11 Vibration and shock ELEC-E5640 - Noise Control P

Valtteri Hongisto

valtteri.hongisto@turkuamk.fi 040 5851 888 Docent, Aalto University (Noise Control) Research group leader, Turku University of Applied Sciences

Espoo, 20 Nov 2023

1

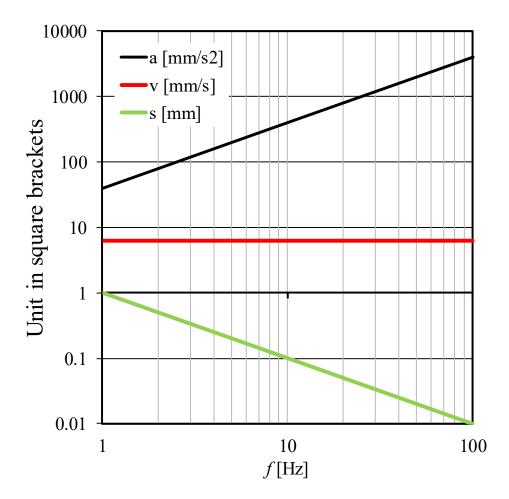
Basic quantities and concepts

• Displacement *s* [m]

$$\mathbf{s}(t) = \hat{s}e^{i(\omega t + \varphi_s)}$$

• Velocity *v*(t) and acceleration *a*(t) depend on each other by:

$$\mathbf{a}(t) = \frac{d}{dt}\mathbf{v}(t) = \frac{d^2}{dt^2}\mathbf{s}(t)$$


- Vibration = time-dependent movement of a solid surface
- **Shock**= vibration exceeding the threshold of noticeability (tärinä)
- **Structure borne noise** = vibration-induced audible sound originating from the surface
- **Rattle** = vibration-induced audible sound originating from an artifact touching the vibrating surface

Inter-relationships between *a*, *v* and *s*

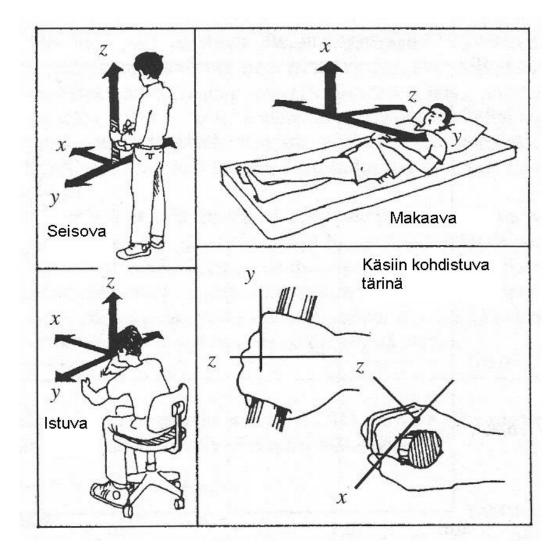
• The measurement can be done using any of the three quantities since they are interrelated

 $\mathbf{a} = i\omega\mathbf{v} = -\omega^2\mathbf{s}$

- Figure depicts the spectrum of the same signal for the three different quantities.
- Measurements should be conducted using a or v, since displacement measurements often fall below background noise at high frequencies

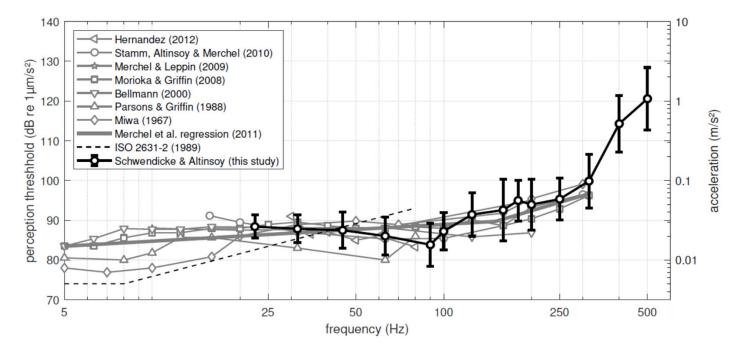
Levels

- Levels are determined from the RMS values.
- $L_d = 10 \lg \frac{\widetilde{s}^2}{s_0^2} = 20 \lg \frac{\widetilde{s}}{s_0} \quad \text{[dB]}$ • Displacement level • $s_0 = 1 \text{ pm}$ $L_{v} = 10 \lg \frac{\widetilde{v}^{2}}{v_{0}^{2}} \text{ [dB]}$ $L_{a} = 10 \lg \frac{\widetilde{a}^{2}}{a_{0}^{2}} \text{ [dB]}$ • Velocity level • $v_0 = 1 \text{ nm/s}$ • Acceleration level • $a_0 = 1 \ \mu m/s^2$


