Complex Analysis, MS-C 1300
Born Ivarssom
Y326 (bjom.ivarssm@aalto.fi)
Assistants: David Adame-Carrillo Jaime Pard
Mai ide Costa
Lectures: Mondays \& Thursday on campus「office Hours (Fridays? 9 q-10?) て $14-15$?
Exercise Classes: All an campus
Meeting 1: Tuesday or Wednesday
Deadline: Monday $23: 59$ (not $1^{\text {st }}$ week) 2 exercises betty Meeting 2: Thursday or Friday
via My Courses

Deadline: Wednesday 23:59
You cam collect all in all 6 bonus points
Exam: Max 24 points (Pass: 12 points)
Book: - An Introduction to Complex Function Theory, Polka
r. Complex Analysis by Alters is also very good but mag be more challenging.]

The Complex Number System
We know that there are polynomials $p: \mathbb{R} \rightarrow \mathbb{R}$ that have no roots.
Basic example: $p(x)=x^{2}+1$ have no real root since $x^{2} \geq 0$.

However if we add a number i with the property $i^{2}=-1$ to the real numbers the polynomial $x^{2}+1$ have a root. When we add i to the reg numbers then we get all numbers of the form

$$
z=x+i y \quad x, y \in \mathbb{R}
$$

This night seem a little suspicious but can be done formally as follows.
Definition: The field of complex numbers
\mathbb{C} consists of ordered pairs (x, y) $x, y \in \mathbb{R}$ with addition

$$
\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}\right)
$$

and multiplication

$$
\left(x_{1}, y_{1}\right) \cdot\left(x_{2}, y_{2}\right)=\left(x_{1} x_{2}-y_{1} y_{2}, x_{1} y_{2}+x_{2} y_{1}\right)
$$

That is we can view complex numbers as points or vectors in \mathbb{R}^{2} and addition is ordinary vector addition

Ne return to what multiplication means geometrically soon. First we state a theorem
Theorem 1 The complex number system is a field since $, \forall z, w \in \mathbb{C}: z+w=w+z$

- $\forall z, w \in \mathbb{C}: \quad z \cdot w=w \cdot z$
- $\forall z_{1}, z_{2}, z_{3} \in \mathbb{C}:\left(z_{1}+z_{2}\right)+z_{3}=z_{1}+\left(z_{2}+z_{3}\right)$
- $\forall z_{1}, z_{2}, z_{3} \in \mathbb{C}:\left(z_{1} \cdot z_{2}\right) \cdot z_{3}=z_{1} \cdot\left(z_{2} \cdot z_{3}\right)$
- $\exists 0 \in \mathbb{C}: \forall z \in \mathbb{C}: z+0=z$
- $\exists 1 \in \mathbb{C}: \forall z \in \mathbb{C}: z \cdot 1=z$
- $\forall z \in \mathbb{C}: \exists(-z) \in \mathbb{C}: z+(-z)=0$
- $\forall z \in \mathbb{C} \backslash\{0\}: \exists z^{-1} \in \mathbb{C}: z \cdot z^{-1}=1$
- $\forall z_{1}, z_{2}, w \in \mathbb{C}: w \cdot\left(z_{1}+z_{2}\right)=w \cdot z_{1}+w \cdot z_{2}$
"In a field addition and multiplication is commutative. We car subtract by any number. We can divide by any norb-zero number. Addition and multiplication is distributive"

These properties are easily verified (except maybe the existence of $\left.z^{-1}\right)$. We see that $0=(0,0)$ and $1=(1,0)$
Given $z=(x, y) \neq(0,0)$ one checks that

$$
z^{-1}=\left(\frac{x}{x^{2}+y^{2}}, \frac{-y}{x^{2}+y^{2}}\right)
$$

However, calculating with complex numbers becomes easier when we realize that

$$
(0,1) \cdot(0,1)=(-1,0)=-(1,0)=-1
$$

So $i=(0,1)$. (Remember $i^{2}=-1$)
Therefore we use $x+i y$ as short hand
for $(x, y)=x(1,0)+y(0,1)$ for $(x, y)=x(1,0)+y(0,1)$

Using this shorthand and remembering $i^{2}=-1$ we easily calculates
Ex

$$
\begin{aligned}
& (1+4 i)+(-2+i)=-1+5 i \\
& (1+4 i)(-1+i)=-2+1 i-8 i+4 i^{2}=-6-7 i
\end{aligned}
$$

Lets get some geometric intuition for multiplication

$$
\begin{array}{ll}
z=x+i y & \\
& \operatorname{Re}(z)=x=\text { real part of } z \\
& \operatorname{Im}(z)=y=\text { imaginary part of } z \\
& \bar{z}=x-i y=\text { conjugate of } z
\end{array}
$$

Notice that $z \bar{z}=(x+i y)(x-i y)=x^{2}+y^{2} \geq 0$
$A l_{\text {so }} \operatorname{Re}(z)=\frac{z+\bar{z}}{2}$ and $\operatorname{Im}(z)=\frac{z-\bar{z}}{2_{i}}$
Define the modulus of z (or absolute value of z) as $\quad|z|=\sqrt{z \bar{z}}=\sqrt{x^{2}+y^{2}}$

We say that θ is an argument of z Notice that if θ is an argument of z them $\theta+2 \pi n, n=0, \pm 1, \pm 2, \ldots$ also is...

