Ix Calculate $\lim _{z \rightarrow 0} \frac{z \cos z-z-2 z^{2}}{e^{z^{2}}-1}$

$$
\begin{array}{ll}
\text { Solution: } \begin{array}{ll}
f(z) & =z \cos z-z-2 z^{2}
\end{array} \quad f(0)=0 \\
g(z)=e^{z^{2}}-1 \quad g^{(0)}=0 \\
l^{\prime} \text { hospital } \Rightarrow \lim _{z \rightarrow 0} \frac{f(z)}{g(z)}=\lim _{z \rightarrow 0} \frac{f^{\prime}(z)}{g^{\prime}(z)} \\
f^{\prime}(z)=\cos z-z \sin z-1-4 z \quad f^{\prime}(0)=0 \\
g^{\prime}(z)=2 z e^{z^{2}} \quad g^{\prime}(0)=0 \\
\lim _{z \rightarrow 0} \frac{f(z)}{g(z)}=\lim _{z \rightarrow 0} \frac{f^{\prime}(z)}{g^{\prime}(z)}=\lim _{z \rightarrow 0} \frac{f^{\prime \prime}(z)}{g^{\prime \prime}(z)} \\
f^{\prime \prime}(z)=-\sin z-\sin z-z \cos z-4 \quad f^{\prime \prime}(0)=-4 \\
g^{\prime \prime}(z)=2 e^{z^{2}}+4 z^{2} e^{z^{2}} \quad g^{\prime \prime}(0)=2
\end{array}
$$

So $\lim _{z \rightarrow 0} \frac{z \cos z-z-2 z^{2}}{e^{z^{2}}-1}=-\frac{4}{2}=-2$
Laurent series
Doubly infinite series: $\sum_{n=-\infty}^{\infty} z_{n}=\sum_{n=1}^{\infty} z_{-n}+\sum_{n=0}^{\infty} z_{n}$

$$
=\left(z_{-1}+z_{-2}+\ldots\right)+\left(z_{0}+z_{1}+\ldots\right)
$$

Definition: A Laurent series centered at $z_{0} \in \mathbb{C}$ is a doubly infinite function series of the form

$$
\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=\ldots+\frac{a_{-2}}{\left(2-z_{0}\right)^{2}}+\frac{a_{-1}}{\left(z-z_{0}\right)}+a_{0} \times a_{1}\left(z-z_{0}\right)+\ldots
$$

In general a Laurent serve converges normally in sets $\left\{z \in \mathbb{C} ; 0 \leq p_{I}<\left|z-z_{0}\right|<p_{0} \leq \infty\right\}$ where

$$
\rho_{0}=\left(\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}\right)^{-1} \text { and } \rho_{\tau}=\lim _{n \rightarrow \infty p} \sqrt[n]{\left|a_{-n}\right|}
$$

Look at $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$. This define an analytic function in =0 ${ }^{n=0}\left|z-z_{0}\right|<\rho_{0}$. We write

$$
\begin{aligned}
& \text { Function in }{ }^{n=0}\left|z-z_{0}\right|<\rho_{0} \text {. We write } \\
& g_{0}\left(z-z_{0}\right)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \text {. Now } g_{I}(w)=\sum_{n=1}^{\infty} a_{-n} w^{n}
\end{aligned}
$$

defines an analytic function ir $|W|<\rho_{I}^{-1}$ Therefore

$$
\begin{aligned}
& f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=g_{0}\left(z-z_{0}\right)+g_{I}\left(\frac{1}{z-z_{0}}\right) \\
& \left.\quad \text { in } 0 \leqslant \rho_{I}<\left|z-z_{0}\right|<\rho_{0} \leqslant \infty \quad \text { (if } \rho_{I}<\rho_{0}\right)
\end{aligned}
$$

The convergence is normal in $\left\{\rho_{I}<\left|z-z_{0}\right|<\rho_{0}\right\}$ so f is analytic

Moreover, we can checle that

$$
a_{n}=\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=r} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z
$$

if $\rho_{I}<r<\rho_{0}$.
This is true since

We can also prove that any analytic function f in $0 \leq a<\left|z-z_{0}\right|<b \leq \infty$ can be written as a Laurent series. Namely,
Theorem 43
Suppose that a function f is analytic in an annulus $D=\left\{z \in \mathbb{C} ; 0 \leqslant a<\left|z-z_{0}\right|<b \leqslant \infty\right\}$. Then f can be represented as a Laurent series centered at z_{0}. The coefficients a_{n} in

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \text { are unique. }
$$

We have

$$
a_{n}=\frac{1}{2 \sigma_{i}} \int_{\left|z-z_{0}\right|=r} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z
$$

for any r satisfying $a<r<b$.

