Topology and geometry in the complex plane.
We have already seen that we can measure distance between z and the origin 0 using $|z|=\sqrt{z \bar{z}}=\sqrt{x^{2}+y^{2}}$. (This is a so called norm) Using the norm we can uscastandard trick to define a metric (which measures distance between any z and w) as

$$
d(z, w)=|z-w|
$$

Theorem 2 The function $d: \mathbb{C} \times \mathbb{C} \rightarrow[0, \infty)$ satisfies
(2)

(i) $d\left(z_{1}, z_{2}\right)=d\left(z_{2}, z_{1}\right)$
(ii) $d\left(z_{1}, z_{2}\right)=0 \Longleftrightarrow z_{1}=z_{2}$
(iii) $d\left(z_{1}, z_{3}\right) \leq d\left(z_{1}, z_{2}\right)+d\left(z_{2}, z_{3}\right)$
(That is, d is a metric on \mathbb{C})
We will lewe (i) and (i) as exercises and now work to verify (iii) (the triangle inequality)
The verification goes through a series of obseendiors about $|z|=\sqrt{z \bar{z}}$

$$
\begin{gathered}
\cdot\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right| \\
\cdot|\operatorname{Re}(z)| \leq|z| \quad \text { and } \quad|\operatorname{Im}(z)| \leq|z| \\
\left(|z|=\sqrt{x^{2}+y^{2}} \geq \sqrt{x^{2}}=|x|=|\operatorname{Re}(z)|\right. \\
\left.\quad \begin{array}{l}
\text { for example }
\end{array}\right)
\end{gathered}
$$

Now we investigate

$$
\begin{aligned}
|z+w|^{2} & =(z+w)(\bar{z}+\bar{w})=z \bar{z}+z \bar{w}+\bar{z} w+w \bar{w}= \\
& =|z|^{2}+2 \operatorname{Re}(z \bar{w})+|w|^{2} \leq|z|^{2}+2|z \bar{w}|+|w|^{2}= \\
& =|z|^{2}+2|z||w|+|w|^{2}=(|z|+|w|)^{2}
\end{aligned}
$$

$\Rightarrow|z+w| \leq|z|+|w| \quad$ by taking square roots of real numbers
This is a version of (iii) since

$$
\begin{aligned}
d\left(z_{1}, z_{3}\right) & =\left|z_{1}-z_{3}\right|=\left|z_{1}-z_{2}+z_{2}-z_{3}\right| \leq \\
& \leqslant\left|z_{1}, z_{2}\right|+\left|z_{2}-z_{3}\right|=d\left(z_{1}, z_{2}\right)+d\left(z_{2}, z_{3}\right)
\end{aligned}
$$

Open sets in ©
The open disk with center z_{0} and radius $r>0$ is of the form $\Delta\left(z_{0}, r\right)=\left\{z \in \mathbb{C} ;\left|z-z_{0}\right|<r\right\}$

A set $U \subseteq \mathbb{C}$ is open if for every $z \in U$ there is an r such that $\Delta(z, r) \subseteq U$.

Exercise: The open disk $\Delta\left(z_{0} r\right)$ is an open set

Hint:
r i Is $t<r$? Why?

Other open sets are \mathbb{C} and ϕ (the empty set) (It might feel strange that the empty set is counted as an open set but if you doubt it find one point in ϕ which doesn't satisfy the defining pooperty for an open set. You can't since \varnothing has no elements)
Also, you can build new open sets by taking unions of open sets. Namely let $U_{i} \subset \mathbb{C}$ be open sets for $i \in I$ (a set of indics). Them $\bigcup_{i \in I} U_{i}$ is open. Finally, if U and V are open them $U_{n} V$ is open. (Warning: Only finite intersections work in qeareal)

