming with equilibrium
 constraints (MPEC). They argued that MPEC is superior to the nested fixed
 point (NFXP) algorithm proposed by Rust (1987). NFXP uses the fact that
 the likelihood depends on the parameters via the value function to a dynamic
 programming (DP) problem. Under weak conditions, the value function is the
 unique fixed point to a contraction mapping defined by the Bellman equation to
 the DP problem and is a smooth implicit function of the underlying structural
 parameters of the problem. NFXP uses this to maximize the likelihood us-
 ing standard unconstrained quasi-Newton optimization algorithms, except that
 each time the likelihood is evaluated, NFXP calls a fixed point subroutine to
 compute the value function corresponding to the current parameter values.

 In contrast, the MPEC method does not need a specialized inner loop algo-
 rithm to compute the fixed point. Instead, it recasts the problem of maximizing

 !The main results in this comment were independently obtained and submitted as separate
 papers by Lee and Seo, and Iskahkov, Rust, and Schjerning, and have been combined as this
 jointly authored comment. We are grateful to Che-Lin Su for substantial input along the course
 of preparation of this comment. We are very saddened by his untimely death which is a huge loss
 for the entire economics profession. We are also grateful to Harry J. Paarsch, Kyoo-il Kim, and
 Daniel Ackerberg for helpful comments. An early version of this paper was presented by Bertel
 Schjerning at the ZICE2014 workshop at the University of Zurich. We are grateful to participants
 of the ZICE2014 workshop for helpful feedback that led to the current draft of this comment.
 This paper is part of the IRUC research project financed by the Danish Council for Strategic
 Research (DSF). Financial support is gratefully acknowledged.

 © 2016 The Econometric Society DOI: 10.3982/ECTA12605
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 366 ISKHAKOV ET AL.

 the likelihood function as a constrained optimization problem with respect to
 the K structural parameters plus N additional variables, which are the values
 of value function at a set of N grid points in the state space. These N addi-
 tional variables must satisfy the Bellman equation, which can be recast as N
 "side constraints." Thus MPEC also implicitly solves the fixed point problem
 while searching for structural parameter values that maximize the likelihood,
 but using a general-purpose constrained optimization algorithm.2
 SJ used the model of optimal replacement of bus engines of Rust (1987) to

 conduct a Monte Carlo study to compare the performance of the MPEC and
 NFXP algorithms. They found that MPEC outperformed NFXP in terms of
 CPU time by up to three orders of magnitude.
 The point of this comment is to note that SJ used a version of NFXP we refer

 to as "NFXP-SA" where the method of successive approximations (SA) is used
 to solve the inner fixed point problem. However, it is well known that succes-
 sive approximations is an inefficient algorithm for computing fixed points of
 contraction mappings, especially when the modulus of the contraction (which
 equals the discount factor in the underlying dynamic programming problem)
 is close to 1.

 We redo the S J Monte Carlo study using the more efficient version of NFXP
 that Rust (1987) employed. This version, NFXP-NK, combines successive ap-
 proximations and Newton-Kantorovich (NK) iterations to solve the inner fixed
 point problem significantly faster and more reliably, especially when the dis-
 count factor is close to 1. We show that NFXP and MPEC are roughly equiva-
 lent in their numerical performance when the more efficient NFXP-NK variant
 is employed.

 NK is the preferred method for computing contraction fixed points because
 it has guaranteed quadratic convergence rate in its domain of attraction. How-
 ever, NK is only locally convergent, so the original design of the NFXP al-
 gorithm (Rust (1987, 2000)) starts with successive approximations to ensure
 global convergence, and switches to NK iterations only after it detects that the
 domain of attraction has been reached.3 This hybrid algorithm or "polyalgo-
 rithm" ensures that a highly accurate solution can be found after only a small
 combined number of iterations. In particular, the combination of these two ap-
 proaches makes the performance of the NFXP-NK algorithm independent of

 2The specific implementation SJ used is KNITRO (see Byrd, Nocedal, and Waltz (2006)),
 which is run under AMPL software that provides analytic first and second order derivatives, and
 under Matlab with analytic gradients and the Hessian approximated numerically.

