We show that $\sum_{n=1}^{\infty} n^{-2}$ converges uniformly when $\operatorname{Re}(2) \ge \sigma > 1$. Study $|n^{-2}| = |(e^{hm})^{-2}| = n^{\operatorname{Re}(2)} \le n^{-\sigma}$ We know that 2 no converges (it is a preview with p>1) So Weierstrass M-Test gives the result. Normal convergence Hollows and $S(z) = \sum_{n=1}^{\infty} n^{-z}$ is analytic. This is the Riemann zeta - function (representation valid in Re(2)>1) We also get $S'(z) = -\sum_{n=1}^{\infty} (ln n) n^{-2}$ (with normal convergence) Taylor Series A Taylor series is a function series of the following type. Take a sequence of complex numbers $(a_n)_{n=0}^{\infty}$ and $z_0 \in C$. Then Zan (Z-Zo)n is a Taylor series (or power series) centered at 20 with coefficients (gn). It is interesting to determine for which z this converges (and also to see what type of convergence we have). The following will be important. Det The "number" pe [0, 00) of 00} defined as $\rho = \left(\limsup_{n \to \infty} \sqrt[\eta]{|a_n|} \right)^{-1} \text{ is called}$ the radius of convergence of the Taylor series. Convention: $\frac{1}{D} = \infty \ \ \frac{1}{D} = 0$

In lin supan = lin (sup (ak; kzn)) If tim an exists then linsup an = liman $a_n = \frac{1}{n}$ $\lim_{n \to \infty} \sup_{n \to \infty} \frac{1}{n} = 0$ $a_n = \begin{cases} 1 & n even \\ 0 & n old \end{cases}$ lim an does not exist but $\lim_{n \to \infty} \sup_{n \to \infty} a_n = \lim_{n \to \infty} 1 = 1$ Another characterization $\lim_{n \to \infty} \sup_{n \to \infty} a_n = A \quad \text{if for every } \varepsilon = 0 \quad \text{exists } N \text{ so}$ $\lim_{n \to \infty} u_n = A \quad \text{if } n \ge N \quad \text{and}$ there is k=N so that Az= A-E. (38)Theorem 38 Suppose that p is the radius of convergence of a Taylor series $\sum_{n=0}^{\infty} a_n (z-z_n)^n$ centered at z_n . The series diverges for any z satisfying $|z-z_n| > p$. If p > 0, the series unverges absolutely and normally in the disk $\Delta = \Delta (z_0, p)$, and $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ is analytic in Δ . The coefficients an satisfies $a_n = \frac{1}{n!} f^{(n)}(z_0)$ Prost: p = lin sup Van If zel satisfies 12-201=rop then, since $\frac{1}{r} < \frac{1}{p}$, we can find $n_j \rightarrow \infty$ so that "y pail > 1' or (and > 1' Therefore $|a_n(2-2\sigma)^{n_j}| = |a_{n_j}||2-2\sigma^{n_j} > \prod_{r=1}^{r_{n_j}} r^{r_j} = 1$ and the terms in the Taylor series does not approach D. Hence the Taylor series diverges outside $\overline{\Delta}$.

Novo it p>0 and 12-201 ≤r <p. Let E>0 be such that free . Since f = lim sup Vlan we Can find N such that That < p+e it n>p Then $|a_n(z-z_0)^n| = |a_n||z-z_0|^n = (\frac{1}{p} + \varepsilon)^n \tau^n = \chi^n$ where $\alpha = r(\frac{1}{p} + \varepsilon) < 1$. Then using Weierstress M-test (Iah unverges when 05x<1) we see that Zan (2-20)" converges absolutely and normally in $\Delta(z_0, r)$. $\Rightarrow f(z) = \sum_{n=0}^{\infty} a_n(z_{-20})^n$ is analytic in $\Delta(z_0, r)$ since $a_k(z_{-20})^k$ are for k = 0, 1, 2, ... Also $f(z_0) = a_0$. We can differentiate the series term-vise so f'(2) = Znan(2-2)" and f'(20) = ay Continue differentiating and by induction we get $a_n = \frac{1}{n!} f^{(n)}(z_0)$. So we see that a Taylor series defines a function that is analytic inside $\Delta(z_0, p)$. We now show that any analytic function can be written as a Taylor series. Theorem 39 Assume that f is analytic in an open set U, that $z_0 \in U$ and that $\Delta = \Delta(z_0, r) \subseteq U$. Then $f(z) = \sum_{n=1}^{\infty} a_n (z - z_0)^n$ in Δ and $a_n = \frac{1}{n!} f^{(n)}(z_0)$ (This means that the coefficients (a_n) are unique!)

