We show that $\sum_{n=1}^{\infty} n^{-z}$ converges uniformly when $\operatorname{Re}(z) \geq \sigma>1$. Study $\left|n^{-z}\right|=\left|\left(e^{\ln n}\right)^{-z}\right|=n^{-R_{c}(z)} \leq n^{-\sigma}$
We know that $\sum_{n=1}^{\infty} n^{-\sigma}$ converges (it is a p-series with $p>1$) So Weierstrass M-test gives the result. Normal convergence Hollows and $S(z)=\sum_{n=1}^{\infty} n^{-z}$ is analytic. This is the Riemann zeta -function (representation valid in $\operatorname{Re}(z)>1)$ We also get

$$
\left.S^{\prime}(z)=-\sum_{n=1}^{\infty}(\ln n) n^{-z} \quad \begin{array}{c}
\text { (with normal } \\
\text { convergence }
\end{array}\right)
$$

Taylor Series
A Taylor series is a function series of the following type. Take a sequence of complex numbers $\left(a_{n}\right)_{n=0}^{\infty}$ and $z_{0} \in \mathbb{C}$. Then

$$
\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \text { is a Taylor series }
$$

(or power series) centered at z_{0} with coefficients $\left(a_{n}\right)$. It is interesting to determine for which z this converges (and also to see what type of comergene we have). The following will be important. Def The "number" $\rho \in[0, \infty),\{\infty\}$ defined as

$$
\rho=\left(\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}\right)^{-1} \text { is called }
$$

the radius of convergence of the Taylor series. Convention: $\frac{1}{0}=\infty \& \frac{1}{\infty}=0$

Ix $\limsup _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(\sup \left(a_{k} ; k z_{n}\right)\right)$
If $\lim _{n \rightarrow \infty} a_{n}$ exists them $\limsup _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} a_{n}$

$$
\begin{aligned}
& a_{n}=1 / n \\
& \operatorname{limsin}_{n \rightarrow \infty} \frac{1}{n}=0 \\
& a_{n}=\left\{\begin{array}{lll}
1 & n \text { even } \\
0 & \text { nod } & \lim _{n \rightarrow \infty} a_{n} \text { der nut exist but } \\
& \operatorname{limsups}_{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} 1=1
\end{array}\right.
\end{aligned}
$$

Another characterization
$\operatorname{limsug}_{n \rightarrow \infty} a_{n}=A$ if for every $\varepsilon>0$ exists N so that $a_{n} \leq A+\varepsilon$ it $n \geq N$ and there is $k \geq N$ so that $a_{k} \geq A-\varepsilon$.
Theorem 38 Suppose that p is the radius of convergence of a Taylor series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ centered at z_{0}. The series diverges for $a_{n=0} z$ satisfying $\left|z-z_{0}\right|>p$. If $p>0$, the series converges absolutely and normally in the disk $\Delta=\Delta\left(z_{0}, p\right)$, and $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ is analytic in Δ.
The coefficients a_{n} satisfies

$$
a_{n}=\frac{1}{n!} f^{(n)}\left(z_{0}\right) .
$$

Prot: $\frac{1}{\rho}=\lim _{n \rightarrow \infty} \sqrt[n]{n} \sqrt[a_{n}]{\left|a_{n}\right|}=\sqrt[n!]{ }$. If $z \in \mathbb{C}$ satisfies $\left|z-z_{0}\right|=\operatorname{rpp}$ then, since $\frac{1}{r}<\frac{1}{\rho}$, we can find $n_{j} \rightarrow \infty$ so that $\sqrt[n_{n}]{\left|a_{n_{j}}\right|}>\frac{1}{r}$ or $\left|a_{n_{j}}\right|>\frac{1}{r^{n_{j}}}$. Theatre $\left|a_{n_{j}}\left(z-z_{0}\right)^{n_{j}}\right|=\left|a_{n_{j}}\right|\left|z-z_{0}\right|^{n_{j}}>\frac{1}{r^{n_{j}}} r^{n_{j}}=1$ and the terms in the Taylor series does not approach 0 . Hence the Talos series diverges outside $\bar{\Delta}$.