 3 Rust (2000, p. 28) detailed the theory of when the algorithm has to switch from successive
 approximations to NK iterations. The idea is based on the fact that the ratio of tolerances in
 two successive iterations of SA algorithm approaches the modulus of contraction (ß) as the algo-
 rithm progresses. When this ratio is close enough to /3, the shape of the value function is nearly
 recovered (one can show that this ratio equals ß exactly when the current iteration differs from
 the fixed point by a constant A), which is a signification that the domain of attraction of the NK
 method has been reached (A will be "stripped away" in just a single iteration).
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 the value of the discount factor ß, whereas the CPU times of the NFXP-SA
 algorithm steadily increase as ß -»• 1, as shown in Table II of SJ (p. 2228).

 2. RESULTS

 Table I presents a comparison of CPU times for MPEC and NFXP that re-
 produces Table II of SJ. While we have developed our own code to implement
 NFXP-NK, we have been using the same setup and computer code for MPEC
 that was used to produce the results of the original paper by SJ.4 We have
 replicated SJ's results for NFXP-SA, but since this version of NFXP is inef-
 ficient and is completely dominated by NFXP-NK, we only report results for
 the latter in Table I. Similarly, we skip the results regarding MPEC-Matlab im-
 plementation which uses first order analytical derivatives only, because its run
 times were about two orders of magnitude larger that those of MPEC-AMPL

 TABLE I

 MPEC VERSUS NFXP-NK: Sample Size 6000a

 Converged CPU Time # of Major # of Fune. # of Bellm. # of N-K
 ß (Out of 1250) (in Sec.) Iter. Eval. Iter. Iter.

 MPEC-AMPL

 0.975 1246 0.054 9.3 12.1
 0.985 1217 0.078 16.1 44.1
 0.995 1206 0.080 17.4 49.3
 0.999 1248 0.055 9.9 12.6
 0.9995 1250 0.056 9.9 11.2
 0.9999 1249 0.060 11.1 13.1

 NFXP-NK

 0.975 1250 0.068 11.4 13.9 155.7 51.3
 0.985 1250 0.066 10.5 12.9 146.7 50.9
 0.995 1250 0.069 9.9 12.6 145.5 55.1
 0.999 1250 0.069 9.4 12.5 141.9 57.1
 0.9995 1250 0.078 9.4 12.5 142.6 57.5
 0.9999 1250 0.070 9.4 12.6 142.4 57.7

 aThis table is a replication of Table II in Su and Judd (2012) with NFXP-SA replaced by NFXP-NK (section on
 MPEC-Matlab is skipped to conserve space). For each ß, five starting points were used for each of the 250 simulated
 samples. CPU time, number of major iterations, number of function evaluations, and number of inner loop iterations
 are the averages over the convergent runs. Inner loop iterations include both value function iterations and Newton-
 Kantorovich iterations.

 4SJ have kindly provided well documented MPEC code for this problem via Che-Lin Su's
 website. We are thankful to Che-Lin Su for pointing out numerical instability of the original
 code due to the lack of recentering of the value functions in accordance with Rust (2000, p. 27).
 Recentering has been implemented in the numerically stable version of MPEC code we use here.
 Our NFXP code is available on request.
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 368 ISKHAKOV ET AL.

 in all our experiments.5,6 To conserve space, we also omit the table of structural
 estimates (Table I of SJ), which shows that, conditional on convergence, both
 methods were able to recover the structural parameters of the model. It is also
 the case in all our experiments.
 It is clear from Table I that when the fast NFXP-NK algorithm is used, the

 CPU times are comparable to those of MPEC-AMPL, the implementation uti-
 lizing first and second order analytic derivatives of the objective function. It
 takes both methods about 0.07 to 0.08 of a second to structurally estimate the
 bus engine replacement model. Also, unlike SJ, we find NFXP-NK more reli-
 able than MPEC-AMPL, as indicated by the second column in Table I.
 As the second panel of Table I shows, NFXP-NK uses far fewer successive

 approximation steps compared to the NFXP-SA results in Table II of SJ, and
 this is the main reason why NFXP-NK is so much faster. For the highest dis-
 count factor ß = 0.995 in Table II of SJ, an average of nearly 750,000 successive
 approximation iterations were required, compared to just 145 for NFXP-NK.
 With an average of 55 NK iterations per estimation, the average number of
 both types of inner loop iterations for NFXP-NK is remarkably insensitive to
 the discount factor. On average, it takes NFXP-NK only 12 successive approx-
 imation steps and 4 NK iterations per function evaluation to compute a highly
 accurate fixed point (to a tolerance of 10" 13) when ß > 0.9995.

