Topology and geometry in the complex plane.
We have already seen that we can measure
distance between Z and the origin 0 using.

$$|Z| = \sqrt{ZZ} = \sqrt{x^2+y^2}$$
. (This is a so called norm)
Using the norm we can assast and and tricke to
define a metric (which measures distance between
any Z and w) as
 $d(Z_1w) = |Z-w|$.
Theorem 2 The function $d: C \times C \rightarrow [0, n]$ satisfies
 $i) d(Z_1, Z_2) = d(Z_2, Z_1)$
 $(i) d(Z_1, Z_2) = 0 \iff Z_1 = Z_2$
 $(ii) d(Z_1, Z_2) = d(Z_1, Z_2) + d(Z_2, Z_3)$
 Z_3 (That is, d is a metric on C)
We will lewe (i) and (i) as exercises and now work
 $z_1 = Z_2$
 $i|Z_1 = |Z_2| = |Z_1|| Z_2|$
 $i|Z_1 = |Z_2| = |Z_1|| Z_2|$
 $i|Z_1 = |Z_1|| Z_2|$
 $i|Z_1 = |Z_2| = |Z_1|| Z_2|$
 $i|Z_1 = |Z_1|| Z_2|$
 $i|Z_1 = |Z_1||Z_2|$
 $i|Z_1 = |Z_1||Z_2|$
 $i|Z_1 = |Z_1||Z_2|$
 $i|Z_1| = |Z_1| = |Z_2|$
 $i|Z_1| = |Z_1||Z_2|$
 $i|Z_2| = |Z_1||Z_2|$
 $i|Z_1| = |Z_1||Z_2|$
 $i|Z_1| = |Z_1||Z_2|$
 $i|Z_1| = |Z_1||Z_2|$
 $i|Z_1| = |Z_1||Z_2|$

(13)

Now we investigate $\left|\Xi+w\right|^{2}=\left(\Xi+w\right)\left(\overline{\Xi}+\overline{w}\right)=\overline{z}\overline{z}+\overline{z}\overline{w}+\overline{z}w+w\overline{w}=$ $= |z|^{2} + 2Re(z\overline{w}) + |w|^{2} \leq |z|^{2} + 2|z\overline{w}| + |w|^{2} =$ $= |z|^{2} + 2|z||w| + |w|^{2} = (|z| + |w|)^{2}$ => |2+W| < |2|+ |W| by taking square roots of real numbers This is a version of (iii) shace $d(z_1, z_3) = |z_1 - z_3| = |z_1 - z_2 + z_2 - z_3| \leq$ $\leq |2_1 - 2_2| + |2_2 - 2_3| = d(3_1, 2_2) + d(2_2, 2_3)$ Open sets in C The open drisk with center 20 and radius 100 is of the form $\Delta(z_o,r) = \{z \in \mathbb{C}; |z-z_o| < r\}$ 20 A set $U \subseteq C$ is open if for every $z \in U$ there is an r such that $\Delta(z,r) \subseteq U$. Exercise The open disk $\Delta(z_0, r)$ is an open set Zo Z Hint:

Other open sets are C and
$$p'$$
 (the cmpty set)
(It might feel stronge that the empty set is cauded
as an open set but if you doubt it trid one point
in p' which aloesn't satisfy the defining property for
an open set. You can't since p' has no elements)
Also, you can build new open sets by taking unions
of open sets. Namely, let $U_i \subset C$ be open sets
for $i \in I$ (a set of indices). Then U U_i is open.
Finally, if U and V are open them UnV is
open. (Warning: Only finite intersections work in general)
Closed sets
A set U is called closed if it's complement
 $U^c = C \setminus U = \{z \in C_j \ z \notin U\}$ is open.
Ex $U = \{z \in C_j \ l \ge l \le 1\}$ is closed since
 $C \setminus U = \{z \in C_j \ l \ge l \le 1\}$ is green.
The set $\overline{\Delta(z_0, r)} = \{z \in C_j \ l \ge -z_0 \le r\}$ is
called the closed disk with radius r and center z_0 .
(Ht is a closed set since $\{z \in C_j \ l \ge -z_0 \ r \le 1\}$
is open. Why? This will be on one exercise
sheet

(15)