$$\widetilde{s} = \sqrt{\frac{1}{T} \int_{0}^{T} s^{2}(t) dt}$$

$$\widetilde{v} = \sqrt{\frac{1}{T} \int_{0}^{T} s^{2}(t) dt}$$

$$\widetilde{a} = \sqrt{\frac{1}{T} \int_{0}^{T} s^{2}(t) dt}$$


Shock measurements

- 3D-transducers are used
- Sometimes, the resultant vector of x-y-z is determined using pythagoras, sometimes each direction is evaluated separately

Sensation threshold level

- Schwendicke & Altinsoy (2020) reviewed laboratory results
- Average values are tabulated
- Exposure to strong vibration causes adverse health effects

	$a \text{ [mm/s}^2 \text{]}$	v [mm/s]
5	15	0.48
10	18	0.29
20	20	0.16
40	25	0.10
80	28	0.06
160	40	0.04

Figure 2. Perception threshold of vertical sinusoidal WBVs for seated subjects from various laboratories [4,25,28,34–38] in comparison to means and standard deviations from this study.

Declaration of vibration for vehicles and machinery 2006/42/EC instructions for the manufacturers

- Because of the adverse health effects of vibration, people must be given information about the product vibrations to facilitate the choice of low-vibration products
- The instructions must give the following information concerning vibrations transmitted by the machinery to the hand-arm system or to the whole body:
 - the vibration total value to which the **hand-arm** system is subjected, if it exceeds **2,5 m/s²**. Where this value does not exceed 2,5 m/s², this must be mentioned,
 - the highest root mean square value of weighted acceleration to which the **whole body** is subjected, if it exceeds 0.5 m/s^2 . Where this value does not exceed 0.5 m/s^2 , this must be mentioned.
 - the uncertainty of measurement.
- Where harmonised standards are not applied, the vibration must be measured using the most appropriate measurement code for the machinery concerned.
- The operating conditions during measurement and the measurement codes used must be described.
 - Decision of the government 400/2008 and 2006/42/EC

• <u>http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:157:0024:0086:en:PDF</u>

DCH733N

54V, 48mm, Brushless SDS-Max® Combination Hammer

- · Designed with electronic speed & impact energy control
- · Offers unrivaled cordless performance & runtime
- Anti-rotation system detects loss of control and prevents user injury
- · Electronic speed and impact energy control
- Ideal for demolition applications in brick, masonry and light chasing in concrete, due to rotation stop mode

Specifications

Voltage	54V
Max. Impact Energy	15.7 J
No Load Speed	177-355 rpm
Blows Per Minute	1350-2705 bpm
Optimum Drilling Capacity [Concrete]	24-42 mm
Drilling Capacity [Concrete/Core bit]	48 / 125 mm
Chipping Mode	No
Weight	9.8 kg
Length x Height	597 x 284 mm
Vibration Level	9.0 m/s ²

* MT0

Protection of employees against vibration 2002/44/EC requirements for employers

For hand-arm vibration:

(a) the daily exposure <u>limit value</u> standardised to an eight-hour reference period shall be 5 m/s^2 ;

(b) the daily exposure <u>action value</u> standardised to an eight-hour reference period shall be $2,5 \text{ m/s}^2$.

For whole-body vibration:

(a) the daily exposure <u>limit value</u> standardised to an eight-hour reference period shall be $1,15 \text{ m/s}^2$;

(b) the daily exposure <u>action value</u> standardised to an eight-hour reference period shall be $0,5 \text{ m/s}^2$.

Limit value: working shall be prevented where exposure gets that high. *Action value*: attempts should be made to reduce exposure.