Closed sets
A set U is called closed if it's complement $U^{c}=\mathbb{C} \backslash U=\{z \in \mathbb{C} j z \notin U\}$ is open
Ex $u=\{z \in \mathbb{C} ;|z| \geq 1\}$ is closed since $\mathbb{C} \backslash U=\{z \in \mathbb{C} ;|z|<1\}$ is open
The set $\overline{\Delta\left(z_{0}, r\right)}=\left\{z \in \mathbb{C} j\left|z-z_{0}\right| \leq r\right\}$ is called the closed disk with radius r and center z_{0}. (It is a closed set since $\left\{z \in \mathbb{C}_{j}\left|z-z_{0}\right|>r\right\}$ is open. Why? This will be on one exercise)
sheet

Interior points, exterior points and boundary points
Let $U \subseteq \mathbb{C}$ be a set. We say that z is an interior point of u if $\exists r>0$ such that $\Delta(z, r) \leq u$. We say that z is an exterior point of U it $\exists r>0$ such that $\Delta(z, r) \subseteq U^{C}=\mathbb{C} \backslash U$. If z is neither an interior point nor exterior point of U it is a boundary point of U. More precisely, z is a boundary point of u if for all $r>0$ we have

$$
\Delta(z, r) \cap U \neq \varnothing \text { and } \Delta(z, r) \cap(c, u) \neq \varnothing \text {. }
$$

We use the following rotation
$\operatorname{int}(u)=\{z \in \mathbb{C} ; z$ is an interior point of $u\}$
$\operatorname{ext}(u)=\{z \in \mathbb{C} ; z$ is an exterior point at $u\}$
$\partial U=\{z \in \mathbb{C} ; z$ is an boundary point of $U\}$
Notice: • $\mathbb{C}=\operatorname{int}(U)$ vext $(U) \cup \partial U l$ for any set $u \subseteq \mathbb{C}$.

- $U=\operatorname{int}(U) \Leftrightarrow U$ is open
- ext (U) and int (U) are always open
- $\bar{U}=U$ val is always a closed set F his set is called the closure of U and is the smallest closed set containing u_{J}

Ex $\quad \Delta(0,1)=\{z \in \mathbb{C} ;|z|<1\}$

$$
\begin{aligned}
& \partial \Delta(0,1)=\{z \in \mathbb{C} ;|z|=1\} \\
& \overline{\Delta(0,1)}=\operatorname{int}(\Delta(0,1)) \cup \partial \Delta(0,1)=\{z \in \mathbb{C} ;|z| \leq 1\}
\end{aligned}
$$

Sequences of complex numbers
Limits of sequences in \mathbb{C}
Let $\left(z_{n}\right)_{n=1}^{\infty}$ be a sequence where $z_{n} \in \mathbb{C}$ We say $\left(z_{n}\right)_{n=1}^{\infty}$ has the limit $c \in \mathbb{C}$ and write $\lim _{n \rightarrow \infty} z_{n}=c$ if for every $\varepsilon>0$ there $\lim _{i \rightarrow \infty} N \in \mathbb{N}$ such that $z_{n} \in \Delta(c, \varepsilon)$ whenever $n \geq N$.
$\left[\quad \forall \varepsilon>0 \quad \exists N\right.$ sunn that $\left.n \geq N \Rightarrow\left|z_{n}-c\right|<\varepsilon\right]$

An observation

We see that

$$
\left|\operatorname{Re}\left(z-z_{0}\right)\right| \leq\left|z-z_{0}\right| \leq\left|\operatorname{Re}\left(z-z_{0}\right)\right|+\left|\operatorname{Im}\left(z-z_{0}\right)\right|
$$

and

$$
\left|\operatorname{Im}\left(z-z_{0}\right)\right| \leq\left|z-z_{0}\right| \leq\left|\operatorname{Re}\left(z-z_{0}\right)\right|+\mid \operatorname{Im}\left(z-z_{0}| |\right.
$$

Proposition 3: Let $\left(z_{n}\right)_{n=1}^{\infty}$ be a sequence of complex numbers. Let $x_{n}=\operatorname{Re}\left(z_{n}\right)$ and $y_{n}=\operatorname{Im}\left(z_{n}\right)$. The following are equivalent:
(i) $\lim _{n \rightarrow \infty} z_{n}=c$
(ii) $\lim _{n \rightarrow \infty} x_{n}=\operatorname{Re}(c)$ and $\lim _{n \rightarrow \infty} y_{n}=\operatorname{Im}(c)$
(These are sequences of real numbers)
(4)