Now if $\rho>0$ and $\left|z-z_{0}\right| \leq r<\rho$. Let $\varepsilon>0$ be such that $\frac{1}{\rho}+\varepsilon<\frac{1}{r}$. Since $\frac{1}{\rho}=\lim \sup \sqrt[n]{\left|a_{n}\right|}$ we can find N such that

$$
\sqrt[n]{\left|a_{n}\right|}<\frac{1}{\rho}+\varepsilon \text { if } n>N
$$

Then $\left|a_{n}\left(z-z_{0}\right)^{n}\right|=\left|a_{n}\right|\left|z-z_{0}\right|^{n}=\left(\frac{1}{p}+\varepsilon\right)^{n} r^{n}=\alpha^{n}$ where $\alpha=r\left(\frac{1}{\rho}+\varepsilon\right)<1$. Then using Weierstrass M-tost ($\sum \alpha^{n}$ converges when $0 \leq \alpha<1$) we see that $\sum a_{n}\left(z-z_{0}\right)^{n}$ converges absolutely and normally in $\Delta\left(z_{0}, r\right)$.
$\Rightarrow f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ is analytic in $\Delta\left(z_{0, r}\right)$ since $a_{k}\left(z-z_{0}\right)^{n=0}$ are for $k=0,1,2, \ldots$. Also $f\left(z_{0}\right)=a_{0}$, We can differentiate the series term-wise so $f^{\prime}(z)=\sum_{n=1}^{\infty} n a_{n}\left(z-z_{0}\right)^{n-1}$ and $f^{\prime}\left(z_{0}\right)=a_{1}$. Continue differentiating and by induction we get $a_{n}=\frac{1}{n!} f^{(n)}\left(z_{0}\right)$.

So we see that a Taylor series defines a function that is analytic inside $\Delta\left(z_{0}, p\right)$. We now show that
(39) any analytic function cum be written as a Taylor series. Theorem 39 Assume that f is analytic in an open set U, that $z_{0} \in U$ and that $\Delta=\Delta\left(z_{0}, r\right) \subseteq U$. Then $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ in Δ and

$$
a_{n}=\frac{1}{n!} f^{(n)}\left(z_{0}\right)
$$

(This means that the coefficients $\left(a_{n}\right)$ are unique!)

Proof: \quad We went to show that $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ in $\Delta=\Delta\left(z_{a} r\right)$ where $a_{n}-\frac{1}{n!} f^{(n)}\left(z_{0}\right)$. Pick $z \in \Delta$ and $0<s<r$ so that $z \in \Delta\left(z_{0}, s\right)$. By the Candy integer formula we have

$$
f(z)=\frac{1}{2 \pi n_{\left|s-z_{0}\right|-s}} \frac{f(s)}{S-z} d S \text {. }
$$

Also $\frac{f(s)}{\rho-z}=\frac{f(s)}{s-z_{0}} \cdot \frac{\rho-z_{0}}{s-z}=\frac{f(s)}{5-z_{0}} \cdot \frac{s-z_{0}}{\left(s-z_{0}\right)+\left(z_{2}-z\right)}=\frac{f(s)}{\left.s-z_{0}\right)} \frac{1}{1-\left(\frac{z-z_{2}}{\left.s-z_{1}\right)}\right.}=$

$$
=\frac{f(s)}{s-z_{0}} \sum_{n=0}^{\infty}\left(\frac{z-z_{0}}{s-z_{0}}\right)^{n} \quad \text { since }\left|\frac{z-z_{0}}{s-z_{0}}\right|=p<1 .
$$

By Weierstrass M-test the series $\sum_{n=0}^{\infty} \frac{f(s)\left(z-z_{0}\right)^{n}}{\left(s-z_{0}\right)^{n+1}}$ (viewed as a function of S) converges untruly on $\left|s-z_{0}\right|=s$. Therefore, by Theorem 33,

$$
\begin{aligned}
f(z) & =\frac{1}{2 \pi i} \int_{\mid s-z_{0}==s} \sum_{n=s}^{\infty} \frac{f(s)\left(z-z_{0}\right)^{n}}{\left(s-z_{0}\right)^{n+1}} d s=\frac{1}{2 \pi i} \sum_{n=0}^{\infty} \int_{\left|s-z_{1}\right|=s} \frac{f(s)\left(z-z_{0}\right)^{n}}{n}\left(s-z_{0}\right)^{n i n} d s \\
& =\sum_{n=0}^{\infty}\left(z-z_{0}\right)^{n} \underbrace{\left(\frac{1}{z_{n}} \int_{\left|s-z_{0}\right|=s} \frac{f(s)}{}\left(s-z_{0}\right)^{n+1}\right.}_{=a_{n}} d s)
\end{aligned}
$$

