

05 Airborne sound insulation ELEC-E5640 - Noise Control D

Valtteri Hongisto

valtteri.hongisto@turkuamk.fi 040 5851 888 Docent, Aalto University (Noise Control) Research group leader, Turku University of Applied Sciences

13th Nov 2023

1

Transmission

- Transmission factor τ is the ratio of transmitted I_t and indident intensity I_r .
- Intensity is the energy per unit area [W/m²].
- The magnitude of reflected intensity is neglected in this definition.
- The value of τ varies from 10⁻⁸ to 0.5 for usual constructions, therefore, logarithmic expression is useful.
- **Sound reduction index** *R* [dB] or **SRI** is defined by

$$R = 10 \lg \frac{1}{\tau} = 10 \lg \frac{I_i}{I_t}$$

Determination of SRI in laboratory (ISO 10140-2)

- Pressure method means that incident and radiated intensity are derived indirectly using the spatial average of SPL in both rooms.
- *R* [dB] is sound reduction index, SRI
- τ is the transmission coefficient
- W_1 [W] is the incident sound power
- W_2 [W] is the transmitted sound power
- $S[m^2]$ is the area of the specimen
- A₂ [m²] is the absorption area of the receiving room (A=0.16V/T)
- $L_{p,1}$ [dB] is SPL in the source room.
- $L_{p,2}$ [dB] is SPL in the receiving room.

ISO 140-3 (pressure method, 50-5000 Hz)

 $SRI = L_{p1} - L_{p2} + 101g(S/A_2)$

$$R = 10\log\frac{1}{\tau} = 10\log\frac{W_1}{W_2}$$
$$R = L_{p,1} - L_{p,2} + 10\log\frac{S}{4}$$

Room mode analysis

- It has been politically decided that sufficient number of room modes exist at 100 Hz, if the room is reverberant and larger than 50 m3.
- Measurements within 50-80 Hz in such a small room contains obvious risks due to too small (10-25) number of room modes per one-third octave band

Number of modes per third octave band

4

Determination of SRI in laboratory (ISO 10140-2)

- Specimen is installed between two reverberant rooms of 50 m³ or more
- Rooms are isolated from building frame flexible mounts to avoid flanking transmission
- Specimen (red) is installed on a mounting frame which is mechanically connected to the building frame
- Specimen size for floors and walls is 10 m²
- Smaller sizes are used for, e.g., windows, doors, and ventilation supplies

Measurement uncertainty

• A three-pane single-frame window was tested in five Nordic laboratories using both pressure and intensity method

Hongisto et al. (2012) Acta Acust united Ac

Sound intensity method

- Sound intensity method is the recommended method to determine SRI at low frequencies
- The backwall of the room is covered with 600 mm thick sound absorber to weaken the reactive sound field (reflections) between the specimen and the backwall
- L_{pIS} [dB] is the SPL right in front of the specimen (10 mm distance)
- *L*_I [dB] is the sound intensity level radiated by the specimen

 $R_I = L_{p1S} - L_{I2} - 9$

Measurement of small elements in laboratory

$$D_{n,e} = L_{p,1} - L_{p,2} + 10 \lg \frac{A_0}{A_2}$$

Element-normalized sound level difference $A_0=10 \text{ m}^2$

8

A facade wall is studied in laboratory (S=10 m2). It involves a ventilation unit (160x200 mm) fully open. Measurement results were $L_{p,1}$ =100 dB, $L_{p,2}$ =80 dB and A_2 =4 m2. Determine R and Dn,e.

Why is it more feasible to declare Dne instead of R although the former does not reflect the physical size?

$$R = L_{p,1} - L_{p,2} + 10 \lg \frac{S}{A_2} \qquad D_{n,e} = L_{p,1} - L_{p,2} + 10 \lg \frac{A_0}{A_2}$$

Single-number quantities (SNQs) for airborne sound insulation

- SNQs are needed to avoid the use of frequency-based data in regulations and business
- ISO 717-1 defines procedures to determine the **weighted sound reduction index**, **R**_w, and 8 spectrum adaptation terms C from measurement data of R
 - Similar procedure is used for all quantities describing airborne sound insulation: D_{nT}, D_n, R', D_{e,w}, R'₄₅.
- $\mathbf{R}_{\mathbf{w}}$ describes sound insulation performance against noise having spectrum close to pink noise within 100-3150 Hz
- $\mathbf{R}_{\mathbf{w}} + \mathbf{C}_{\mathbf{tr}}$ describes sound insulation performance against noise having spectrum close to urban road traffic noise within 100-3150 Hz

values using ISO	reau	ICUO		aex	agains	t road	Iral	IIC NOIS
717-1. Shape of Ref	f	R:	Ref	Ref45:	Dev:	I :2	I := R:	10 ^{(Li2-Ri)/10}
is always the same	11	[dB]	[dB]			$[d\mathbf{B}]$		10
but the vertical	100	[uD]	R_{W-19}	26	<u>[ub]</u>	_20	-35.0	0.0003162
position depends on	125	20.5	<i>R</i> w-16	20 29	85	-20	-40 5	0.0000891
the initial value given	120	26.0	<i>R</i> w 10	32	6.0	-18	-44.0	0.0000398
for 500 Hz (anchor	200	31.5	$R_{\rm W}$ = 10	35	3.5	-16	_47.5	0.0000178
frequency). Anchor	200	38.0	$R_{\rm W}$ -10 $R_{\rm W}$ -7	38	0.0	-10	-53.0	0.0000178
frequency is given as	230 315	42 0	$R_{W} /$	50 /1	0.0	-13	-55.0	0.0000030
high value as	313 400	42.0	N w-4	41	0.0	-14	-50.0	0.0000023
possible so that the	400 500	40.0 50.0	<i>N</i> w-1	44	0.0	-13	-39.0	0.0000013
sum of unfavorable	500	50.0		45	0.0	-1Z	-02.0	0.0000008
deviations is still	630	54.0	K W + 1	46	0.0	-11	-65.0	0.0000003
under 32 dB.	800	58.0	R W+2	4/	0.0	-9	-67.0	0.0000002
Unfavorable	1000	62.0	$R_{W}+3$	48	0.0	-8	-70.0	0.0000001
deviation occurs	1250	64.0	<i>R</i> w+4	49	0.0	-9	-73.0	0.0000001
when the reference	1600	66.0	<i>R</i> w+4	49	0.0	-10	-76.0	0.0000000
curve Ref is below	2000	62.0	<i>R</i> w+4	49	0.0	-11	-73.0	0.0000001
the measured value	2500	65.0	<i>R</i> w+4	49	0.0	-13	-78.0	0.0000000
R Therefore the	3150	70.0	$R_{W}+4$	49	0.0	-15	-85.0	0.0000000
initial quess for								
anahar is 0 dD and	R: Measu	red airbo	rne sour	nd reduct	ion index	Sum=Σ[10 ⁽	[Li2-Ri)/10] =	0.000473
the velue is increased	Ref: Refer	ence cur	ve shape	e		$X_{A2} = -10 \cdot \log \theta$	g10(Sum)=	33.3
the value is increased	Ref45: Re	f at 45 dE	}			Ctr=	=XA2 - Rw=	-11.7