(39)

(92)

(93

We want to show that $f(z) = \sum_{n=1}^{\infty} a_n (z-z_n)^n$ Prost : in $\Delta = \Delta(z_0, r)$ where $a_n = \frac{1}{n!} f^{(n)}(z_0)$ Pick zed and Ocser so that ZE (Zo,S). By the Cauchy integral formula we have $\frac{f(s)}{f(z)} = \frac{1}{2\pi i} \int_{|S-2o|-S} \frac{f(s)}{|S-2o|-S|} dS$ $\frac{f(s)}{s-z} = \frac{f(s)}{s-z_0} \cdot \frac{s-z_0}{s-z} = \frac{f(t)}{s-z_0} \cdot \frac{s-z_0}{(s-z_0)+(z_0-z)} = \frac{f(s)}{s-z_0} \cdot \frac{1}{1-(\frac{z-z_0}{s-z_0})} =$ Also $= \frac{f(s)}{s-2_0} \sum_{n=0}^{\infty} \left(\frac{z-2_0}{s-2_0}^n - \frac{s}{s-2_0} \right)^n + \frac{z-2_0}{s-2_0} = \rho - 21$ By Weierstrass M-test the series $\sum_{n=0}^{\infty} \frac{f(s)(z-z_0)^n}{(s-z_0)^{nL}}$ (viewed as a function of S) converges untermy on S-Zol=S. Therefore, by Theorem 33, $f(z) = \frac{1}{2\pi i} \int_{|S-z_0|=S} \frac{f(S)(z-z_0)^n}{(S-z_0)^{n+1}} dS = \frac{1}{2\pi i} \sum_{n=0}^{\infty} \int_{|S-z_0|=S} \frac{f(S)(z-z_0)^n}{(S-z_0)^{n+1}} dS$ $= \sum_{n=0}^{b} (z-z_{0})^{n} \left(\frac{1}{2\pi i} \int \frac{f(s)}{(s-z_{0})^{n+1}} ds \right)$ Now by Cauchy's integral formula again $f^{(n)}(z_0) = \frac{n!}{2n!} \int \frac{f(s)}{(s-2_0)^{n+1}} ds = n! a_{n}$ \bigotimes

Ex
$$f(z) = e^{z}$$
; $f^{(m)}(z) = e^{z}$
Therefore, since $f^{(m)}(0) = 1$, we get
 $e^{z} = \sum_{n=0}^{\infty} \frac{1}{n!} z^{n}$ when $|z| \le p$. What is p ?
It has to be $p = \infty$! This is something that
can be deduced from Theorem 39. There must
be a point where f is not analytic on $|z-z_0| = p$!
Since e^{z} is entire the series converges everywhere.
 \overline{Ex} $f(z) = \sin z$. Differentiation in the usual
way gives $\sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n+1}}{(2n+1)!}$ for $z \in C$
We can also differentiate Taylor series and
 qet valid formulas (where consequence is uniform)
Hence $\sum_{n=0}^{\infty} (-1)^{n} \frac{(2n+1)!}{(2n+1)!} = \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n}}{(2n)!}$
 \overline{Ex} $f(z) = e^{z^{2}}$. Differentiating here be comes
 $tections$.
However since $e^{W} = \sum_{n=0}^{\infty} \frac{w^{n}}{n!}$ and with $w = z^{2}$
We get $e^{z^{2}} = \sum_{n=0}^{\infty} \frac{z^{2n}}{n!}$. This is a Taylor
series and since they are unique we are done.

94)

 $EX f(z) = \frac{1}{1-z} = \sum_{n=0}^{\infty} This is the Taylor$ Series with center Zo=0. Where is the representation valid? When 121<1 since p=1. $\overline{E_{X}} \quad f(z) = \frac{1}{1+z^{2}} = \frac{1}{1-(-z^{2})} = \sum_{n=0}^{\infty} (-1)^{n} z^{2n}$ Valid when 12/41 since (This explains why the Taylor series for f(x) = 1/1 x2 behaves "strange" Also arctar(x)) $\frac{\text{Ex}}{\text{Expand}} \quad f(z) = \frac{2z}{z^{2}-1} \text{ in a Taylor series}$ around $z_{0} = i$. Also determine p for the series. Solution: $p = |\hat{i}+1| = \sqrt{2}$