 3. CONCLUSION

 Our findings lead us to a different conclusion from S J, namely, that "Monte
 Carlo results confirmed that MPEC is significantly faster than NFXP, partic-
 ularly when the discount factor in the dynamic-programming model is close
 to 1." (p. 2228). We have shown that this conclusion is an artifact of their use
 of an inefficient version of NFXP, NFXP-SA, which uses successive approx-
 imations to solve the fixed point problem. When we compare MPEC to the
 more efficient implementation of NFXP that Rust (1987) originally proposed,

 5We used the same specification of the bus engine replacement model, including the same
 true parameter values, same sample size and fixed point dimension, and the same number of
 Monte Carlo replications as in Table II of SJ. We fixed the stopping tolerance for the inner fixed
 point in the NFXP-NK algorithm at 10~13 as in Rust (1987), which is 1/1000 of the stopping
 tolerance 10"10 that SJ used for NFXP-SA. Similarly to SJ, we estimated transition probabilities
 for mileage travelled by buses jointly with other parameters (replacement cost and maintenance
 cost) by maximizing the full likelihood function, following the partial likelihood optimization as
 described in Rust (1987, 2000). We used the BHHH algorithm on the outer loop of NFXP-NK
 and frequency based starting values for the transition probability parameters for both methods.
 For the polyalgorithm, we use a minimum of minstp = 2 and maximum maxstp = 20 successive
 approximation iterations and a relative tolerance to switch from SA to NK iteration rtol = 0.02;
 see Rust (2000, p. 28).

 bOur hardware and software setup was the following: Mac Book Pro with 2.3 GHz Intel Core i7
 processor and 8 GB of memory with OS X version 10.9.5, Matlab 2014a constrained to a single
 core with -singleCompThread startup option, AMPL Version 20131213 and KNITRO 9.0.1.
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 NFXP-NK, we find that NFXP and MPEC are approximately equally fast and
 accurate.

 There is a fundamental difference between how NFXP and MPEC solve the

 structural estimation problem. In the case of NFXP, the choice probabilities
 entering the likelihood function are computed independently of the data in the
 inner loop. For MPEC, both the fixed point calculation and the maximization
 of the likelihood are done simultaneously, which not only implies that the gra-
 dient vector and the Hessian matrix are both high dimensional objects, but also
 that the whole data set needs to be processed multiple times when computing
 nonzero elements of these objects. The separation between solving the model
 and computing the likelihood enables NFXP to use traditional unconstrained
 quasi-Newton/gradient search algorithms for likelihood maximization - such
 as the Berndt-Hall-Hall-Hausman (BHHH) algorithm (Berndt, Hall, Hall,
 and Hausman (1974)) - over a relatively small number of structural parame-
 ters. Unlike MPEC, NFXP recognizes the fact that the objective function is a
 sum of individual likelihoods each of which is computed from the set of value
 functions that are smooth in the structural parameters. The BHHH algorithm
 exploits the information identity to approximate the Hessian of the likelihood
 with the negative of the outer product of the scores. Therefore, because the
 Hessian approximation is always negative semi-definite, BHHH always moves
 in the direction of the gradient (i.e., towards the maximum), even in convex ar-
 eas of the likelihood function. Hence, beyond the advantage of avoiding com-
 putation of second order derivatives, BHHH has the major advantage of always
 moving uphill for small enough step size, and thus is globally convergent to at
 least local maximum of the likelihood function. The robustness and compu-
 tational efficiency of NFXP comes from fully exploiting the structure of the
 maximum likelihood estimation problem, that is, by recognizing that the Bell-
 man operator is a contraction mapping and that objective function is a sample
 sum over individual likelihoods.

 We believe that MPEC has many desirable features, the most important of
 which is ease of use by people who are not interested in devoting time to the
 special-purpose programming necessary to implement NFXP-NK. Our results
 indicate that MPEC is very fast and competitive with NFXP-NK in the bus en-
 gine replacement model, and, particularly in conjunction with intuitive AMPL
 language, it could save many users substantial programming time and enable
 them to structurally estimate many models of interest. For this reason, MPEC
 may be the method of choice for structural estimation of relatively well be-
 haved infinite horizon models that can be formulated using software such as
 AMPL.
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