Definition: A function $f: A \rightarrow \mathbb{C}$ is a continuous function at $a \in A$ if

$$
\lim _{z \rightarrow a} f(z)=f(a)
$$

If $f: A \rightarrow \mathbb{C}$ is continuous at every point $a \in A$ then f is continuous in A.

Complex differentiability
Definition: We say that $f: A \rightarrow \mathbb{C}$ (A open sd) is complex differentiable at $z_{0} \in A$ if

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

A function that is complex differentiable at z_{0} is continuous at z_{0}.

Let us reformulate the definition of complex differentiability Proposition 5 Let $A \subseteq \mathbb{C}$ be open and $f: A \rightarrow \mathbb{C}$. Them f is complex differentiable at $z_{0} \in A$ iff there exists $E: A \rightarrow \mathbb{C}$ and $c \in \mathbb{C}$ such that

$$
\begin{aligned}
& f(z)=f\left(z_{0}\right)+c\left(z-z_{0}\right)+E(z) \\
& \text { and } \lim _{z \rightarrow z_{0}} \frac{|E(z)|}{\mid z-z_{d}}=0 .
\end{aligned}
$$

Note: $\quad c=f^{\prime}\left(z_{0}\right)$

Ex $f(z)=z^{2}$

$$
\lim _{z \rightarrow z_{0}} \frac{z^{2}-z_{0}^{2}}{z-z_{0}}=\lim _{z \rightarrow z_{0}} \frac{\left(z-z_{0}\right)\left(z+z_{0}\right)}{\left(z-z_{0}\right)}=2 z_{0}
$$

So $f^{\prime}\left(z_{\partial}\right)=2 z_{0}$ (as expected?)
Ex $f(z)=\bar{z}$

$$
\lim _{z \rightarrow z_{0}} \frac{\bar{z}-\bar{z}_{0}}{z-z_{0}}=\lim _{z \rightarrow z_{0}} \frac{\overline{z-z_{0}}}{z-z_{0}} \text { desn't exist }
$$

Why? Because $\lim _{x \rightarrow x_{0}} \frac{x-x_{0}}{x-x_{0}}=1$ and

$$
\lim _{y \rightarrow y_{0}} \frac{-y+y_{0}}{y-y_{0}}=-1
$$

So $f(z)=\bar{z}$ is not complex differentiable at any point in \mathbb{C}.
Proposition 6 Assume that f and g are complex differentiable at z_{0}. Then
(i) $(c f)^{\prime}\left(z_{0}\right)=c\left(f^{\prime}\left(z_{0}\right)\right)$ for $c \in \mathbb{C}$
(ii) $(f+g)^{\prime}\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)+g^{\prime}\left(z_{0}\right)$
(iii) $(f g)^{\prime}\left(z_{0}\right)=f^{\prime}\left(z_{0}\right) g\left(z_{0}\right)+f\left(z_{0}\right) g^{\prime}\left(z_{0}\right)$
(iv) if $g\left(z_{0}\right) \neq 0$ then

$$
\left(\frac{f}{g}\right)^{\prime}\left(z_{0}\right)=\frac{f^{\prime}\left(z_{0}\right) g\left(z_{0}\right)-f\left(z_{0}\right) g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)^{2}}
$$

For example, $(f g)^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z) g(z)-f\left(z_{0}\right) g\left(z_{0}\right)}{z-z_{0}}=$

$$
\begin{aligned}
& =\lim _{z \rightarrow z_{0}} \frac{f(z) g(z)-f\left(z_{0}\right) g(z)}{z-z_{0}}+\lim _{z \rightarrow z_{0}} \frac{f\left(z_{0}\right) g(z)-f\left(z_{0}\right) g\left(z_{0}\right)}{z-z_{0}} \\
& =f^{\prime}\left(z_{0}\right) g\left(z_{0}\right)+f\left(z_{0}\right) g^{\prime}\left(z_{0}\right) .
\end{aligned}
$$