You can try to calculate $f^{(k)}(i)$ but this is fedious. The reasonable method is to use geometric series. $\frac{2z}{z^2-1} = \frac{1}{z-1} + \frac{1}{z+1} = \frac{1}{(z-i)+(i-1)} + \frac{1}{(z-i)+(i+1)}$ $= \frac{1}{(i-1)} \frac{1}{1-(-\frac{2-i}{1-i})} + \frac{1}{(i+1)} \frac{1}{1-(-\frac{2-i}{1+1})} =$ $=\frac{1}{(i-1)}\sum_{n=0}^{\infty}(-1)^n\left(\frac{2-i}{i-1}\right)^n+\frac{1}{(i+1)}\sum_{n=0}^{\infty}(-1)^n\left(\frac{2-i}{i+1}\right)^n=$ $= \sum_{i=1}^{66} (-1)^{n} \left[(i-1)^{n-1} + (i+1)^{n-1} \right] (z-i)^{n}$ $= \int^{(n)}(i)/n!$ Consequences of the theory of Taylor series (40)Theorem 40 (Identity principle) It I is analytic in a domain & and it there crists a point wo ED such that $f^{(n)}(w_0) = 0$ for every integer nel then f is constant in D. Proof: Let $U = \{z \in D; f^{(n)}(z) = 0, n \ge l \text{ integer}\}$ and V=DIN. We show that U and Vare bith open and since U 7 & and D=UvV we will conclude that D= 4 and hence f'(2)=0 in D and f is constant. V is open since $f^{(k)}(z) \neq 0$ implies that $f^{(k)}(z) \neq 0$ in a open disk D(Z,r) ⊆V by continuity.

96)

Now take $z \in \mathcal{U}$ We an then find $\Delta(z_0, r) \leq t$ and $f(z) = \sum_{n=0}^{\infty} \frac{f^{(k)}(z_0)}{k!} (z-z_0)^k$ in $\Delta(z_0, r)$. Therefore f(z) is constant in A(zoir) and we see that $\Delta(z_0,r) \subseteq U$ and hence U is open and non-empty. Hence U=D and f is unstant. Theorem 41 (The Factor Theorem) Suppose that a function of is analytic and non-constant in a domain D and that Zo is a point of D for which $f(z_0)=0$. Then f can be uniquely represented in D in the fashion $f(z) = (z - z_0)^m q(z)$ where m is a positive integer and $q: D \rightarrow C$ is an analytic function such that $q(z_0) \neq 0$. Proof: Since f is non-constant there is a minimal integer m21 So that $f^{(m)}(z_0) \neq 0$. Therefore the Taylor series around zo has the form $\frac{z_{0}}{f(z)} = \sum_{n=m}^{\infty} a_{n} (z - z_{0})^{h} = (z - z_{0})^{m} \sum_{k=0}^{\infty} a_{n,k} (z - z_{0})^{k}$ The function $g(z) = \begin{cases} \frac{f(z)}{(z-z_0)^m}, & \text{if } z \neq z_0 \\ a_m, & \text{if } z = z_0 \end{cases}$ is analytic in t. Also $g(z_0) = a_m \neq 0$. Also g is unique since the Taylor series is unique.

(97)

(41)

The integer m in
$$f(z) = (z \cdot z_0)^m g(z)$$
 is called the
multiplicity (or order) of the zero at z_0 .

Ex Determine the order of the zero of $f(z) = e^2 - z - 1$
at $z = 0$.
Solution: First we write $f(0) = e^0 - 0 - 1 = 1 - 1 = 0$.
We calculate $f'(z) = e^2 - 1$; $f'(0) = e^0 - 1 = 0$
 $f''(z) = e^2 - 1$; $f'(0) = e^0 - 1 = 0$
 $f''(z) = e^2 - 1$; $f'(0) = e^0 - 1 = 0$
 $f''(z) = e^2 - 1$; $f''(0) = e^0 - 1 = 0$
So the order of the zero is 2 .
 $f(z) = e^2 - z - 1 = z^2 g(z)$; $g(0) \neq 0$
 $f(z) = e^2 - z - 1 = z^2 g(z)$; $g(0) \neq 0$
 $f(z) = cos(z^3) - 1$.
Solution
 $cos z = 1 - \frac{z^2}{2!} + \frac{z''}{4!} - \dots$
 $f(z) = -1 + cos(z^3) = -1 + 1 - \frac{z^6}{2!} + \frac{z^{12}}{4!} \dots = -\frac{1}{4} z^6 + \frac{1}{4!} z^{12} - \dots$
Therefore $f(z)$ has a zero of multiplicity 6 at $z_0 = 0$
 $\Gamma cos(z^3) - 1 = z^6 g(z)$; $g(0) \neq 0$