Dev: Non-favorable deviation: $=Max(0; Ref45_i - R_i)$

 $R_{\rm w}$ is determined

is broken.

until the 32 dB limit

from the measured R

<u>Weighted</u> sound reduction index, *R*_w, and weighted sound reduction index against road traffic noise, $R_w + C_{tr}$

Ctr=

-12

80

70

60

50

40

30

20

10

0

R [dB]

-Ri

→ Ref45i

200 250

60

 L_{i2} is the reference spectrum used to calculate C_{tr} .

315 500 630 800 000

f [Hz]

 $R_w = 45 \text{ dB}$

 $C_{tr} = -12 \text{ dB}$ $R_w + C_{tr} = 33 \text{ dB}$

Overview of structure types and factors affecting SRI

Single panels

- One material
- SRI is mainly explained by surface mass and Young's modulus
- Examples:
 - glass
 - gypsum
 - brick
 - Concrete
 - Plywood
 - Chipboard

Sandwich

- Glued rigid composite panels
 - E.g. panel-glueflexible-glue-panel
- SRI is mainly explained by surface mass
- Examples:
 - steel-wool-steel in facades
 - veneer-rubberveneer in vehicle floors
 - HOOrs
 - Honeycomb
 - floating floors

Coupled multilayer constructions

- Two layers separated by a cavity and equally distributed studs
- SRI is mainly explained by surface mass, cavity thickness and dynamic stiffness of studs
- Examples:
 - Light drywalls
 - Windows
 - Douple and triple glazings

Uncoupled multilayer constructions

- Two layers separated by cavity
 - Cavity usually filled with absorbent
- Separate studs for each layer: no mechanical sound bridges
- SRI is explained by surface mass, cavity thickness, and cavity absorption
- Examples:
 - Double-studded floors and walls

Examples of single panels

- A. Steel-reinforced concrete 180 mm
- B. Siporex 200 mm
- C. Steel 2 mm
- D. Plywood 21 mm

	А	В	С	D
m' [kg/m ²]	450	140	15.6	15
h [mm]	180	200	2	21
f _c [Hz]	100	160	>5000	1250
R _w [dB]	60	44	36	28

Single panel – prediction model

$$R = \begin{cases} 20 \cdot \log_{10} \left(\frac{\pi m' f}{\rho_0 c_0} \right) + 20 \cdot \log_{10} \left(1 - \left(\frac{f}{f_c} \right)^2 \right) - 5, & f < f_c \\ 20 \cdot \log_{10} \left(\frac{\pi m' f}{\rho_0 c_0} \right) + 10 \cdot \log_{10} \left(\frac{2\eta f}{\pi f_c} \right), & f \ge f_c \end{cases}$$
$$f_c = \frac{c_0^2}{2\pi} \sqrt{\frac{12(1 - \mu^2)m'}{Eh^3}}$$

- surface mass $m' [kg/m_2]$
- frequency *f* [Hz]
- lowest critical frequency f_c [Hz]
- Young's modulus E [Pa]
 loss factor η [] (frequency dependent)
- panel dimensions L_x, L_y, \tilde{h} [m]
- Poisson's ratio μ []
- $c_0 = 343 \text{ m/s}, \rho_0 = 1.204 \text{ kg/m}^3$

Young's modulus E

Hooke's law:

$$F = -kx$$

- *x* [m] is the displacement
- F[N] is the force
- k [N/m] is spring constant (stiffness)

Stress-strain relationship:

$$\sigma = E\varepsilon$$

- σ [Pa=N/m²] is the stress
- ε[] is the strain (fractional extension)
- *E* [Pa] is Young's modulus
 - Modulus of elasticity

$$f_{c} = \frac{c_{0}^{2}}{2\pi} \sqrt{\frac{12(1-\mu^{2})m'}{Eh^{3}}}$$

Examples of material values

Material	ρ	E
	kg/m ³	GPa
steel	7800	210
normal gypsum	670	3.0
hard gypsum	900	4.5
chipboard	630	3.2
veneer coniferous	690	11.0
aluminium	2700	67
spruce	440	10,5
steel reinforced concrete	2500	26
porous concrete	600	2
brick*	625 - 2225	2,2 - 24,7
float glass	2500	70

Usual values: perforated brick 1400 kg/m²; full brick 1800 kg/m².