Chain rule
Chain rule: Let $f: A \rightarrow \mathbb{C}$ and $g: B \rightarrow \mathbb{C}$ be functions such that $f(A) \subset B$. Assume that t is complex differentiable at z_{0} and g is complex differentiable at $w_{0}=f\left(z_{0}\right)$. Then got is complex differeatioche at z_{0} and $(g \circ f)^{\prime}\left(z_{0}\right)=g^{\prime}\left(w_{0}\right) f^{\prime}\left(z_{0}\right)=g^{\prime}\left(f\left(z_{0}\right)\right) f^{\prime}\left(z_{0}\right)$
Proof: We have $f(z)=f\left(z_{0}\right)+f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+E_{1}(z)$ where $\lim _{z \rightarrow z_{0}} \frac{\left|E_{1}(z)\right|}{z-z_{0}}=0$ and

$$
g(w)=g\left(w_{0}\right)+g^{\prime}\left(\omega_{0}\right)\left(\omega-\omega_{0}\right)+E_{2}(\omega)
$$

where

$$
\lim _{w \rightarrow w_{0}} \frac{\left|E_{2}(w)\right|}{\left|w-w_{0}\right|}=0
$$

Therefore $\begin{aligned} g(f(z))= & g\left(f\left(z_{0}\right)\right)+g^{\prime}\left(f\left(z_{0}\right)\right)\left(f(z)-f\left(z_{0}\right)\right) \\ & +E_{2}(f(z))=\end{aligned}$

$$
\begin{aligned}
& =g\left(f\left(z_{0}\right)\right)+g^{\prime}\left(f\left(z_{0}\right)\right)\left(f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+E_{1}(z)\right)+E_{2}(f(z)) \\
& =g\left(f\left(z_{0}\right)\right)+g^{\prime}\left(f\left(z_{0}\right)\right) f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+E_{3}(z)
\end{aligned}
$$

where $E_{3}(z)=g^{\prime}\left(f\left(z_{0}\right)\right) E_{1}(z)+E_{2}(f(z))$

If $\lim _{z \rightarrow z_{0}} \frac{\left|E_{7}(z)\right|}{\left|z-z_{0}\right|}=0$ we are done.
Since $\frac{\left|E_{3}(z)\right|}{\left|z-z_{0}\right|} \left\lvert\, \leq \underbrace{\left|g^{\prime}\left(f\left(z_{0}\right)\right)\right| \frac{\left|E_{1}(z)\right|}{\left|z-z_{0}\right|}}_{\text {as } z \rightarrow z_{0}}+\underbrace{\frac{\left|f(z)-f\left(z_{0}\right)\right|}{\left|E_{2}(f(z))\right|}}_{\rightarrow 0} \underbrace{\frac{\left|f(z)-f\left(z_{0}\right)\right|}{\left|z-z_{0}\right|}}_{\rightarrow\left|f^{\prime}\left(z_{0}\right)\right|}\right.$
we are done.
One easily verities that when $f(z)=z^{n}, n=1,2, \cdots$ then $f^{\prime}(z)=n z^{n-1}$.
Ex Calculate $h^{\prime}(z)$ for $h(z)=\left(\frac{z^{2}-1}{z^{2}-1}\right)^{10}$ First we calculate

$$
\frac{d}{d z}\left(\frac{z^{2}-1}{z^{2}+1}\right)=\frac{2 z\left(z^{2}+1\right)-2 z\left(z^{2} \cdot 1\right)}{\left(z^{2}+1\right)^{2}}=\frac{4 z}{\left(z^{2}+1\right)^{2}}
$$

Therefore

$$
h^{\prime}(z)=10\left(\frac{z^{2}-1}{z^{2}+1}\right)^{9} \cdot \frac{4 z}{\left(z^{2}+1\right)^{2}}=\frac{40 z\left(z^{2}-1\right)^{9}}{\left(z^{2}+1\right)^{11}}
$$

Analytic functions
Let $A \subseteq \mathbb{C}$ be open and $f: A \rightarrow \mathbb{C}$ be complex differentiable at every point $z \in A$. Then f is called analytic.
(A synonym is holomorphic)

At the moment we don't know so many analytic functions. Basically only polynomials of z and rational functions of z. We need more examples to make this theory interesting.