Interior points, exterior points and boundary points Let $U \subseteq \mathbb{C}$ be a set. We say that Z is an interior point of U if $\exists r > 0$ such that $\Delta(\exists_r) \subseteq U$. We say that z is an exterior point of U it =r>D such that $\Delta(z,r) \subseteq U^{c} = C \setminus U$. If z is neither an interior point nor exterior point of U it is a boundary point of U. More precisely, z is a boundary point of U it for all r>0 we have ∆(z,r) n U ≠ \$ and ∆(z,r) n (C) w + \$. We use the following notation int(U) = { ZEC; Z is an interior point of U} ext(U) = { ZEC; Z is an exterior point of U} all = {zel; z is an boundary point of u} Notice · C = int (U) v ext (U) v 2U for any set USC. · U=int(U) (=> U is open · ext(U) and int(U) are always open · II = U volk is always a closed set This set is called the closure of U and is the smellest closed set containing u

16)

 $\Delta(0,1) = \{z \in C; |z| < 1\}$ Ex $int(\Delta(0,1)) = \Delta(0,1)$ $ext(\Delta(0,1)) = \{z \in \mathbb{C} \mid |z| > 1\}$ $\partial \Delta(0,1) = \{ z \in \mathbb{C} ; |z| = 1 \}$ $\delta(o,1) = \inf (\Delta(o,1)) \cup \partial \Delta(o,1) = \{z \in \mathbb{C} \mid |z| \leq 1 \}$ Sequences of complex numbers Limits of sequences in C Let $(\mathbb{Z}_n)_{n=1}^{\infty}$ be a sequence where $\mathbb{Z}_n \in \mathbb{C}$ We say $(\mathbb{Z}_n)_{n=1}^{\infty}$ has the limit $c \in \mathbb{C}$ and write $\lim_{n \to \infty} \mathbb{Z}_n = c$ if for every $\varepsilon = 0$ there is $N \in \mathbb{N}$ such that ZnED(C,E) whenever nZN. [YE>O JN such that NZN => 1Zn-C/CE_ A Es in this did

An observation
Zo
We see that

$$|Re(z-z_0)| \leq |z-z_0| \leq |Re(z-z_0)| + |Im(z-z_0)|$$

and
 $|Im(z-z_0)| \leq |z-z_0| \leq |Re(z-z_0)| + |Im(z-z_0)|$
 $|Im(z-z_0)| \leq |z-z_0| \leq |z-z_0| \leq |Re(z-z_0)| + |Im(z-z_0)|$
 $|Im(z-z_0)| \leq |Z-z_0| + |Im(z-z_0)|$
 $|Im(z-z_0)| = |Z-z_0| + |Im($

18)

Ex Let
$$(z_n)_{n=1}^{\infty} = (\frac{1}{n})_{n=1}^{\infty} = (i, \frac{1}{2}, \frac{1}{3}, \frac{1}{7}, \dots)$$

Calculate $\lim_{n \to \infty} z_n$.
Ne use $\lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{(-1)^n}{2n} = 0$
and $\lim_{n \to \infty} y_n = \lim_{n \to \infty} \frac{(1)^n}{2n!} = 0$. Therefore
 $\lim_{n \to \infty} z_n = 0$.
Continuous complex-valued functions
Let $A \subseteq \mathbb{C}$ and $f: A \rightarrow \mathbb{C}$. Since \mathbb{C} is
 R^2 equipped with a multiplication we can write
 $f(z) = u(z) + i V(z)$ where $u: A \rightarrow IR$ and
 $v: A \rightarrow R$.
Let $a \in A$ and $c \in \mathbb{C}$. We say that the limit
of f at a is c and $urite \lim_{n \to \infty} f(z) = c$
if for every $z > 0$ there is $a = 5 > 0$ such that
 $if (0 < 12 - a < 1 < 5$ and $z \in A$. Here $i = 0$.
You can use what you here $i = 0$.
Lim $u(z) = Re(c)$ & $\lim_{n \to \infty} v = 1$.
Lim $u(z) = c$.

(19)

Illustration of limit & a function \$A=C
F
A
For lim f(z) = c to be true
z=a
you should be able to:
(1) For any choice z=0 find
(2) \$>0 so that
(3) if
$$0 < |z-a| < \delta \pmod{z=A}$$
 then
 $|f(z)-c| < z$