Propagation speeds of different wave types

• Thick panel

- $h > \lambda$
- shear wave is dominating
- independent on frequency

$$c_{s} = \sqrt{\frac{Gh}{m'}} = \sqrt{\frac{E}{\rho_{p} 2(1+\mu)}}$$

- Thin panel
 - $h < \lambda$
 - bending wave is dominating
 - frequency dependent

$$c_{B} = \sqrt[4]{\frac{\omega^{2}B}{m'}} = \sqrt[4]{\frac{\omega^{2}h^{2}E}{\rho_{p}12(1-\mu^{2})}}$$

h [m] is thickness of panel

G [Pa] is shear modulus

B [Nm] is bending stiffness per unit width

(a) Quasi-longitudinal wave (transverse displacements exaggerated)

(b) Transverse shear wave

(c) Flexural (bending) wave

Figure: Fahy F (1985)

Coincidence

- Bending wave is dispersive: i.e. speed of sound depends on frequency
- Dispersion is the reason for the complexity of *R* calculations
- When the speed of bending wave in the panel equals with the speed of sound in air, coincidence phenomenon occurs.
- Sound insulation is nearly zero because the impedances are nearly equal
- The lowest coincidence frequency is called *critical frequency*, f_c . It takes place in the grazing incidence angle 90° at

$$f_{c} = \frac{c_{0}^{2}}{2\pi} \sqrt{\frac{12(1-\mu^{2})m'}{Eh^{3}}}$$

Angle-dependence of coincidence frequency

- A moving source in the free field can lead to an audible perception of increasing or decreasing coincidence frequency behind the panel
- Coincidence frequency is larger than f_c at at smaller incidence angles than 90°
- Coincidence frequency is infinite at normal sound incidence

Poisson's ratio

- Precise values for different materials slightly depend on the source
- The following values can be safely used:
 - Metals: *µ*≈0.30
 - Others: $\mu \approx 0.20$.

Material	Poisson's ratio
rubber	0.49
gold	0.42 - 0.44
saturated clay	0.40-0.49
magnesium	0.25-0.29
titanium	0.265-0.34
copper	0.33
aluminium-alloy	0.32
clay	0.30-0.45
stainless steel	0.30-0.31
steel	0.27-0.30
cast iron	0.21-0.26
sand	0.20-0.46
concrete	0.10-0.20
glass	0.18–0.3
metallic glasses	0.28-0.41
foam	0.10-0.50
cork	0.01

Radiation efficiency

- Radiation efficiency σ expresses how well the bending wave field is radiating airborne sound.
 - W [W] is the sound power radiated by the panel
 - v [m/s] is the mean vibration velocity of the panel
 - $S[m^2]$ is the surface area
- σ span is 0.00 1.00.
 - $\sigma = 1$, when $f > f_c$ (f_c critical frequency)
 - $\sigma = 0 ... 1$, when $f < f_c$
- Thick heavy panels: $f_c \approx 100 \text{ Hz} \rightarrow \text{sound power radiated by}$ the structure can be determined from the vibration velocity in the full frequency range (100-3150 Hz), since $\sigma = 1$.
- Thin light panels: $f_c \ 1000 3000 \ \text{Hz} \rightarrow \text{vibration}$ measurements cannot be used to predict sound emission
- σ is not used on the models of this chapter but it is a concept that should be known: for example: materials with $\sigma=0$ radiate very little flanking sound

$$\sigma = \frac{W}{\left\langle v^2 \right\rangle \rho_0 c_0 S}$$

Acoustic short circuit in the middle of the panel, when f << fc

- Acoustic short circuit takes place when the wavelength in air, λ_a , is longer than the bending wavelength in the panel λ_m
- Pressure fields caused by nearby maxima and minima of the bending wave interfere and revoke each other ($\sigma << 1$)
- Corner modes and edge modes can radiate sound but only in corner and edge areas (σ = 1)
- In overall, the radiation from the panel is weak and the radiation is dominated by corners or edges, depending on frequency, in a complex way.

Forced vibration and resonant vibration

Forced vibration; $f < f_c$

- $\lambda_a > \lambda_m$
- Acoustic short circuit in the middle of the panel
- Individual modes can radiate efficiently from the edge or corners where the short circuit does not occur: low σ
- *R* depends on mass (forced vibration)

Resonant vibration; $f > f_c$

- $\lambda_a < \lambda_m$
- No short-circuit
- *o*=1
- R smaller than mass predicts

Fahy (1985) ??

23

Panel modes

- The lowest axial panel modes are called
 - f_{01} :resonance in horizontal direction
 - f_{10} : resonance in vertical direction
- Radiation at the lowest panel modes is efficient since acoustic short circuit cannot take place. Sound insulation is poor at these frequencies.
- Frequency of panel mode "mn" is calculated by •

$$f_{mn} = \frac{c_0^2}{4f_c} \left[\left(\frac{m}{L_x}\right)^2 + \left(\frac{n}{L_y}\right)^2 \right]$$

 $m, n = 0, 1, 2, 3, \dots$

- L_x [m] is the width of the panel [m]
- L_v [m] is the height of the panel [m]
- Dimensions are measured from the fixing points
- The mode is usually under 100 Hz

5.2

Gypsum board (13 mm, 8.8 kg/m2) is attached by screws to the vertical studs. Calculated the lowest panel mode in horizontal direction, when the stud division is a) 600 mm

b) 400 mm

$$f_{c} = \frac{c_{0}^{2}}{2\pi} \sqrt{\frac{12(1-\mu^{2})m'}{Eh^{3}}}$$

$$f_{mn} = \frac{c_{0}^{2}}{4f_{c}} \left[\left(\frac{m}{L_{x}}\right)^{2} + \left(\frac{n}{L_{y}}\right)^{2} \right] \qquad m, n = 0, 1, 2, 3, ...$$

Loss factor η

• Loss factor expresses the energy loss per radian angle within the material:

$$E(t) = E_0 e^{-\eta \omega t}$$

- Total loss factor involves three types of losses:
 - 1. internal losses
 - 2. radiation losses
 - 3. coupling losses
- Coupling losses determine the total loss factor for e.g. concrete structures
- Internal losses are important for e.g. sandwich structures
- Total loss factor is measured by vibration transducer from structural reverberation time T.

 $\eta_{tot} = \eta_1 + \eta_2 + \eta_3$ $\eta_{tot} = \frac{2.2}{f T}$

Loss factor

- Loss factor depends on frequency.
- Trocket (2000) suggested the following analytic form for the presentation of frequency-dependent loss factor:
- Hongisto (2003) experimentally determined A and B for some materials.