Cauchy -Riemann equations
We will use the fact that $f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$ gives the sane value it you approach ${ }^{z}$ z_{0} parallel to the x-axis or parallel to the y-axis it f is complex differentiable at z_{0}.
That is

$$
\text { (*) } \lim _{x \rightarrow x_{0}} \frac{f\left(x+i y_{0}\right)-f\left(x_{0}+i y_{0}\right)}{x-x_{0}}=\lim _{y \rightarrow y_{0}} \frac{f\left(x_{0}+i y\right)-f\left(x_{0}+i y_{0}\right)}{i y-i y_{0}}
$$

Write $\operatorname{Re} f(x+i y)=u(x, y)$ and $\operatorname{Im} f(x+i y)=v(x, y)$
Then both u and v are real -valued functions of 2 variables.
The lett-hand side of (\not) is
$\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}$ and the right-hand side is

$$
\frac{1}{i}\left(\frac{\partial u}{\partial y}+i \frac{\partial v}{\partial y}\right)=\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial x}
$$

Since these have to be the same we find

$$
\frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)=\frac{\partial v}{\partial y}\left(x_{0}, y_{0}\right) \& \frac{\partial u}{\partial y}\left(x_{0}, y_{0}\right)=-\frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right)
$$

These are the Cauchy-Riemann equations that hold if f is complex differentiable.
We would like to use the Candy-Riemann equations to check for complex differentiability. However the CR-equations alone is not enough to conclude complex differentiability. We need stamper assumptions
Theorem 7 Assume that $f=u$ xiv is defied in an pen set $A \subseteq \mathbb{C}$ and that the partial derivatives u_{x}, u_{y}, v_{x}, and v_{y} exist cuergutere in A. Also assume that there partial derivatives are continuous at $z_{0} \in A$ and that the Cuncly-Riemann equations hold at z_{0}. Then f is complex differentiable at z_{0} (and $f^{\prime}\left(z_{0}\right)=f_{x}\left(z_{0}\right)=-i f_{y}\left(z_{0}\right)$)
Proof: Assume that $z_{0}=0$ (with no loss of quenclity)
(This assumption simplifies notation)
Let $\Delta=\Delta(0, r) \subseteq A$. Let $c=a+i b$
where $a=u_{x}(0)=v_{y}(0)$ and $b=v_{x}(0)=-u_{y}(0)$
Our goal is to show that

$$
\lim _{z \rightarrow 0}\left|\frac{f(z)-f(0)}{z}-c\right|=\lim _{z \rightarrow 0} \frac{|f(z)-f(0)-c z|}{|z|}=0
$$

$$
\begin{aligned}
& u(z)-u(0)=u(x, y)-u(0,0)= \\
& =\underbrace{u(x, y)-u(0, y)+\underbrace{u(0, y)-u(0,0)}=} \\
& =u_{x}(\zeta) x+u_{y}(\eta) y \text { by the }
\end{aligned}
$$

mean value the
Similarly $v(z)-v(0)=v_{x}\left(\rho^{\prime}\right) x+v_{y}\left(\eta^{\prime}\right) y$ where 5^{\prime} and η^{\prime} are of the same limes as 5 and η.
Note that $\max \left(|S|,\left|s^{\prime}\right|,|\eta|,\left|\eta^{\prime}\right|\right) \leqslant|z|^{5}$
Now,

$$
\begin{aligned}
& \text { Now, } \begin{array}{r}
f(z)-f(0)-c z= \\
= \\
=u_{x}(\delta) x+u_{y}(\eta)-u(0)+i(v(z)-v(0))-\left(a+i b y+i\left(v_{x}\left(s^{\prime}\right) x+v_{y}\left(n^{\prime}\right) y-b_{x}-a_{y}\right)\right)= \\
= \\
\left(u_{x}(\rho)-u_{x}(0)\right) x+\left(u_{y}(\eta)-u_{y}(0)\right) y+ \\
\left.i\left(\mid v_{x}\left(s^{\prime}\right)-v_{x}(0)\right) x+\left(v_{y}\left(\eta^{\prime}\right)-v_{y}(0)\right) y\right) \\
\text { and } \frac{|f(z)-f(0)-c z|}{|z|} \leq\left|u_{x}(\rho)-u_{x}(0)\right|+\left|u_{y}(\eta)-u_{y}(0)\right|+ \\
\\
\\
\quad+\left|v_{x}\left(s^{\prime}\right)-v_{x}(0)\right|+\left|v_{y}\left(\eta^{\prime}\right)-v_{y}(0)\right|
\end{array}
\end{aligned}
$$