The formulas $a_{n}=\frac{1}{2 \pi i} \int_{\left(z-z_{0}\right)=r} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z$ are usually
of little use practically of little use practically.
Ex Expand $f(z)=e^{1 / z}$ in a Laurent series in

$$
D=\{z ; 0<|z|<\infty\} .
$$

Solution: We know that $e^{w}=\sum_{n=0}^{\infty} \frac{w^{n}}{n!}$ for $w \in \mathbb{C}$
Put $w=1 / z$. Them

$$
e^{1 / z}=\sum_{n=0}^{\infty} \frac{z^{-n}}{n!}=\sum_{n=-\infty}^{0} \frac{z^{n}}{(-n)!}=1+\frac{1}{z}+\frac{1}{2} \frac{1}{z^{2}}+\cdots
$$

This must be the Laurent series by uniqueness.
Ex Determine the Laurent series representation of

$$
f(z)=\frac{\sin \pi z}{(z-1)^{3}} \text { in } D=\{z \in \mathbb{C} ; \quad 0<|z-1|<\infty\}
$$

Solution:
First we duelop $\sin \pi z$ in a Taylor series around $z=1$

$$
\begin{aligned}
& g(z)=\sin \pi z \quad g(1)=\sin \pi=0 \\
& g^{\prime}(z)=\pi \cos \pi z \quad g^{\prime}(1)=\pi \cos \pi=-\pi \\
& g^{\prime \prime}(z)=-\pi^{2} \sin \pi z \quad g^{\prime \prime}(1)=0 \\
& \prime(k k)(z)=(-1)^{k} \pi^{2 k} \sin \pi z \quad g^{(2 k)}(1)=0 \\
& g^{(2 k+1)}(z)=(-1)^{k} \pi^{2 k+1} \cos \pi z \\
& g^{(2 k+1)}(1)=(-1)^{k+1} \pi^{2 k+1}
\end{aligned}
$$

So $\sin \pi z=\sum_{k=0}^{\infty} \frac{(-1)^{k+1} \pi^{2 k+1}}{(2 k+1)!}(z-1)^{2 k+1}$
when $z \in \mathbb{C}$. So

$$
\begin{aligned}
\frac{\sin \pi z}{(z-1)^{3}} & =\sum_{k=0}^{\infty} \frac{(-1)^{k+1} \pi^{2 k+1}}{(2 k+1)!}(z-1)^{2 k-2} \\
& =-\frac{\pi}{(z-1)^{2}}+\frac{\pi^{3}}{3!}-\frac{\pi^{5}}{5!}(z-1)^{2}+\cdots
\end{aligned}
$$

Ex Develop $f(z)=\frac{1}{z}$ and $g(z)=\frac{1}{z^{2}}$ in Laurent series in the annulus

$$
D=\{z ; 1<|z-i|<\infty\}
$$

Solution

$$
\frac{1}{z}=\frac{1}{i+(2-i)}=\frac{1}{i}\left(\frac{1}{1-i(z-i)}\right)
$$

looks promising but doesn't work since It works when $|i(z-i)|>t$ in D $|z-i|<1$

But $\frac{1}{z}=\frac{1}{(2-i)+i}=\frac{1}{(z-i)} \frac{1}{1-\frac{-i}{z-i}} \begin{array}{r}\text { works } \\ \text { since }\end{array}$

So

$$
\text { So } \begin{aligned}
\frac{1}{z} & =\frac{1}{z-i} \sum_{n=0}^{\infty} \frac{(-i)^{n}}{(z-i)^{n}}=\sum_{n=0}^{\infty} \frac{(-i)^{n}}{(z-i)^{n+1}}\left|\frac{i}{z-i}\right|<1! \\
& =\sum_{n=-\infty}^{-1} \frac{1}{i^{-n-1}}(z-i)^{n}=\sum_{n=-\infty}^{-1} i^{n-1}(z-i)^{n} \\
& \uparrow=\frac{1}{i}
\end{aligned}
$$

Finally $\frac{d}{d z} \frac{1}{z}=-1 \frac{1}{z^{2}}=-\frac{1}{z^{2}}$ so

$$
-\frac{1}{z^{2}}=\sum_{n=-\infty}^{-1} n i^{n+1}(z-i)^{n-1}=\sum_{n=-\infty}^{-2}(n+1) i^{n+2}(z-i)^{n}
$$

or $\frac{1}{z^{2}}=\sum_{n=-\infty}^{-2}(n+1) i^{n}(z-i)^{n}$
(Isolated) Singularities of analytic functions
Let $\Delta^{*}\left(z_{0}, r\right)=\left\{z \in \mathbb{F} ; 0<\left|z-z_{0}\right|<r\right\}$
We call $\Delta^{*}\left(z_{0} r\right)$ a punctured disk
Let $f: \Delta^{*}\left(z_{0}, r\right) \rightarrow \mathbb{C}$ be analytic. We want to study how f can fail to be analytic at z_{0}.