Material

Calcium silicate block 130 mm, 260 kg/m2** Calcium silicate block 130 mm, 260 kg/m2 Calcium silicate brick 200 mm, 360 kg/m2 Steel-reinforced concrete 180 mm Steel-reinforced concrete 160 mm Gypsum, 13 mm 11 kg/m2 Gypsum 13 mm 9 kg/m2 Steel 2 mm Steel 4 mm

Installation	Dimensions [m]	A	B
Masoned joints	3.6 x 2.8	0.33	-0.32
Resilient joints	3.6 x 2.8	0.38	-0.43
Masoned joints	3.6 x 2.8	1.09	-0.52
Masoned joints	3.0 x 6.0	0.50	-0.42
Slab on steel beams	4.1 x 2.5	0.12	-0.30
Screwed cc600	1.2 x 2.2	0.05	-0.10
Screwed cc600	1.2 x 2.2	0.04	-0.08
Screwed cc1200	1.2 x 2.2	1.66	-0.72
Screwed cc1200	1.2 x 2.2	0.07	-0.25

 $\eta_{tot}(f) = A f^B$

27

Effect of total loss factor on SRI

Calsium-silicate block wall (220 kg/m^2 , • 140 mm, $f_c=180$ Hz) was built in laboratory using three different joint types. The highest SRI above 200 Hz was obtained using rigid joints. Why?

Joint type	<i>R</i> w [dB]	$R_{\rm w} + C_{50-5000}$ [dB]
A (All joints rigid)	50	49
B (Floor joint rigid, other joints resilient)	45	45
C (All joints resilient)	43	43

A.

Thin panel - the effect of constant total loss factor

- Calculated by previous model
- Material
 - 4 mm steel
 - width $L_{zp}=1.25 \text{ m}$
 - height $L_{x,p} = 2.25 \text{ m}$
 - S=2.8 m²
 - m'=31.2 kg/m²
 - E=2E11 Pa
 - TLF was modified
- TLF affects only at and above $\rm f_c$

$$R = \begin{cases} 20 \cdot \log_{10} \left(\frac{\pi m' f}{\rho_0 c_0} \right) + 20 \cdot \log_{10} \left(1 - \left(\frac{f}{f_c} \right)^2 \right) - 5, & f < f_c \\ \\ 20 \cdot \log_{10} \left(\frac{\pi m' f}{\rho_0 c_0} \right) + 10 \cdot \log_{10} \left(\frac{2\eta f}{\pi f_c} \right), & f \ge f_c \end{cases}$$

Hongisto (2003) Työterveyslaitos 29

Thin panel - the effect of surface mass

- Calculated by previous model
- Material
 - 4 mm steel
 - loss factor 0.02
 - width $L_{zp}=1.25 \text{ m}$
 - height $L_{x,p} = 2.25 \text{ m}$
 - S=2.8 m²
 - E=2E11 Pa
 - m' was modified
- Doubling m' increases SRI by 6 dB

$$R = \begin{cases} 20 \cdot \log_{10} \left(\frac{\pi m' f}{\rho_0 c_0} \right) + 20 \cdot \log_{10} \left(1 - \left(\frac{f}{f_c} \right)^2 \right) - 5, & f < f_c \\ \\ 20 \cdot \log_{10} \left(\frac{\pi m' f}{\rho_0 c_0} \right) + 10 \cdot \log_{10} \left(\frac{2\eta f}{\pi f_c} \right), & f \ge f_c \end{cases} \qquad f_c = \frac{c_0^2}{2\pi} \sqrt{\frac{12(1 - \mu^2)m'}{Eh^3}}$$

→ m=23.4 kg/m2, fc=2662 Hz, f11=9.2 Hz

→ m=31.2 kg/m2, fc=3074 Hz, f11=8.0 Hz

Hongisto (2003) Työterveyslaitos

30

Thin panel - the effect of Young's modulus

- Calculated by previous model
- Material
 - loss factor 0.02
 - width $L_{zp}=1.25$ m
 - height $L_{x,p}$ =2.25 m
 - S=2.8 m²
 - m'=31.2 kg/m²
 - E was modified

$$R = \begin{cases} 20 \cdot \log_{10} \left(\frac{\pi m' f}{\rho_0 c_0} \right) + 20 \cdot \log_{10} \left(1 - \left(\frac{f}{f_c} \right)^2 \right) - 5, & f < f_c \\ 20 \cdot \log_{10} \left(\frac{\pi m' f}{\rho_0 c_0} \right) + 10 \cdot \log_{10} \left(\frac{2\eta f}{\pi f_c} \right), & f \ge f_c \end{cases}$$

Hongisto (2003) Työterveyslaitos 31

Thick heavy panel

- The SRI of thin panels can be explained by looking at the radiation from *bending waves* below 5 kHz
- When panel thickness h exceeds 1/6 of the bending wavelength $\lambda_{\rm B}$, *shear waves* begin to dominate sound radiation and SRI.
 - SRI becomes frequency independent above a certain frequency since c_S is constant while c_B is not.
- Figure shows a prediction assuming only bending waves to radiate sound.
- Ignorance of shear waves seems not to lead in major overestimation of SRI.

Examples of some heavy constructions

• R_w is almost linearly associated with logarithmic *m*' in this dataset

- Autoclaved aerated concrete, 68 mm, 500 kg/m3, 34 kg/m2(34 dB Rw)
- Autoclaved aerated concrete, 200 mm, 500 kg/m3, 100 kg/m2 (44 dB Rw)
 - Stee-reinforced concrete, 180 mm, 2500 kg/m3, 450 kg/m2 (60 dB Rw)
 - Timber log 200 mm, 500 kg/m3, 100 kg/m2 (41 dB Rw)
 - Calcium-cilicate block with plaster, 140 mm, 1600 kg/m3, 220 kg/m2 (50 dB)
 - Calcium-cilicate brick with plaster, 210 mm, 1700 kg/m3, 360 kg/m2 (58 dB)

Double constructions

- Single studs (fully coupled)
- Staggered studs (partially uncoupled, since common rails exist on top and bottom of the wall)
- Separate studs (uncoupled)

• Separate studs with structural break (uncoupled)