Take two complex numbers z and w and write them in polar form.

$$
\begin{aligned}
& z=|z|(\cos \theta+i \sin \theta) \\
& \omega=|\omega|(\cos \phi+i \sin \phi)
\end{aligned}
$$

Multiply and we get

$$
\begin{aligned}
z w & =|z||w|(\cos \theta+i \sin \theta)(\cos \phi+i \sin \phi)= \\
& =|z| / w \mid((\cos \theta \cos \phi-\sin \theta \sin \phi)+ \\
& =|z||w|(\cos (\theta+\phi)+i \sin (\theta+\phi))
\end{aligned}
$$

So you get the absolute value of the product it you multiply the absolute values of the factors and an argument if add arguments of the factors.
If $z=|z|(\cos \theta+i \sin \theta)$ it is clear that $\bar{z}=|z|(\cos (-\theta)+i \sin (-\theta))$ since

Also, since $z z^{-1}=1$ (if $z \neq 0$) we see that

$$
z^{-1}=\frac{1}{z}=|z|^{-1}(\cos (-\theta)+i \sin (-\theta))
$$

We also have $\frac{z}{\omega}=\frac{z \bar{w}}{\omega \bar{\omega}}=\frac{1}{|\omega|^{2}} z \bar{\omega}$

$$
E_{x}: \quad \frac{1-i}{1+i}=\frac{(1-i)(1-i)}{(1+i)(1-i)}=\frac{1-i-i+i^{2}}{1^{2}-i^{2}}=\frac{-2 i}{2}=-i
$$

De Moire's Formula
Assume $z=|z|(\cos \theta+i \sin \theta)$. Them

$$
z^{n}=|z|^{n}(\cos \theta+i \sin \theta)^{n}=|z|^{n}(\cos (n \theta)+i \sin (n \theta))
$$

In particular we notice

$$
(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)
$$

(This holds for $n=0, \pm 1, \pm 2, \ldots$)
We can use the polar form to solve certain polynomial equations.

Ex Find all z such that $z^{2}=i$. Write i in polar form.

We see that $i=\cos \left(\frac{\pi}{2}+2 \pi n\right)+i \sin \left(\frac{\pi}{2}+2 \pi n\right)$ and we look for $z=r(\cos \theta+i \sin \theta)$ such that $r^{2}=1$ and $2 \theta=\frac{\pi}{2}+2 \pi n$. Therefore $r=1$ and $\theta=\frac{\pi}{4}+\pi n ; n \in \mathbb{Z}$

$$
\begin{aligned}
& z_{0}=\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}=\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2} \quad \text { Both } z_{0}^{2}=z_{1}^{2}=i \\
& z_{1}=\cos \frac{5 \pi}{4}+i \sin \frac{5 \pi}{4}=-\frac{\sqrt{2}}{2}-i \frac{\sqrt{2}}{2}
\end{aligned}
$$

If we vert to define \sqrt{i} (or \sqrt{z} in general) we need to choose between z_{0} and z_{1}. To make this chare we introduce the principal argument of z. In general $\arg (z)$ is a set. Namely, if $z \neq 0$ than
$\operatorname{Arg}(z)$

Principal $n^{\text {th }}$-root Def: The principal $n^{\text {th }}$ root of z

$$
\begin{aligned}
& \sqrt[n]{z}=\sqrt[n]{|z|^{\prime}}\left(\cos \left(\frac{\operatorname{Arg}(z)}{n}\right)+i \sin \left(\frac{\operatorname{Arg}(z)}{n}\right)\right. \\
& (\sqrt{z} \text { is shorthand for } \sqrt[2]{z})
\end{aligned}
$$

So for example i has 2 square roots $\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i\right.$ and $\left.-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i\right)$ but one principal sport $\sqrt{i}=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i$.
Exponentials and logarithms
We want to define e^{z} where $z \in \mathbb{C}$. Recall from calculus Euler's formula $e^{i y}=\cos y+i \sin y$, yeR
This formula can be justified using theory coming later but for now we use it as a dutivition. We also define

$$
\exp (z)=e^{z}=e^{x+i y}=e^{x} \cdot e^{i y}=e^{x}(\cos y+i \sin y)
$$

Ex $\quad e^{i \pi}=e^{0}(\cos \pi+i \sin \pi)=-1$

$$
e^{1+\frac{i \pi}{2}}=e^{1}\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)=e i
$$