Proposition 4: Assume $\lim _{n \rightarrow \infty} z_{n}=z$ and $\lim _{n \rightarrow \infty} w_{n}=w$ Then $\lim _{n \rightarrow \infty} c z_{n}=c z, \lim _{n \rightarrow \infty} \bar{z}_{n}=\bar{z}, \lim _{n \rightarrow \infty}\left|z_{n}\right|=|z|$, $\lim _{n \rightarrow \infty} z_{n}+w_{n}=z+w, \lim _{n \rightarrow \infty} z_{n} w_{n}=z w$, and
if $w \neq 0 \lim _{n \rightarrow \infty} \frac{z_{n}}{w_{n}}=\frac{z}{w}$.
I Some w_{n} can be zero and therefore $\frac{z_{n}}{w_{n}}$ is undefined for these. If $\omega \neq 0$ then only frimtoly many v_{n} are zero and are ignored $>$

Ex Let $\left(z_{n}\right)_{n=1}^{\infty}=\left(\frac{i^{n}}{n}\right)_{n=1}^{\infty}=\left(i,-\frac{1}{2},-\frac{i}{3}, \frac{1}{4}, \ldots\right)$ Calculate $\lim _{n \rightarrow \infty} z_{n}$.
We use $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{2 n}=0$
ant $\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{2 n+1}=0$. Therefore

$$
\lim _{n \rightarrow \infty} z_{n}=0
$$

Continuous complex-valued functions
Let $A \subseteq \mathbb{C}$ and $f: A \rightarrow \mathbb{C}$. Since \mathbb{C} is \mathbb{R}^{2} equipped with a multiplication we can write $f(z)=u(z)+i v(z)$ where $u: A \rightarrow \mathbb{R}$ and $v: A \rightarrow \mathbb{R}$.
Let $a \in A$ and $c \in \mathbb{C}$. We say that the limit of f at a is c and write $\lim _{z \rightarrow a} f(z)=c$ if for every $q>0$ there is a $\delta>0$ such that if $(0<|z-a|<\delta$ and $z \in A)$ then $|f(z)-c|<\varepsilon$

You can use what you learn in Differential and Integral Calculus 2

$$
\begin{gathered}
\lim _{z \rightarrow a} n(z)=\operatorname{Re}(c) \& \lim _{z \rightarrow a} v(z)=\operatorname{Im}(c) \\
\Longleftrightarrow \\
\lim _{z \rightarrow a} f(z)=c
\end{gathered}
$$

Illustration of limit of a function $f: A \rightarrow \mathbb{C}$

For $\lim _{z \rightarrow a} f(z)=c$ to be true you re should be able to:
(1) For any choice $\varepsilon>0$ find
(3) if $0<|z-a|<\delta$ (and $z \in A$) then

$$
|f(z)-c|<\varepsilon
$$

Definition: A function $f: A \rightarrow \mathbb{C}$ is a continuous function at $a \in A$ if

$$
\lim _{z \rightarrow a} f(z)=f(a)
$$

If $f: A \rightarrow \mathbb{C}$ is continuous at every point $a \in A$ then f is continuous in A.

Complex differentiability
Definition: We say that $f: A \rightarrow \mathbb{C}$ (A open sd) is complex differentiable at $z_{0} \in A$ if

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

A function that is complex differentiable at z_{0} is continuous at z_{0}.

Let us reformulate the definition of complex differentiability Proposition 5 Let $A \subseteq \mathbb{C}$ be open and $f: A \rightarrow \mathbb{C}$. Them f is complex differentiable at $z_{0} \in A$ iff there exists $E: A \rightarrow \mathbb{C}$ and $c \in \mathbb{C}$ such that

$$
\begin{aligned}
& f(z)=f\left(z_{0}\right)+c\left(z-z_{0}\right)+E(z) \\
& \text { and } \lim _{z \rightarrow z_{0}} \frac{|E(z)|}{\mid z-z_{d}}=0 .
\end{aligned}
$$

Note: $\quad c=f^{\prime}\left(z_{0}\right)$