Examples of uncoupled double constructions

• A: Ship cabin wall

- B: Double wall, staggered studs, common rails
 - 95/66 k600 (4xGN13) M95

- C: Double wall, separate studs, separate rails
 - 2x66 k600 (6xGN13) M190

Double construction – 4 steps of prediction

• R [dB] is the superposition of R_c and R_b :

$$R = -10 \cdot \log_{10} \left(10^{-R_c/10} + 10^{-R_b/10} \right)$$

- R_c [dB] is SRI through the cavity (air path).
 - R_{cI} (fully absorbing)
 - R_{cII} (partially absorbing)
- R_b [dB] is SRI through the sound bridges (stud path).
 - R_{bI} (rigid)
 - R_{bII} (flexible)

- The weaker path (stud or cavity) dominates the sound transmission.
- Four steps:
 - 1. Cavity path, perfect absorption, R_{cI} .
 - 2. Cavity path, non-perfect absorption, R_{cII} .
 - 3. Stud path, rigid studs, R_{bI} .
 - 4. Stud path, flexible studs, R_{bII} .

SRI through fully absorbing cavity, no stude, R_{cI}

• Cavity is perfectly absorbing, no reverberation in the cavity

$$R_{cI} = \begin{cases} 20 \cdot \log_{10} \left(10^{R_{1}/20} + 10^{R_{2}/20} \right) + R_{mam}, & f < f_{mam} \\ R_{1} + R_{2} + 20 \cdot \log_{10} \left(fd \right) - 29, & f_{mam} < f < f_{l} \\ R_{1} + R_{2} + 6, & f > f_{l} \end{cases}$$

$$R_{mam} = 20 \cdot \log_{10} \left[1 - \left(\frac{f}{f_{mam}} \right)^2 \right]$$

 $f_l = \frac{c_0}{2\pi d}$

 $f_{mam} = 80 \sqrt{\frac{(m'_1 + m'_2)}{dm'_1 m'_2}}$

d = thickness of cavity [m]

 f_{mam} = mass-air-mass resonance frequency [Hz]

 $f_l = limit frequency [Hz]$

$$R_1 = R \text{ of layer } 1 \text{ [dB]}$$

$$R_2 = R \text{ of layer } 2 [dB]$$

$$m'_1$$
 = surface mass of layer 1 [dB]

 m'_2 = surface mass of layer 2 [dB]

 R_1 and R_2 can be measured or predicted.

Layer 1 can also be a double construction in a triple-panel construction.

37

Mass-air-mass resonance, f_{mam}

- The resonance exists in double constructions because the cavity acts as a spring between the two surface masses of the double panel
- Sound reduction index is usually lower at the frequency band where f_{mam} belongs than on surrounding frequency bands
- The resonance does not occur if the cavity is not air-tight

$$f_{mam} = 80 \sqrt{\frac{(m'_1 + m'_2)}{dm'_1 m'_2}}$$

- *d* [m] is cavity thickness
- m'_1 [kg/m²] is the surface mass of panel 1
- m'_2 [kg/m²] is the surface mass of panel 2

5.3					
Calculate finam	$f_{mam} = 80 \sqrt{\frac{(m'_1 + m'_2)}{dm'_1 m'_2}}$				
		d	$m_1' m_1'$	d	$f_{\rm mam}$
		[m]	[kg/m2][kg/m2]	[m]	[m]
1 x gypsum 13 mm - cavi	ity 66 mm - 1 x gypsum 13 mm				
3 x gypsum 13 mm - cavi	ity 175 mm - 3 x gypsum 13 mm				
1 x glass 4 mm - cavity 1	2 mm - 1 x glass 4 mm				

Effect of cavity thickness, uncoupled double panel, sound-absorbing cavity

Double structure

- steel 2 mm
- cavity thickness *d* is varied
- cavity filled with mineral wool
- steel 2 mm •

Hongisto ym. 2002 Työterveyslaitos Hongisto et al. 2002 Acta Acust united Ac

Effect of cavity thickness, uncoupled double panel, empty cavity

Double structure

- steel 2 mm
- cavity thickness *d* is varied
- cavity is empty
- steel 2 mm

Hongisto ym. 2002 Työterveyslaitos Hongist et al. 2002 Acta Acust united Ac

Reverberation of the cavity

- Cavity modes exist in three dimensions, x-y-z
- Modes along the stud/joist span (x)
 - E.g., distance between floor and ceiling, L_{xca} [m]
 - Usual room height is $>2.3 \text{ m} \Rightarrow \text{<u>Under 100 Hz}$ </u>
- Horizontal modes between the studs/joists (y)
 - Horizontal distance between studs, *L*_{y,ca} [m]
 - Usual stud distances are $300 1200 \text{ mm} \Rightarrow 100-800 \text{ Hz}$
 - In uncoupled structures, $L_{y,ca}$ can be the width of the wall
- Perpendicular modes between panels (z)
 - Distance between the panels, $L_{z,ca}$ [m]
 - Usual distance 10-400 mm
- Higher modes: modes in z direction
- Lower modes: modes in x or y dimensions
 - Strong impact on sound insulation at middle and frequencies if the cavity does not contain absorbents
- The lowest cavity mode, $f_{ca,100}$, exists at:

$$f_{ca,100} = \frac{C_0}{2 \cdot \max[L_{x,ca}; L_{y,ca}; L_{z,ca}]}$$

SRI through partially absorbing cavity, R_{cII}

• If cavity absorption is imperfect, reverberation leads to reduction of SRI by ΔR_{abs} . This is compensated by R_{cII} :

$$R_{cII} = R_{cI} + \Delta R_{abs}$$
$$\Delta R_{abs} = \begin{cases} 0, & f < f_{ca1} \\ 10 \cdot \log_{10} \left(\alpha_{eff} \right), & f \ge f_{ca1} \end{cases}$$

$$\alpha_{eff} = \alpha_{ca} \cdot FR$$

- α_{ca} = absorption coefficient of the cavity material
- FR = filling ratio of cavity (0...1)
- Empty cavity has seldom a value under α_{ca} =0.04. The effect of cavity thickness *d* is estimated for empty cavities by

$$\alpha_{eff} = \begin{cases} 0.5, & d \le 0.02 \,\mathrm{m} \\ 0.01/d, & d > 0.02 \,\mathrm{m} \end{cases}$$