'hand-arm vibration': the mechanical vibration that, when transmitted to the human handarm system, entails risks to the health and safety of workers, in particular vascular, bone or joint, neurological or muscular disorders;

'whole-body vibration': the mechanical vibration that, when transmitted to the whole body, entails risks to the health and safety of workers, in particular lower-back morbidity and trauma of the spine.

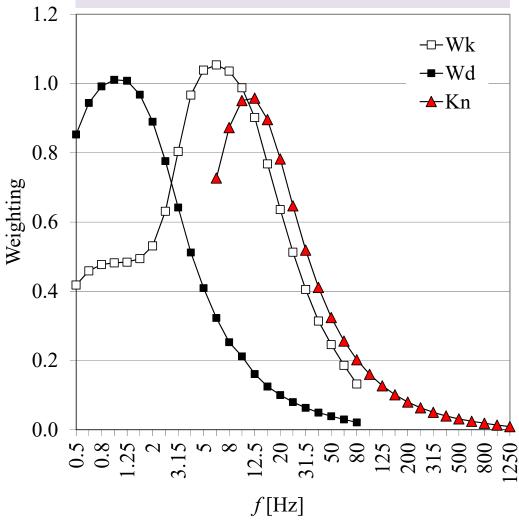
• Government decree 48/2005

 $\bullet 2002/44/EC: \underline{http://eur-lex.europa.eu/resource.html?uri=cellar:546a09c0-3ad1-4c07-bcd5-9c3dae6b1668.0004.02/DOC_1\&format=PDF$

Shock exposure measurement

• Equivalent value for each direction during time T is first determined in each direction:

$$\widetilde{a} = \sqrt{\frac{1}{T} \int_{0}^{T} a^{2}(t) dt}$$


- Weighting of each direction (3 alternatives) in spectrum space is made:
 - Whole body vibration

$$\widetilde{a}_{w} = \sqrt{\sum_{n=1}^{3} (W_{n} \widetilde{a}_{n})^{2}}$$

• Hand-arm vibration:

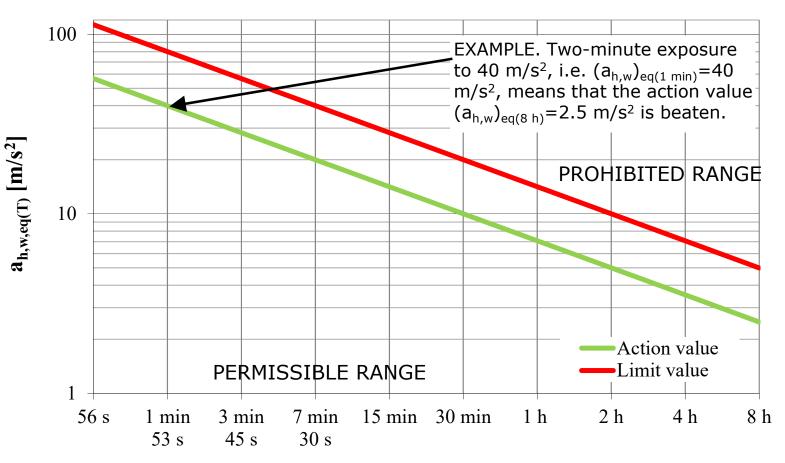
$$\widetilde{a}_{h,w} = \sqrt{\sum_{n=1}^{3} \left(K_n \widetilde{a}_{h,n} \right)^2}$$

K_n - Hand-arm vibration (ISO 5349) W_k - Whole-body vibration, horizontal (ISO 2631-1) W_d - Whole-body vibration, vertical (ISO 2631-1)

Determination of vibration exposure

- Exposure during all working phases of the employee are evaluated.
- Short-term measurements can be used if they represent a longer work period.
- Thereafter, the exposure for each phase is determined.
- If the weighting has been applied directly to the signal, the exposure is estimated from the result of separate measurement period i by

$$\widetilde{a}_{h,w,eq(8)} = \sqrt{\frac{1}{T_8} \int_0^\tau a_{h,w}^2(t) dt}$$
$$= \sqrt{\frac{1}{T_8} \sum_{i=1}^\tau a_{h,w,i}^2 t_i}$$



- 3D-transducer is installed to measure the vibration of the hand correctly.
- A separate bar was installed in this special case.