(98)

Theorem 42 (I'Hospital's Rule) het f and g be non-constant analytic functions in a disk $\Delta(z_0, r)$. Assume that $f(z_0) = g(z_0) = D$. Then $\frac{f(z)}{z-z_0} = \lim_{z \to z_0} \frac{f'(z)}{g'(z)}$ (meaning that it one does not exist neither does the other) $\frac{Prosf}{g(z)} = (z - z_0)^m h_1(z) ; h_1(z_0) \neq 0$ $g(z) = (z - z_0)^k h_2(z) ; h_2(z_0) \neq 0$ Then $\lim_{z \to z_0} \frac{f(z)}{g(z)} = \lim_{z \to z_0} (z - z_0)^{m-k} \frac{h_1(z)}{h_2(z)} = \begin{cases} 0 & \text{if } m > k \\ h_1(z_0) & \text{if } m = k \\ h_2(z_0) & \text{if } m = k \end{cases}$ undefined if m < kAlso $f'(z) = m(z-z_0)^{m-1} h_1(z) + (z-z_0)^m h_1'(z)$ and $g'(z) = k(z-z_0)^{k-1} h_2(z) + (z-z_0)^k h_2'(z)$. We get $\lim_{z \to z_0} \frac{f(z)}{g'(z)} = \lim_{z \to z_0} (z - z_0) \frac{m h_1(z) + (z - z_0)h'_1(z)}{k h_2(z) + (z - z_0)h'_0(z)} = \begin{cases} 0 & \text{if } m > k \\ h_1(z_0) & \text{if } m = k \end{cases}$ $\lim_{z \to z_0} \frac{g'(z)}{z - z_0} = \int_{0}^{1} \frac{m h_1(z)}{k h_2(z) + (z - z_0)h'_0(z)} = \int_{0}^{1} \frac{m h_1(z_0)}{k h_2(z_0)} \frac{h_1(z_0)}{k h_2(z_0)} = \int_{0}^{1} \frac{m h_1(z_0)}{k h_2(z_0)} \frac{h_1(z_0)}{k h_2(z_0)} = \int_{0}^{1} \frac{m h_1(z_0)}{k h_2(z_0)} \frac{h_1(z_0)}{k h_2(z_0)} \frac{h_1(z_0)}{k h_2(z_0)} = \int_{0}^{1} \frac{h_1(z_0)}{k h_2(z_0)} \frac{h_1(z_0)}{k h_2$ $\implies \lim_{z \to z_0} \frac{f(z)}{g(z)} = \lim_{z \to z_0} \frac{f'(z)}{g'(z)}$ Ø

(42)

 $\frac{Z}{E_{X}} Calculate \lim_{z \to 0} \frac{Z}{C^{2^{2}} - 1}$ Solution: f(z) = z coz - z - 2z2 f(0)= 0 $q(2) = e^{2^2} - 1 \qquad \qquad q^{(\delta) > D}$ l' Hospital \implies lim $\frac{f(z)}{z \to 0} = \lim_{z \to 0} \frac{f'(z)}{g'(z)}$ $f'(z) = \cos z - z \sin z - 1 - 4z$ f'(b) = 0 $q'(2) = 22e^{2^2}$ $g'(\delta) = \delta$ $\lim_{z \to 0} \frac{f(z)}{g(z)} = \lim_{z \to 0} \frac{f'(z)}{g'(z)} = \lim_{z \to 0} \frac{f''(z)}{g''(z)}$ $f''(2) = -Si_{n2} - Si_{n2} - 2 (p_2 - 4) \qquad f''(0) = -4$ $g''(z) = 2e^{z^2} + 4z^2 e^{z^2}$ g''(0) = 2So $\lim_{z \to 0} \frac{z}{c^{2}-1} \frac{\cos z}{c^{2}-1} = -\frac{4}{2} = -2$ Laurent series Laurent series Doubly infinite series: $\sum_{n=-\infty}^{\infty} z_n = \sum_{n=1}^{\infty} z_n + \sum_{n=0}^{\infty} z_n$ $= \left(\mathbf{z}_{-1}^{\dagger} \mathbf{z}_{-2}^{\dagger} \cdots \right) + \left(\mathbf{z}_{0}^{\dagger} \mathbf{z}_{1}^{\dagger} \cdots \right)$