Removable singularities
If we can defined $f\left(z_{0}\right)$ so f becomes analytic in z_{0} we say that the singularity is removable.
(44)

Theorem 44 (Riemann's Extension Theorem) Let f be analytic in $\Delta^{*}\left(z_{0}, r\right)$. Then z_{0} is a removable singularity iff f is bounded in $\Delta^{*}\left(z_{0}, s\right) \cup\left|z-z_{0}\right|=s$ for some $s<r$.
"Proof" Expand f in a Laurent series in

$$
\begin{aligned}
& \Delta^{*}\left(z_{0}, r\right) \\
& f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \text { where }
\end{aligned}
$$

$a_{n}=\frac{1}{2 n i} \int_{1 z-z_{0}=1} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z$. Hence
$\left|a_{n}\right| \leqslant \frac{1}{2_{n}} \frac{M-z_{0} \mid=s}{s^{n+1}} 2 \pi s=\frac{M}{S^{n}}$. If $n<0$
then $\left|a_{n}\right| \leqslant M s^{-n} \rightarrow 0$ as $s \rightarrow 0$
Hence $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ is cunalytic in $\Delta\left(z_{0}, r\right)$.

So z_{0} is removable if $\limsup _{z \rightarrow z_{0}}|f(z)|<\infty$
$\limsup _{z \rightarrow b_{0}}|f(z)|=?$

$$
\begin{aligned}
& \left(z_{z}\right. \\
& \rho\left(f(z)\left|;\left|z-z_{0}\right|<r\right)\right)
\end{aligned}
$$

$$
=\lim _{z \rightarrow z_{0}}|f(z)|
$$

Therefore z_{0} is a "true" singularity if $\limsup _{z \rightarrow z_{0}}|f(z)|=\infty$. Either $\lim _{z \rightarrow z_{0}}|f(z)|=\infty$ or $\lim _{z \rightarrow z_{0}}|f(z)|$ doesrit exist. If the limit $\lim _{z \rightarrow z_{0}}|f(z)|$ doesn't exist we say that z_{0} is an essential singularity. If $\lim _{z \rightarrow z_{0}}|f(z)|=\infty$ then z_{0} is called a pole.
Poles
Assume that $f: \Delta^{*}\left(z_{0}, r\right) \rightarrow \mathbb{C}$ has a pole at z_{0}. Since $\lim _{z \rightarrow z_{0}}|f(z)|=\infty$ we can assume that $f(z) \neq 0$ in $\Delta^{*}\left(z_{01} r\right)$.
Then $\frac{1}{f}$ is analytic in $\Delta^{*}\left(z_{0}, r\right)$ and also $\lim _{z \rightarrow z_{0}}\left|\frac{1}{f}\right|=\lim _{z \rightarrow z_{0}} \frac{1}{|f|}=0$ so $\frac{1}{f}$ is analytic in $\Delta\left(z_{0}, r\right)$ (by Riemann's Extension Theorem). Also $\frac{1}{f\left(z_{0}\right)}=0$ and the Factor Theorem says $\frac{1}{f(z)}=\left(z-z_{0}\right)^{m} h(z)$ where h is analytic and $h\left(z_{0}\right) \neq 0$. Rearranging we get

$$
f(z)=\frac{g(z)}{\left(z-z_{0}\right)^{m}} \text { where } g(z)=\frac{1}{h(z)}
$$

Expanding $g(z)$ in a Taylor series we get

$$
\begin{aligned}
f(z)= & \frac{1}{\left(t-z_{0}\right)^{m}} \sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=\sum_{n=-m}^{\infty} a_{n i m}\left(z-z_{0}\right)^{n} \\
& =\underbrace{\frac{a_{0}}{\left(z-z_{0}\right)^{m}}+\frac{a_{1}}{\left(z-z_{0}\right)^{n-1}}+\cdots \frac{a_{n-1}}{z-z_{0}}+a_{n}+a_{m-m}\left(z-z_{0}\right) \cdots}_{\text {singular part at } z_{0}}
\end{aligned}
$$

We say that f has a pole of order m at z.
If f has an essential singularity at z_{0} then the singular port is of "infinite order"

$$
\sum_{n=1}^{\infty} a_{-n}\left(z-z_{0}\right)^{-n}
$$

The Residue Theorem and Residue Calculus
Say that we want to calculate $\int_{\gamma} f(z) d z$ where γ is as in the figure and f is analytic in $D \backslash\left\{z_{0}\right\}$.