2002/44/EC limit and action values

• Example of handarm vibration measurement result and comparison to limit and action values

Longest allowed daily exposure time T when the action value or limit value is beaten

Longest allowed daily exposure time T

Vibration control programme - 2002/44/EC

Once the exposure action values are exceeded, the employer shall establish and implement a programme of technical and/or organisational measures intended to reduce to a minimum exposure to mechanical vibration and the attendant risks, taking into account in particular:

- a) other working methods that require less exposure to vibration;
- b) the choice of appropriate work equipment of better ergonomic design;
- c) the provision of auxiliary equipment that reduces the risk of injuries caused by vibration, such as
 - vibration isolated seats that effectively reduce whole-body vibration and
 - handles which reduce the vibration transmitted to the hand-arm system;
- d) appropriate maintenance programmes for equipment;
- e) the design and layout of workplaces and workstations;
- f) adequate information and training to instruct workers to use work equipment correctly and safely in order to reduce their exposure;
- g) limitation of the duration of the exposure;
- h) work schedules with adequate rest periods;
- i) the provision of clothing to protect exposed workers from cold and damp.

Vibration isolation

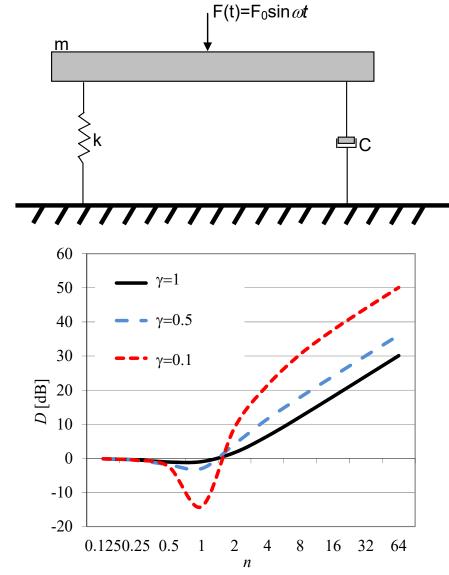
Isolation is made either

- To vibrating objects, or
- To sensitive objects

Vibration isolation

• Equation of motion for a vibrating mass m:

$$m\frac{d^2x}{dt^2} + kx + C\frac{dx}{dt} = F(t)$$

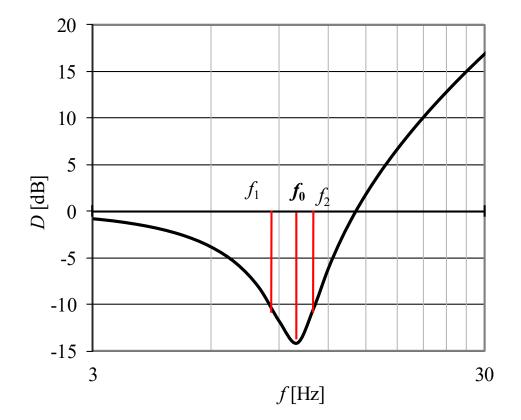

- *m* [kg] is the mass of the system
- *k* [N/m] is the spring constant (i.e. dynamic stiffness)
- *C* [Ns/m] is the spring damping coefficient.
- If *C*=0, the resonance frequency becomes:

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$

• Frequency-dependent isolation, D [dB], is

$$D = 10 \lg \left[\frac{(2\gamma n)^2 + (1 - n^2)^2}{1 + (2\gamma n)^2} \right] \qquad \gamma = \frac{C}{2\sqrt{km}}$$