Assume $z=x+i y$ and $w=u+i v$, We get

$$
\begin{aligned}
e^{z} \cdot e^{w} & =e^{x} e^{u}(\cos y+i \sin y)(\cos v+i \sin v)= \\
& =e^{x+u}((\cos y \cos v-\sin y \sin v)+i(\cos y \sin v+\sin y \cos v) \\
& =e^{x+u}(\cos (y+v)+i \sin (y+v))=e^{z+w}
\end{aligned}
$$

Also $e^{-z}=\left(e^{z}\right)^{-1}=\frac{1}{e^{z}}$
We also see that $\left|e^{z}\right|=e^{R e(z)}$ and $\arg \left(e^{z}\right)=\operatorname{Im}(z)$ $+2 \pi n$

Now lats study the equation $e^{z}=W$
(Solutions should be $\log w$)
Assume $\omega \neq 0$ and write $\omega=|\omega|(\cos ($ Arg $\omega)$
Since $|\omega|>0$ we write $\left.|\omega|=e^{|\omega| \omega \mid} u+i \sin (\operatorname{Arg} \omega)\right)$ the ordinary $\ln : \mathbb{R}_{>0} \rightarrow \mathbb{R}$.

$$
c^{z}=e^{x}(\cos y+i \sin y)=e^{\ln \mid \omega l}(\cos (\text { Arg } \omega)+i \sin (\text { Arg } \omega))
$$

We see that any z ot the form

$$
z=\ln |\omega|+i(\operatorname{Arg} \omega+2 \pi n), n \in \mathbb{Z}
$$

Solves $e^{z}=w$ when $\omega \neq 0$ (when $\omega=0$ no solutions)

We are forced to accept that in general the logarithm is multi-valued!

$$
\begin{aligned}
& \text { |f } z \neq 0 ; \log z=\ln |z|+i(\operatorname{Arg}(z)+2 \pi n) ; n \in \mathbb{Z} \\
&= \ln |z|+i \arg (z) \\
& \text { Remember } \\
& \arg (z) \text { is a set }
\end{aligned}
$$

We also define the principal logarithm:
If $z \neq 0$ then $\log (z)=\ln |z|+i \operatorname{Arg}(z)$
Ex $\log (-1)=\ln |-1|+i \operatorname{Arg}(-1)=0+i \pi=i \pi$

$$
\begin{array}{r}
\log (-1)=\ln |-1|+i \arg (-1)=i(\pi+2 \pi n) \\
n \in \mathbb{Z}
\end{array}
$$

Recall from calculus that $x^{a}=e^{a \ln x}$ is (one way) of defining x^{a} when $a \in \mathbb{R}$. Now that we have the logarithm defined for $z \in \mathbb{C} \backslash\{0\}$ we can define z^{ω} for $z \in \mathbb{C}\{0\}$,w \mathbb{C} Since the logarithm is multi-valued also z^{ω} will be multi-valued in general (since $z^{\omega}:=e^{\omega \log (z)}$)
Ex $\quad i^{i}=e^{i \log i}=e^{i\left(\lambda_{n} 111+i\left(\frac{\pi}{2}+\sum_{n} n\right)\right)}=e^{-\left(\frac{\pi}{2}+2 n_{n}\right)}$ $n \in$ 卫

Of course one could choose for example the prinapal logarithm and get a single-valued power.

This what we will do in this course and when we write (and say nothing else) Z^{w} we mean the principal w-power of z. That is $z^{\omega}=e^{w \log (z)}$.

Some comments: If $n \in I$ then any n-power is equal to the principal n-power

$$
\begin{aligned}
& \text { equal to the principal } n \text {-power }(\ln |z|+i(\operatorname{Arg}(z)+2 \pi k)) \\
& z^{n}=e^{n(\ln |z|+\operatorname{Arg}(z))}=e^{n \in \mathbb{Z}} \\
& \cdot \sqrt[n]{z}=z^{1 / n}
\end{aligned}
$$

"All "problems" stem
from the fret that $\operatorname{Arg}(z \omega)=\operatorname{Arg}(z)+\operatorname{Arg}(\omega)$ is false in some cases, Example:

$$
\sqrt{z} \cdot \sqrt{w} \neq \sqrt{z w} \text { in general }
$$

Think about the following "paradox"

$$
-1=i^{2}=\sqrt{(-1)} \cdot \sqrt{(-1)}=\sqrt{1}=1
$$

WRONG!
Observe: It is true that $z^{w_{1}} \cdot z^{w_{2}}=z^{w_{1}+w_{2}}$ for complex exponents.