Now by Cauchy's integral formula again

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 n i} \int_{\left|s-z_{0}\right|=s} \frac{f(s)}{\left(s-z_{0}\right)^{n+1}} d s=n!a_{n}
$$

Ex $f(z)=e^{z} ; f^{(n)}(z)=e^{z}$
Therfive, since $f^{(n)}(0)=1$, we get $e^{z}=\sum_{n=0}^{\infty} \frac{1}{n!} z^{n}$ when $|z|<\rho$. What is ρ ?
It hus to be $\rho=\infty$! This is something that can be deduced from Theorem 39. There must be a point whore f is not analytic on $\left|z-z_{0}\right|=p$! Since e^{z} is entire the series converges everywhere.

Ix $f(z)=\sin z$. Differentiation in the usual way gives

$$
\sin z=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!} \text { for } z \in \mathbb{C}
$$

We can also differentiate Taghorseies and get valid formulas (where convegemee is uniton) Hence

$$
\cos z=\sum_{n=0}^{\infty}(-1)^{n} \frac{(2 n+1) z^{2 n}}{(2 n+1)!}=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!}
$$

for $z \in \mathbb{C}$
Ex $f(z)=e^{z^{2}}$, Differentiating here becomes tedious.
However since $e^{w}=\sum_{n=0}^{\infty} \frac{w^{n}}{n!}$ and with $w=z^{2}$ we get $e^{z^{2}}=\sum_{n=0}^{\infty} \frac{z^{2 n}}{n!}$. This is a Taylor series and since they are unique we are done.

Ex $f(z)=\frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n}$. This is the Taylor
series with center $z_{0}=0$. Where is the representation valid? When $|z|<1$ since

Ex $f(z)=\frac{1}{1+z^{2}}=\frac{1}{1-\left(-z^{2}\right)}=\sum_{n=0}^{\infty}(-1)^{n} z^{2 n}$
Valid when $|z|<1$ since

(This explains why the Taylor series for $f(x)=\frac{1}{1+x^{2}}$ behoves "strange". Also arctan (x))
Ex Expand $f(z)=\frac{2 z}{z^{2}-1}$ in a Taylor series around $z_{0}=i$. Also determine ρ for the series.
Solution:

You can try to calculate $f^{(k)}(i)$ but this is tedious. The reasonable method is to use geometric series.

$$
\begin{aligned}
\frac{2 z}{z^{2}-1} & =\frac{1}{z-1}+\frac{1}{z+1}=\frac{1}{(z-i)+(i-1)}+\frac{1}{(z-i)+(i+1)}= \\
& =\frac{1}{(i-1)} \frac{1}{1-\left(-\frac{z-i}{i-1}\right)^{2}}+\frac{1}{(i+1)} \frac{1}{1-\left(-\frac{z-i}{i+1}\right)^{n}}= \\
& =\frac{1}{(i-1)} \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{z-i}{i-1}\right)^{n}+\frac{1}{(i+1)} \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{z-i}{i+1}\right)^{n}= \\
& =\sum_{n=0}^{\infty} \underbrace{(-1)^{n}\left[(i-1)^{n-1}+(i+1)^{n-1}\right]}(z-i)^{n} \\
& =f^{(n)}(i) / n!
\end{aligned}
$$

Consequences of the theory of Taghorseries
Theorem 40 (Identity principle)
If f is analytic in a domain D and if there exists a point $w_{0} \in D$ such that $f^{(n)}\left(w_{0}\right)=0$ for wary integer $n \geq 1$ then f is constant in D.
Proof: Let $u=\left\{z \in D ; f^{(n)}(z)=0, n \geq 1\right.$ integer $\}$ and $V=D \backslash U$. We show that U and V are both open and since $U \neq \varnothing$ and $D=U_{0} V$ we will conclude that $D=U$ and hence $f^{\prime}(z) \equiv 0$ in D and f is constant. V is open since $f^{(h)}(z) \neq 0$ implies that $f^{(k)}(z) \neq 0$ in a open disk $\Delta(z, r) \subseteq V$ by continuity.