- γ is the loss factor (value range is 0–1, usually 0.20)
- $n=f/f_0$



Loss factor

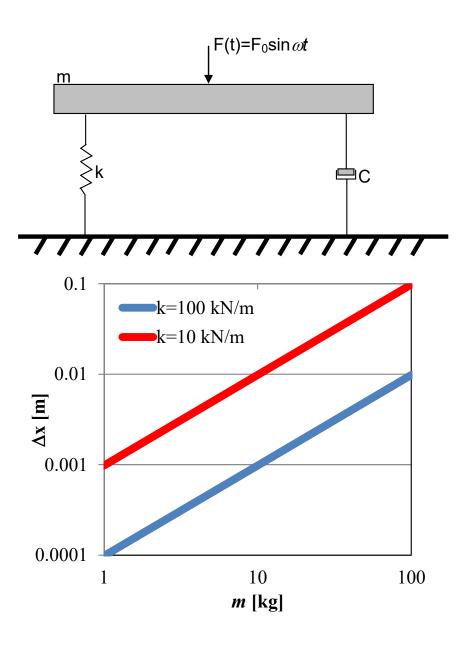
• Loss factor γ is determined with halfwidth method at the resonance frequency::

$$\gamma = \frac{\varDelta f}{f_0} = \frac{f_2 - f_1}{f_0}$$

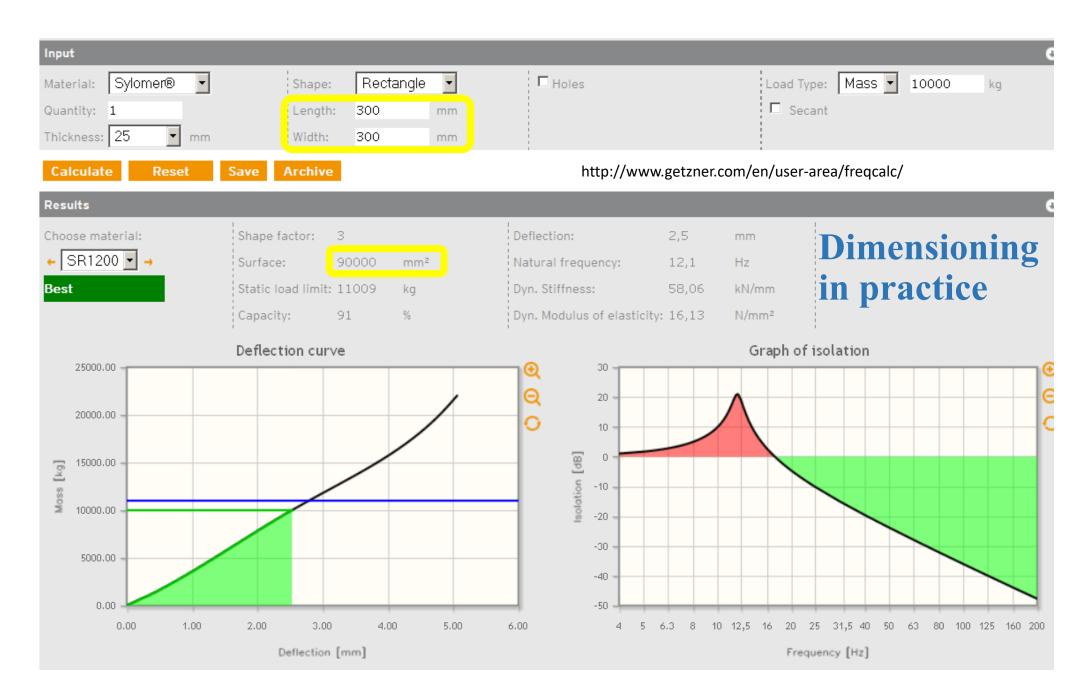
- f_0 [Hz] is the resonance frequency, where the largest negative D is achieved
- f_1 [Hz] and f_2 [Hz] are frequencies where D is 3 dB higher than at f_0 .

Deflection Δx

- The deflection Δx [m] means the displacement of the spring when the mass *m* is inserted.
- It depends on the mass of the system and spring constant *k*:

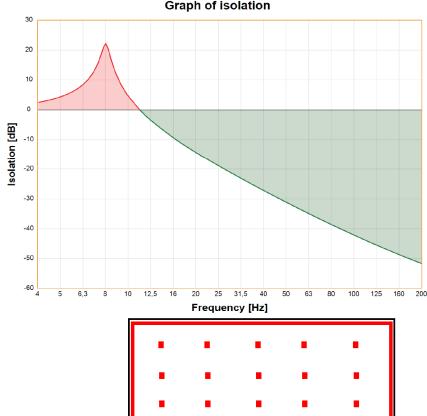

$$k\Delta x = mg$$

• Resonance frequency f_0 [Hz] is


$$f_0 = \frac{1}{2\pi} \sqrt{\frac{g}{\Delta x}} \approx \frac{1}{2\sqrt{\Delta x}}$$