Since the partial derivatives are continuous at 0 and $\max \left(\rho, \eta, s^{\prime}, \eta^{\prime}\right) \rightarrow 0$ as $z \rightarrow 0$ we see that

$$
\lim _{z \rightarrow 0} \frac{f(z)-f(0)}{z}=c
$$

Assume $A \subseteq \mathbb{C}$ is open and also assume that
Thu 8 and $v: A \rightarrow \mathbb{R}$ have continuous $1^{\text {st }}$ order partial derivatives. Then $f=u+i v$ is analytic if and only it the Cauchy-Riemann equations

$$
u_{x}(z)=v_{y}(z) ; \quad u_{y}(z)=-v_{x}(z)
$$

hold at each $z \in A$.
Ex Determine at which points $f(z)=2 x y+i\left(x^{2}+y^{2}\right)$ is complex differenticble. Is $f(z)$ hdommplic in some set?
Solution:

$$
\begin{array}{lll}
u(x, y)=2 x y & u_{x}=2 y & u_{y}=2 x \\
v(x, y)=x^{2}+y^{2} & v_{x}=2 x & v_{y}=2 y
\end{array}
$$

Both u and s have continunes partial denvatises so we need to check the CR-equations $u_{x}=v_{y}$? Yes, since $u_{x}=2 y$ and $v_{y}=2_{y}$
What about $v_{x}=-u_{y}$? This equation holds if

$$
2 x=-2 x \text { or when } x=0 \text {. }
$$

So, $f(z)=2 x y+i\left(x^{2}+y^{2}\right)$ is complex differentiable on the imaginary axis $\{(x, y) ; x=0\}$

This is not an open set so $f(z)=2 x y+i\left(x^{2}+y^{2}\right)$
 is not analytic anywhere.

Lets use the $C R$-equations to verity that $f(z)=e^{z}$ is analytic for every $z \in \mathbb{C}$.

$$
\begin{array}{ll}
f(z)=e^{z}=e^{x}(\cos y+i \sin y) \\
u(x, y)=e^{x} \cos y & v(x, y)=e^{x} \sin y \\
u_{x}=e^{x} \cos y & v_{y}=e^{x} \cos y \\
u_{y}=-e^{x} \sin y & v_{x}=e^{x} \sin y
\end{array}
$$

That is, $u_{x}=v_{y} \& u_{y}=-v_{x}$ and since all partial derivatives are continuous $f(z)$ is analytic for all $z \in \mathbb{C}$. Also $f^{\prime}(z)=u_{x}+i v_{x}=e^{x}(\cos y+i \sin y)=e^{z}$.
Deft: An analytic function $f: \mathbb{C} \rightarrow \mathbb{C}$ is called an entire function.

Polynomials and e^{z} are entire functions.]
We have $e^{i t}=\cos t+i \sin t, t \in \mathbb{R}$, and

$$
e^{-i t}=\cos t-i \sin t, t \in \mathbb{R}
$$

which can be rewritten

$$
\cos t=\frac{e^{i t}+e^{-i t}}{2} \& \sin t=\frac{e^{i t}-e^{-i t}}{2 i}
$$

for $t \in \mathbb{R}$

We define

$$
\cos z=\frac{e^{i z}+e^{-i z}}{2} \text { and } \sin z=\frac{e^{i z}-e^{-i z}}{2 i}
$$

for all $z \in \mathbb{C}$.
$T \cos z$ and $\sin z$ are entire functions $>$
Ex Verity that $\cos ^{2} z+\sin ^{2} z=1$ for all $z \in \mathbb{C}$

$$
\begin{aligned}
\cos ^{2} z+\sin ^{2} z & =\frac{\left(e^{i z}+e^{-i z}\right)^{2}}{4}-\frac{\left(e^{i z}-e^{-i z}\right)^{2}}{4}= \\
& =\frac{e^{2 i z}+2+e^{-2 i t}-\left(e^{2 i z}-2+e^{-2 i z}\right)}{4}=\frac{4}{4}=1
\end{aligned}
$$

Some consequence of the Cauchy-Riemann equations
First assume that $D \subseteq \mathbb{C}$ is a $\frac{\text { nonempty }}{\text { open subset }}$ where any $z, w \in D$ can be connected by a continuous curve.

Such a set is called a domain (non-empty, open, connected (or equivalently) in this case path -connected)