Selection of α_{ca}

- Sound absorption coefficient of a board is usually known for perpendicular incidence (α_0) .
- However, the sound field inside the cavity is parallel to the board below the limit frequency, f_d . If the cavity is filled with absorbent with thickness d, sound propagates inside the material and the α_0 obtained with perpendicular incidence has no meaning.
- The α_0 is valid only above f_d , where the perpendicular sound field comes to play.
- In the direction of the panels, the absorbent thickness is the same as room height (vertical field) or stud spacing (horizontal field).
- Therefore, if $\alpha_0 = X$ above f_d , is is safe to assume $\alpha_{ca} = X$ when $f < f_d$.
- Above f_d , $\alpha_{ca} = \alpha_0$.

SRI of different thermal insulator materials

- There are huge differences between insulator materials w.r.t. sound absorption, and SRI.
- Materials with open pores absorb sound well, since flow resistivity is small.
- Materials with closed pores absorb poorly and the SRI is close to empty cavity (A).

		ho	r'
	Insulator material	$[kg/m^3]$	$[kPa \times s/m^2]$
1	Ultra-low density stone wool slab	25	6.6
2	Low density stone wool slab	25	11.6
3	Medium density stone wool slab	75	30.7
4	High density stone wool slab	100	33
5	Ultra-low density glass wool roll	11	3
6	Low density glass wool slab	16	10
7	Medium density glass wool slab	70	15.8
8	Cellulose slab	37	11.1
9	Wood fiber slab	50	5.9
10	Expanded polystyrene board	18	530
11	Polyisocyanurate board	30	2600
12	Phenolic foam board	30	2700
13	Cellular glass board	100	68.3

Hongisto et al. 2022 Journal of Building Engineering

Absorption coefficient of porous materials 1-13 having 100 mm thickness.

SRI of a double wall having 100 mm cavity filled with porous material or air

- Gypsum 13 mm
- 100 mm porous material or air (A)
- Veneer 9 mm

Cavity absorption

- Absorption can be located in numerous ways
 - full absorption
 - partial absorption
 - strip absorption
 - edge absorption (figure)
- Simple validated prediction models for different alternatives do not exist.
- For example, edge absorption does not eliminate the higher modes (z)

Effect of filling ratio, FR, in an uncoupled double structure

Double structure

- steel 2 mm
- cavity thickness *d* = 125 mm
- Filling ratio

 (amount of cavity absorption) is varied
- steel 2 mm
- The specimen size was 2.1x1.1 m, and the lowest cavity mode was f_{c1}=78 Hz.

Hongisto ym. 2002 Työterveyslaitos Hongist et al. 2002 Acta Acust united Ac

Coupled double structure

- Rails against ceiling and floor
- Studs are vertical
- Studs and rails are equally thick (common rails)
- Edge studs are screwed to flanking wall and stud resiliency may reduce

Uncoupled double structure

• Double studs on separate rails

- Separate rails, separate studs, construction joint, 62 dB Rw
- Separate rails, separate studs
 57 dB Rw
- Common rails, separate studs, 53 dB Rw
- Common rails, common studs (AWS), 50 dB Rw
- Common rails, common studs (wood), 42 dB Rw

Structure:

Gypsum 13 mm 11.7 kg/m² Cavity 175 mm filled with mineral wool - coupling was varied Gypsum 13 mm 11.7 kg/m²

- Five different connection types between boards were studied in a 200 mm double wall.
- The effect of connection type on SRI was even 20 dB R_w .

1 Common rails, common studs

- 2 Common rails, separate studs
- 3 Separate rails, separate studs
- 4 Separate rails, separate studs, construction joint between

SRI through rigid studs: R_{bI}

- *R*_{bI} caused by rigid studs is obtained by summing up the R of both layers, R₁ and R₂, and by adding a constant ΔR_b, which does **not** depend on frequency.
- Line connection, i.e. studs:
 - *b* [m] is distance between studs (stud division, cc)
 - f_{cL} is the critical frequency of two boards, weighted by the square of surface mass

$$\Delta R_b = 10 \cdot \log_{10} \left(bf_{cL} \right) + 20 \cdot \log_{10} \left(\frac{m'_1}{m'_1 + m'_2} \right) - 18$$

$$f_{cL} = \left[\frac{m'_1\sqrt{f_{c2}} + m'_2\sqrt{f_{c1}}}{m'_1 + m'_2}\right]^2$$

Hongisto (2000) J Sound Vib Sharp (1978) Noise Con Eng J Sharp (1973) NTIS PB 222 829/4

$$R_{bI} = 20 \cdot \log_{10} \left(10^{R_1/20} + 10^{R_2/20} \right) + \Delta R_b$$

- <u>Point connection</u>:
 - N number of point connections
 - S [m²] is the panel area
 - f_{cP} is the critical frequency of two boards, weighted by the surface mass

$$\Delta R_b = 10 \cdot \log_{10} \left(\frac{S\pi^3 f_{cP}^2}{N8c_0^2} \right) = 10 \cdot \log_{10} \left(\frac{Sf_{cP}^2}{N} \right) - 45$$

$$f_{cP} = \frac{m'_1 f_{c2} + m'_2 f_{c1}}{m'_1 + m'_2}$$

51

SRI through flexible studs: R_{bII}

• Flexible stud is a spring. Its effect on SRI can be modeled by adding the vibration reduction index, $\Delta R_{\rm fb}$, to the rigid stud value, $R_{\rm bI}$:

$$R_{bII} = R_{bI} + \Delta R_{fb}$$

$$\Delta R_{fb}(f) = -5\log\left(\frac{1 + 4\zeta^{2}\left(\frac{f}{f_{r}}\right)^{2}}{\left[1 - \left(\frac{f}{f_{r}}\right)^{2}\right]^{2} + 4\zeta^{2}\left(\frac{f}{f_{r}}\right)^{2}}\right)$$

$$F_{r} = \frac{1}{2\pi}\sqrt{K''\frac{m'_{1}+m'_{2}}{m'_{1}m'_{2}}}$$

- f_r [Hz] is the resonance frequency of the double wall with studs
- ζ is the loss factor of the flexible stud (not the panel)
- K" [N/m³] is dynamic stiffness per unit area of the stud
- Benefit of flexible stud: $R_{bII} > R_{bI}$, when $f > 2f_r$
- Disadvantage of flexible stud: $R_{bII} < R_{bI}$, when $f < 2f_r$