If we knew the Laurent expansion of f around z_{0} then we would have $f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ and

$$
\begin{aligned}
& \int_{\gamma} f(z) d z=\int_{\gamma} \sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n} d z=\sum_{n=-\infty}^{\infty} a_{n} \int_{\gamma}\left(z-z_{0}\right)^{n} d \\
& =2 \text { oi } a_{-1} \text { since } \int_{\gamma}\left(z-z_{0}\right)^{n} d z= \begin{cases}0 & n \neq-1 \\
2 \pi i & n=-1\end{cases}
\end{aligned}
$$

The coefficient a_{-1} is culled the residue of f at z_{0}. We write $a_{-1}^{-1}=\operatorname{Res}\left(z_{0}, f\right)$.
Ex $\int_{|z|=1} e^{1 / z} d z=2 \pi i \operatorname{Res}\left(0, e^{1 / z}\right) \quad\binom{$ Assume $|z|=1}{$ positively oriented }

$$
e^{1 / z}=1+\frac{1}{z}+\frac{1}{2!z^{2}}+\cdots+\frac{1}{n!z^{n}}+\cdots
$$

So $\operatorname{las}\left(0, e^{1 / 2}\right)=1$
and

$$
\int_{|z|=1} e^{1 / z} d z=2 \pi i
$$

What about $\int_{|z|=1}^{|z|=1} z^{k} e^{1 / z} d z=$?

$$
\int_{|z|=1} z^{k} e^{1 / z} d z=2 \pi i \operatorname{Res}\left(0, z^{k} e^{1 / z}\right)=2 \pi i \frac{1}{(k+1)!}
$$

This seems quite powerful however two problems should be addressed:

- How do we handle several singularities?
- How to avoid Laurent series expansion? Lets handle several singularities first.

Let S_{n} be the singular part of the Laurent series expansion at Z_{n}. Observe that $f-S_{0}-S_{1}-S_{2}-S_{3}$ is analytic in U!
Then Cauchy's Theorem tells us that

$$
\int_{\gamma} f-S_{0}-S_{1}-S_{2}-S_{3} d z=0 \text { in this case }
$$

$$
\text { So } \int_{\gamma} f d z=\sum_{n=0}^{3} \int_{\gamma} S_{n} d z=
$$

$$
=2 \operatorname{Ri}\left(\operatorname{Res}\left(z_{0}, f\right)+\operatorname{Res}\left(z_{1}, f\right)+\operatorname{Res}\left(z_{2}, f\right)\right)
$$

Theorem 45 (The Residue Theorem)
Assume that f is analytic in $U \backslash E$ where E is a「discrecte $=$ points are isolated 7 discrete countable set $\left(z_{k}\right)$ (finite or countably infinite) in U.

$$
\begin{aligned}
=\omega^{*} 0^{+\infty} & \text { Assume } \sigma \text { is a cycle in } U, E \text { that is } \\
L & \text { to zero in U. Then } \\
& \int_{\sigma} f(z) d z=2 \pi i \sum_{k} n\left(\sigma_{1} z_{k}\right) \operatorname{Res}\left(z_{k}, f\right)
\end{aligned}
$$

Now, let's turn to the second question. How do we avoid Laurent expansions? It is not always possible. However, for poles we can find a formula.
Say that z_{0} is a pole of order m for $f(z)$ then

$$
\begin{aligned}
& \text { for } f(z) \text { then } \\
& f(z)=\frac{a_{-m}}{\left(z-z_{0}\right)^{m}}+\cdots+\underbrace{a_{-1}}_{\left(z-z_{0}\right)}+a_{0}+\ldots \\
& \left(z-z_{0}\right)^{m} f(z)=a_{-m}+\ldots+a_{-1}\left(z-z_{0}\right)^{m-1}+\ldots \\
& \frac{d}{d z}\left[\left(z-z_{0}\right)^{m} f(z)\right]=a_{-m+1}+\ldots+(m-1) a_{-1}\left(z-z_{0}\right)^{m-2} \\
& \left(\frac{d}{d z}\right)^{m-1}\left[\left(z-z_{0}\right)^{m} f(z)\right]=(m-1)!\left(a_{-1}+\ldots\right.
\end{aligned}
$$

So we have a formula

$$
\operatorname{Res}\left(z_{0}, f\right)=\frac{1}{(m-1)!} \lim _{z \rightarrow z_{0}} \frac{d^{m-1}}{d z^{m-1}}\left[\left(z-z_{0}\right)^{m} f(z)\right]
$$

Notice that you need to know the order of the pole to use this formula.
This you find out by finding the order of the zero z_{0} for $1 / f$.