• Resonance frequency determines the deflection:

$$\Delta x = \frac{1}{4f_0^2}$$



16

Dimensioning of a reverberation room in Turku

- Floor, walls and ceiling are made of 160 mm steel-reinforced concrete
- Walls are installed on the edges of the floor and ceiling over the walls
- Sylodyn ND 50 mm is used under the floor to isolate structure-borne noise from the building body to reach low background noise
- Strip of width 100 mm on the edges of the room (2700 kg/m load)
- Several pads of 85x85 mm in the middle cc 600 mm (400 kg/m2 load)
 - 27 pieces per 10 m².
 - distance to the strip is 300 mm.
- Deflection is approximately 4 mm
- System resonance is approximately 8 Hz. That is suitable since the purpose is to eliminate sounds above 18 Hz (20 Hz one-third octave band).

Frequency	Isolation
4 Hz	2,5 dB / -34%
5 Hz	4,3 dB / -65%
6,3 Hz	8,4 dB / -164%
8 Hz	22 dB / -1154%
8 Hz	21,9 dB / -1141%
10 Hz	4,7 dB / -72%
12,5 Hz	-3,3 dB / 31%
16 Hz	-9,6 dB / 67%
20 Hz	-14,4 dB / 81%
25 Hz	-18,7 dB / 88%
31,5 Hz	-23 dB / 93%
40 Hz	-27,3 dB / 96%
50 Hz	-31,1 dB / 97%
63 Hz	-34,9 dB / 98%
80 Hz	-38,7 dB / 99%
100 Hz	-42,1 dB / 99%
125 Hz	-45,4 dB / 99%
160 Hz	-48,8 dB / 100%
200 Hz	-51,7 dB / 100%

Isolator types

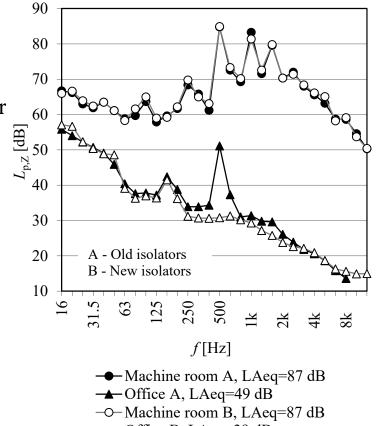
- Elastomeric isolators
 - Lowest resonance 6-20 Hz
 - Easy installation
 - 100 year duration (polyurethan)
 - Sensitive to chemicals
 - Internal damping
- Metal springs
 - Lowest resonance 1.5 Hz
 - Internal damping is low
 - Installation is difficult
 - Everlasting

Figure: Kylliäinen, 2006

Dimensioning of vibration isolators

- Determine the lowest frequency, f_s , of the stimulus that should be isolated.
 - a) Isolators below a source: e.g., the rotation speed of the machine.
 - b) Isolators below a room or a house to be protected: the lowest frequency where isolation shall be achieved.
- The mass of the isolated piece
 - a) Machine
 - b) Room
- System's resonance f_0 shall be $0.5 \cdot f_s$ at most
- Determine the maximum deflection Δx by

$$\Delta x = \frac{1}{4f_0^2}$$


4

• Consult the isolator supplier who will ask these same questions and suggests alternative solutions.

EXAMPLE: Vibration isolation

- Compressor noise could be heard in the office room
- below the machine room
- Isolator below the compressor rail was 1 mm thick: $\Delta x < 0.01$ mm and $f_0 > 300$ Hz
 - Upper figure:
- New isolators were installed which provided sufficiently high Δx and lower f_0
 - Lower figure

$$f_0 = \sqrt{\frac{1}{4\Delta x}}$$

–△–Office B, LAeq=39 dB

Vibration of buildings

Vibration in buildings

Sources:

- Heavy road traffic, light vehicles in bumpy roads
- Railway
- HVAC

Vibrating components

- Whole building
- Building element
- Rattle due to a vibrating building element

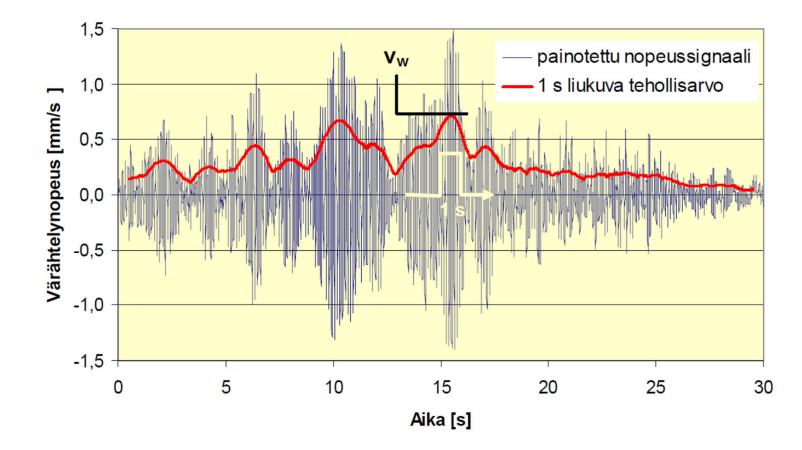
Impacts

- Reduction of residential comfort: sleeping and concentration
- Fear or concern about structural damage and/or reduced real estate value.

Other

- Changes in residential comfort precede structural damage. The latter is rare.
- Individual differences in vibration sensation and tolerance are large.
- Rattle may increase the concern.

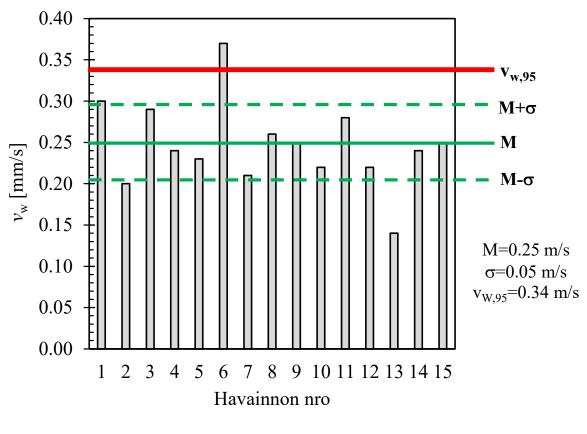
Vibration control of traffic routes


- Maximization of the distance especially in areas of clay
- Smoothness maintenance
- Thick road surface
- Speed limitation
- Freight traffic is directed to routes with less residents
- Reinforcement of building foundations
- Ground barrier between source and exposure
- Vibration isolation of the building
- Vibration isolation of the source, e.g. Länsimetro
- Measurement method (In Finnish):
 - https://www.rakennustieto.fi/Downloads/RK/RK100303.pdf
 - http://www.vtt.fi/inf/pdf/tiedotteet/2004/T2278.pdf
- Example of a measurement (In Finnish: Destia, Tampere, 2014):
 - <u>http://www.tampere.fi/ytoteto/aka/nahtavillaolevat/8430/selvitykset/tarina</u> <u>runkomeluselvitys.pdf</u>
- Ground barrier (In Finnish: Talja ym. 2009 VTT):
 - http://www.vtt.fi/inf/julkaisut/muut/2009/VTT-R-00963-09.pdf

Selection of an observation

Talja, VTT, 2004

- Frequency-weighted signal is considered in all three directions in 1second periods.
- RMS value is calculated
- The largest 1-s-long RMS value is chosen



Kuva 7. Suurimman tehollisarvon v_w määrittäminen painotetusta nopeussignaalista.