Bradley&Birta (2001) Noise Con Eng J

52

Examples of resilient studs

- AWS, TC, LR and LPR
- *K*" values: 0.2, 2.8, 3.3 and 0,9 MN/m²
- $\Delta R_{\rm fb}$ is usually limited to 8 ... 10 dB due to rigid edges of the wall (rigid rails often surround the wall)

Determination of dynamic stiffness of flexible studs

- Test system: Two 30-cm-long studs are installed between two plates (m'₁, m'₂, 30x30 cm) with screws
- The other plate is excited with broad-band vibration shaker
- System's resonance frequency, f_0 [Hz], is determined with FFT analysis
- The dynamic stiffness, or the spring constant, *K* [N/m], in test system is
- The dynamic stiffness per unit length, K' [N/m²] is
 - where *L*=0.6 m

T analysis
st system is
$$K = \omega_0^2 \frac{m'_1 m'_2}{m'_1 + m'_2}$$

$$K' = K/L$$

• The modeling of flexible studs in a wall depends on $K^{\prime\prime}$ [N/m³], which takes the actual density of studs in the wall into account K'' = K'/b

$\Delta R_{\rm fb}$

- Although studs were flexible, rails against ceiling and floor are usually rigid. Rigid connection of the flexible stud to the rail locally destroys the advantage of flexible stud
- Full benefit of the flexible stud is only achieved away from the rails.
- Because of this, ΔR_{fb} is seldom larger than 10...15 dB, although equations give larger values at higher frequencies \rightarrow

Weak radiation due to flexible studs is achieved

m'1	kg/m2	9.0
m'2	kg/m2	9.0
d	kg/m2	0.066
fc1	[Pa]	2500
fc2	[Hz]	2500
fmam	[Hz]	147
fd	[Hz]	827
Lx	m	1
Ly	m	3
fc1	[Hz]	64
FR	0=tyhjä	1.00
Йc	oma	1.00
αc	tyhjä	0.15
Q - ff		1.00
иеп		1.00
иеп Kytkentä: 0 е	ei,1 viiva, 2 pi	1.00
Kytkentä: 0 e	ei,1 viiva, 2 pi	1 0.600
Kytkentä: 0 e b Np	ei,1 viiva, 2 pi	1.00 1 0.600 10000
Kytkentä: 0 e b Np S	ei,1 viiva, 2 pi [m2]	1.00 1 0.600 10000 10
Kytkentä: 0 e b Np S fcL	ei,1 viiva, 2 pi [m2] [Hz]	1.00 1 0.600 10000 10 2500
Kytkentä: 0 e b Np S fcL fcP	ei,1 viiva, 2 pi [m2] [Hz] [Hz]	1.00 1 0.600 10000 10 2500 2500
Kytkentä: 0 e b Np S fcL fcP ΔRb	ei,1 viiva, 2 pi [m2] [Hz] [Hz] [dB]	1 0.600 10000 10 2500 2500 8
Kytkentä: 0 e b Np S fcL fcP ΔRb Joustava: 0	ei,1 viiva, 2 pi [m2] [Hz] [Hz] [dB] ei 1 kyllä	1.00 1 0.600 10000 10 2500 2500 8 1
Kytkentä: 0 e b Np S fcL fcP ΔRb Joustava: 0 K'	i,1 viiva, 2 pi [m2] [Hz] [Hz] [dB] ei 1 kyllä [N/m2]	1 0.600 10000 10 2500 2500 8 1 200000
Kytkentä: 0 e b Np S fcL fcP ΔRb Joustava: 0 K' ξ	ei,1 viiva, 2 pi [m2] [Hz] [Hz] [dB] ei 1 kyllä [N/m2] []	1 0.600 10000 10 2500 2500 8 1 200000 0.30
Kytkentä: 0 e b Np S fcL fcP Δ Rb Joustava: 0 K' ξ fr_K'	ei,1 viiva, 2 pi [m2] [Hz] [Hz] [dB] ei 1 kyllä [N/m2] [] [Hz]	1 0.600 10000 10 2500 2500 8 1 200000 0.30 43
Kytkentä: 0 e b Np S fcL fcP ΔRb Joustava: 0 K' ξ fr_K' fr_oma	ei,1 viiva, 2 pi [m2] [Hz] [Hz] [dB] ei 1 kyllä [N/m2] [] [Hz] [Hz]	1 0.600 10000 10 2500 2500 8 1 200000 0.30 43
GemKytkentä: 0 ebNpSfcLfcP ΔRb Joustava: 0K' ξ fr_K'fr_omafr	ei,1 viiva, 2 pi [m2] [Hz] [Hz] [dB] ei 1 kyllä [N/m2] [] [Hz] [Hz]	1 0.600 10000 10 2500 2500 8 1 200000 0.30 43

• Gypsum 13 mm (R2)

• Results are presented in 1/3-octave bands

Extremely thick double panel construction

- Ceiling of a large music arena
- SRI requirement was given in octave bands down to 63 Hz
- Impossible to test in laboratory due to 2 m total thickness
- Layers 1 and 2 were tested separately in laboratory
- Prediction of R was made using the double panel model so that R₁ and R₂ were measured

$$R_{cI} = \begin{cases} 20 \cdot \log_{10} \left(10^{R_1/20} + 10^{R_2/20} \right) + R_{mam}, & f < f_{mam} \\ R_1 + R_2 + 20 \cdot \log_{10} \left(fd \right) - 29, & f_{mam} < f < f_l \\ R_1 + R_2 + 6, & f > f_l \end{cases}$$