Now take $z_{0} \in U$ We an then find $\Delta\left(z_{0}, r\right) s b$ and $f(z)=\sum_{n=0}^{\infty} \frac{f^{(k)}\left(z_{0}\right)}{k!}\left(z-z_{0}\right)^{k}$ in $\Delta\left(z_{0}, \sigma\right)$.
Therefore $f(z)$ is constant in $\Delta\left(z_{0}, r\right)$ and we see that $\Delta\left(z_{0}, r\right) \subseteq U$ and hance U is open and nom-empty. Hence $U=D$ and f is unstant.
(41)

Theorem 41 (The Factor Theorem)
Suppose that a function f is analytic and non-constant in a domain D and that z_{0} is a point of D for which $f\left(z_{0}\right)=0$. Then f can be uniquely represented in D in the fashion

$$
f(z)=\left(z-z_{0}\right)^{m} g(z)
$$

where m is a positive integer and $g: D \rightarrow \mathbb{C}$ is an analytic function such that $g\left(z_{0}\right) \neq 0$.
Prot: Since f is non-constant there is a minimal integer $m \geq 1$ so that $f^{(m)}\left(z_{0}\right) \neq 0$. Therefore the Taler serin around z_{0} has the form

$$
\begin{aligned}
& z_{0} \text { has the form } \\
& f(z)=\sum_{n=m}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=\left(z-z_{0}\right)^{m} \sum_{k=0}^{\infty} a_{m i k}\left(z-z_{0}\right)^{k}
\end{aligned}
$$

The function $g(t)= \begin{cases}\left.\frac{f(z)}{\left(z-z_{0}\right.}\right)^{m}, & \text { if } z \neq z_{0} \\ a_{m}, & \text { if } z=z_{0}\end{cases}$
is analytic in b. Also $g\left(z_{0}\right)=a_{m} \neq 0$.
Also g is unique since the Taylor series is unique.

The integer m in $f(z)=\left(z-z_{0}\right)^{m} g(z)$ is called the multiplicity (or order) of the zero at z_{0}.
Ex Determine the order of the zero of $f(z)=e^{z}-z-1$ at $z_{8}=0$.
Solution: First we verity $f(0)=e^{0}-0-1=1-1=0$. We calculate $f^{\prime}(z)=e^{z}-1 ; f^{\prime}(0)=e^{0}-1=0$

$$
f^{\prime \prime}(z)=e^{z} ; f^{\prime \prime}(0)=e^{0}=1 \neq 0
$$

So the order of the zero is 2 .

$$
\left.f(z)=e^{z}-z-1=z^{2} g(z) ; g(0) \neq 0\right\rfloor
$$

Ex Determine the order of the zero of

$$
f(z)=\cos \left(z^{3}\right)-1 .
$$

Solution

$$
\begin{aligned}
& \text { dilution } \cos z=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!} \cdots \\
& \begin{aligned}
f(z) & =-1+\cos \left(z^{3}\right)=-1+1-\frac{z^{6}}{2!}+\frac{z^{12}}{4!} \cdots= \\
& =-\frac{1}{2} z^{6}+\frac{1}{4!} z^{2}-\cdots
\end{aligned}
\end{aligned}
$$

Therefore $f(z)$ has a zero of multiplicity 6 at $z_{0}=0$. r $\cos \left(z^{3}\right)-1=z^{6} g(z) ; g(0) \neq 0 \downarrow$

Theorem 42 (l'Hosital's Rule)
Let f and g be non-constant analytic functions in a disk $\Delta\left(z_{0}, r\right)$. Assume that $f\left(z_{0}\right)=g\left(z_{0}\right)=0$. Then

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)}{g(z)}=\lim _{z \rightarrow z_{0}} \frac{f^{\prime}(z)}{g^{\prime}(z)}
$$