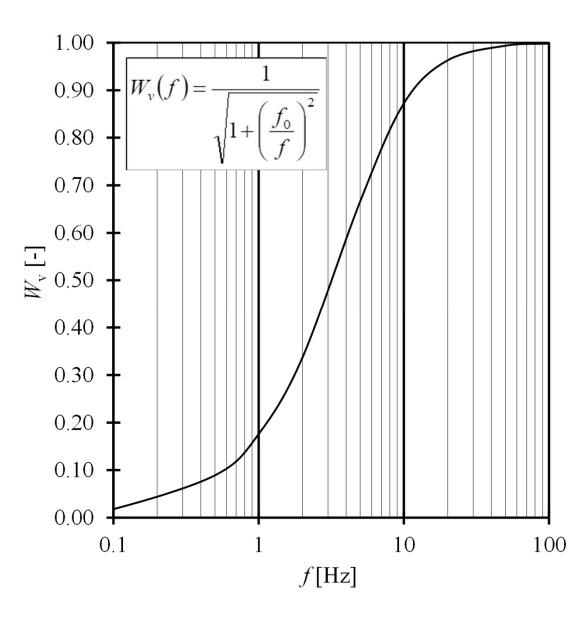
Measurement of traffic vibration

- The purpose is to determine the largest vibration occurrence
- Measurement in 3 dimensions
- Measurement positions:
 - Residential satisfaction is determined in the upmost floor where the floor span is the largest, or where the complaint is given
 - Constructional damage is measured from the foundations (joint of load bearing structure and foundations)
- NS 8176 recommends a one-week measurement duration during which 15 largest 1-second values are used in the analysis:
 - Mean of RMS values, $\overline{\nu}_W$ [mm/s] (N=15)
 - Standard deviation, σ

• The value to be reported:

$$v_{w,95} = \overline{v}_w + 1.8 \cdot \sigma$$

Frequency weighting


- If the analysis is made in **frequency domain** (spectrum), the largest onesecond-long RMS value is obtained by summing up the weighted thirdoctave bands:
 - $W_{v,i}v_i$ is the weighted RMS of band i

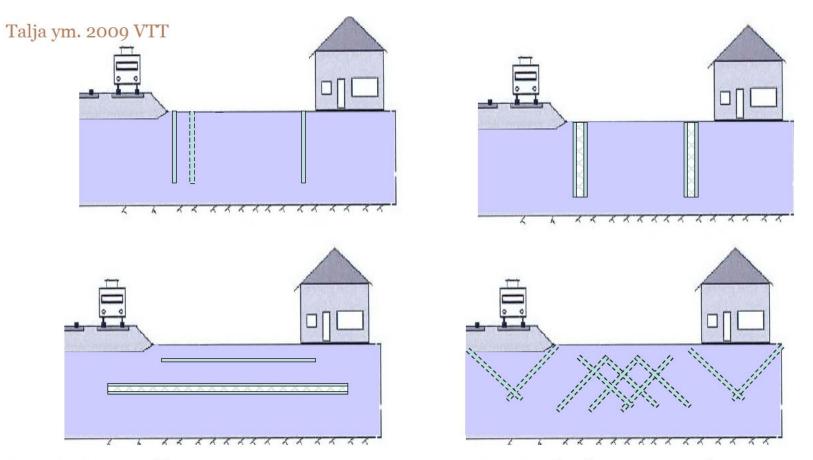
$$\widetilde{v}_W = \sqrt{\sum_i \left(W_{v,i} v_i \right)^2}$$

- Frequency-dependent weighting is made to the signal so that the result conforms with perception
- For velocity, *v*, weighting is

$$W_{\nu}(f) = \frac{1}{\sqrt{1 + \left(\frac{f_0}{f}\right)^2}}$$

• where $f_0 = 5.6$ Hz.

NS 8176 recommendation for classification


- $v_{W,95}$ corresponds to the statistical maximum value during one week
 - Only 5% of observations may exceed this value.
- Recommendation concerns both day and night time

Class	Description	v _{w,95} [mm/s]	
A	Very good conditions. Vibration is seldom perceived.	≤0.10	
_	Vibration is seldom perceived. Good conditions.		
B	Vibration is occasionally perceived but the levels are not annoying.	≤0.15	
С	Satisfactory conditions.	≤0.3	
D	 Approximately 15% of population perceives annoyance. Tolerable conditions. Approximately 25% of population perceives annoyance. 	≤0.60	
	Approximately 2570 of population perceives annoyance.		

$$v_{w,95} = \overline{v}_w + 1.8 \cdot \sigma$$

Talja, VTT, 2004

Ground barriers

Kuva 7. Esimerkkjä eri tavoista muuttaa maaperän värähtelyominaisuuksia.