Prediction: Requirement:

Sandwich structure

- Double panel where the cavity consists of elastic core material such as wool, rubber, EPS, polyurethane or honeycomb paper glued to the panels
- Examples:
 - Thermal isolated doors
 - Fire doors
 - Floating floors
 - Concrete sandwich facades
- Dilatation resonance frequency:

$$f_d = \frac{1}{2\pi} \sqrt{K' \frac{m'_1 + m'_2}{m'_1 m'_2}}$$

- *K*' [N/m³] is the dynamic stiffness per unit area of the core material
- $m' [kg/m^2]$ is the surface mass of panel
- It is typical, that f_d is within 100 --- 3150 Hz

http://www.archiexpo.com/architecture-designmanufacturer/floor-sandwich-panel-21655.html

5.4

Sandwich – door's thermal isolator is EPS. EPS (s'=330 MN/m3). Calculate the dilatation resonance.

Hongisto 2001 Applied Acoustics

Sandwich panel - effect of core thickness

- steel 1 mm
- mineral wool (100 kg/m³)
- steel 1 mm
- $R_{\rm w}$ in brackets

- steel 0.6 mm
- mineral wool (125 kg/m³)
- steel 0.6 mm
- $R_{\rm w}$ in brackets

Sandwich panel - effect of core stiffness

RIL 243-1-2007

Concrete-EPS-Concrete block

• Describe the SRI performance of a concrete block with EPS core.

References

- Boden, H., Carlsson, U., Glav, R., Wallin, H.P., Åbom, M. (1999). Ljud och Vibrationer. Kungliga Tekniska Högskolan KTH, Marcus Wallenberg Laboratoriet för Ljud- och Vibrationsforskning, Stockholm, Sweden. (På svenska).
- Craik RMJ, Sound transmission through buildings using statistical energy analysis, Gower Publishing Ltd, Hampshire, England, 1996.
- Cremer L, Heckl M (transl. Ungar EE), Structure-borne sound, 2nd ed., Springer-Verlag, Berlin, Germany, 1988.
- Fahy FJ, Sound and Structural Vibration. Radiation, Transmission and Response, Academic Press Limited, London, England 1985.
- Fahy FJ, Foundations of Engineering Acoustics, Academic Press, London, UK, 2000
- Hongisto V, Helenius R, Lindgren M, Kaksinkertaisen seinärakenteen ääneneristävyys - laboratoriotutkimus, Työympäristötutkimuksen raporttisarja 1, Työterveyslaitos, Helsinki, 2002.*
- Hongisto, V., Lindgren, M., Helenius, R. (2002). Sound insulation of double walls
 an experimental parametric study, Acta Acustica united with Acustica 88 904– 923.
- Hongisto V, Monikerroksisen seinärakenteen ääneneristävyyden laskentamalli, Työympäristötutkimuksen raporttisarja 2, Työterveyslaitos, 2003.
- Hongisto V, Sound insulation of double panels comparison of existing prediction models, acta acustica united with acustica 92(1) 2006 61-78.
- Hongisto, V., Helenius, R., Lindgren, M. (2002). Kaksinkertaisen seinärakenteen ääneneristävyys - laboratoriotutkimus, Työympäristötutkimuksen raporttisarja 1, Työterveyslaitos, Helsinki.
- Hongisto. V., Keränen, J., Kylliäinen, M., Mahn, J. (2012). Reproducibility of the present and proposed single-number quantities of airborne sound insulation, Acta Acustica united with Acustica 98 811–819.

- Hongisto, V., Saarinen, P., Alakoivu R., Hakala J. (2022). Acoustic properties of commercially available thermal insulators An experimental study. Journal of Building Engineering 54 104588. Online at: https://doi.org/10.1016/j.jobe.2022.104588.
- ISO 15186-3:2002 Acoustics Measurement of sound insulation in buildings and of building elements using sound intensity —Part 3: Laboratory measurements at low frequencies.
- Keränen, J., Hongisto, V., Hakala, J. (2019). The sound insulation of façades at frequencies 5-5000 Hz. Building and Environment 156 12–20.
- Keränen, J., Hongisto, V. (2022). Effect of resilient joints on the airborne sound insulation of single-leaf heavyweight constructions. Journal of Building Engineering 56 104711 11 pp. Online at: https://doi.org/10.1016/j.jobe.2022.104711.
- Larm P, Hakala J, Hongisto V, Sound insulation of Finnish building boards, Work Environment Research Report Series 22, Finnish Institute of Occupational Health, Helsinki, Finland, 2006.
- Meier A, Schmitz A, Application of total loss factor measurements for the determination of sound insulation, Building Acoustics 6(2) 1999 71-84.
- RIL 243-1-2007 Rakennusten akustinen suunnittelu. Perusteet. Rakennusinsinöörien liitto R.I.L. r.y., Helsinki, 2007.
- Rindel, J. H. (2018). Sound insulation in buildings. CRC Press, Taylor & Francis Group, Boca Ration, Florida, USA.
- Sharp, B. H. (1973). A study of techniques to increase the sound insulation of building elements, US Department of Housing and Urban Development, NTIS PB 222 829/4, USA.
- Sharp, B. H. (1978). Prediction methods for the sound transmission of building elements. Noise Con. Eng. J. 11(2) 53-63.
- Siikanen U, Rakennusaineoppi, Rakennustieto Oy, Helsinki, 2001.
- Troclet, B. (2000). Analysi of vibroacoustic response of launchers in the low and high frequency range. Proceedings of Novem 2000.
- Ympäristöministeriö (2017). Ympäristöministeriön asetus 796-2017 rakennuksen ääniympäristöstä, 24.11.2017, Helsinki. http://www.finlex.fi/fi/laki/alkup/2017/20170796.
- Ympäristöministeriö (2018). Ääniympäristö. Ympäristöministeriön ohje rakennuksen ääniympäristöstä. 28.6.2018, Helsinki. <u>https://www.ym.fi/download/noname/%7B2852D34E-DA43-4DCA-9CEE-</u> 47DBB9EFCB08%7D/138568.