(meaning that if one does not exist neither does the other.)
Proof: $f(z)=\left(z-z_{0}\right)^{m} h_{1}(z) ; \quad h_{1}\left(z_{0}\right) \neq 0$

$$
g(z)=\left(z-z_{0}\right)^{k} h_{2}(z) \quad ; \quad h_{2}\left(z_{0}\right) \neq 0
$$

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)}{g(z)}=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{m-k} \frac{h_{1}(z)}{h_{2}(z)}= \begin{cases}0 & \text { if } m>k \\ \frac{h_{1}\left(z_{0}\right)}{h_{2}\left(z_{0}\right)} & \text { if } m=k \\ \text { undefined } & \text { if } m<k\end{cases}
$$

Also $f^{\prime}(z)=m\left(z-z_{0}\right)^{m-1} h_{1}(z)+\left(z-z_{0}\right)^{m} h_{1}^{\prime}(z)$ and

$$
g^{\prime}(z)=k\left(z-z_{0}\right)^{k-1} h_{2}(z)+\left(z-z_{0}\right)^{k} l_{2}^{\prime}(z) .
$$

We get

$$
\begin{aligned}
& \lim _{z \rightarrow z_{0}} \frac{f^{\prime}(z)}{g^{\prime}(z)}=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{m-k} \frac{m h_{1}(z)+\left(z-z_{0}\right) h_{1}^{\prime}(z)}{k h_{2}(z)+\left(z-z_{0}\right) h_{0}^{\prime}(z)}=\left\{\begin{array}{l}
0 \text { if } m>k \\
h_{1}\left(z_{0}\right) \\
\frac{h_{2}\left(z_{0}\right)}{\text { if }} \begin{array}{l}
m=k \\
\text { undefined if } m<k
\end{array} \\
\Longrightarrow \lim _{z \rightarrow z_{0}} \frac{f(z)}{g(z)}=\lim _{z \rightarrow z_{0}} \frac{f^{\prime}(z)}{g^{\prime}(z)} \quad \text { Q }
\end{array} .\right.
\end{aligned}
$$

Ix Calculate $\lim _{z \rightarrow 0} \frac{z \cos z-z-2 z^{2}}{e^{z^{2}}-1}$

$$
\begin{array}{ll}
\text { Solution: } \begin{array}{ll}
f(z) & =z \cos z-z-2 z^{2}
\end{array} \quad f(0)=0 \\
g(z)=e^{z^{2}}-1 \quad g^{(0)}=0 \\
l^{\prime} \text { hospital } \Rightarrow \lim _{z \rightarrow 0} \frac{f(z)}{g(z)}=\lim _{z \rightarrow 0} \frac{f^{\prime}(z)}{g^{\prime}(z)} \\
f^{\prime}(z)=\cos z-z \sin z-1-4 z \quad f^{\prime}(0)=0 \\
g^{\prime}(z)=2 z e^{z^{2}} \quad g^{\prime}(0)=0 \\
\lim _{z \rightarrow 0} \frac{f(z)}{g(z)}=\lim _{z \rightarrow 0} \frac{f^{\prime}(z)}{g^{\prime}(z)}=\lim _{z \rightarrow 0} \frac{f^{\prime \prime}(z)}{g^{\prime \prime}(z)} \\
f^{\prime \prime}(z)=-\sin z-\sin z-z \cos z-4 \quad f^{\prime \prime}(0)=-4 \\
g^{\prime \prime}(z)=2 e^{z^{2}}+4 z^{2} e^{z^{2}} \quad g^{\prime \prime}(0)=2
\end{array}
$$

So $\lim _{z \rightarrow 0} \frac{z \cos z-z-2 z^{2}}{e^{z^{2}}-1}=-\frac{4}{2}=-2$
Laurent series
Doubly infinite series: $\sum_{n=-\infty}^{\infty} z_{n}=\sum_{n=1}^{\infty} z_{-n}+\sum_{n=0}^{\infty} z_{n}$

$$
=\left(z_{-1}+z_{-2}+\ldots\right)+\left(z_{0}+z_{1}+\ldots\right)
$$

