We define

$$
\cos z=\frac{e^{i z}+e^{-i z}}{2} \text { and } \sin z=\frac{e^{i z}-e^{-i z}}{2 i}
$$

for all $z \in \mathbb{C}$.
$T \cos z$ and $\sin z$ are entire functions $>$
Ex Verity that $\cos ^{2} z+\sin ^{2} z=1$ for all $z \in \mathbb{C}$

$$
\begin{aligned}
\cos ^{2} z+\sin ^{2} z & =\frac{\left(e^{i z}+e^{-i z}\right)^{2}}{4}-\frac{\left(e^{i z}-e^{-i z}\right)^{2}}{4}= \\
& =\frac{e^{2 i z}+2+e^{-2 i t}-\left(e^{2 i z}-2+e^{-2 i z}\right)}{4}=\frac{4}{4}=1
\end{aligned}
$$

Some consequence of the Cauchy-Riemann equations
First assume that $D \subseteq \mathbb{C}$ is a $\frac{\text { nonempty }}{\text { open subset }}$ where any $z, w \in D$ can be connected by a continuous curve.

Such a set is called a domain (non-empty, open, connected (or equivalently) in this case path -connected)

Assume that $x: D \rightarrow \mathbb{R}$ satisfies $u_{x}=u_{y}=0$ for all $z \in D$. Then u is constant.
Γ

However, we need to consider

We can always hind a curve of this type $]$

Remember D
Proposition 9 Assume $f: D \rightarrow \mathbb{C}$ is an analytic function such that $f^{\prime}(z)=0$ for all $z \in D$. is a domain.

Then f is constant.
Proof: Since $f^{\prime}(z)=u_{x}+i v_{x}=0$ we get $u_{x}=0$ and $v_{x}=0$ for all $z \in D$.
Now CR-equations gives $v_{y}=u_{x}=0$ and $u_{y}=-v_{x}=0$. Therefore both u and v are constant. So $f=u+i v$ is constant.
(10) Proposition 10 Suppose $f: D \rightarrow \mathbb{C}$ is analytic (and D is a domain) and u, v
or $|f|$ is constant then f is constant.
Proof: If u is constant then $u_{x}=v_{y}=0$
and $x_{y}=-v_{x}=0$. Therefore f is constant
(Similar for v constant)
Assume $|f|$ is constant. We get $|f|^{2}=a^{2}+r^{2}=c$ If $c=0$ we are done. Assume $c>0$
Then $2 u u_{x}+2 v v_{x}=0$ and

$$
2 u u_{y}+2 v v_{y}=0
$$

If we use the $C R$-equations we get

$$
(*)\left\{\begin{array}{l}
u u_{x}-v u_{y}=0 \\
u u_{y}+v u_{x}=0
\end{array}\right.
$$

Multiply (x) by u and ($* *$) by v and add to get

$$
\left(u^{2}+v^{2}\right) u x=0 \Rightarrow u_{x}=0
$$

Multiply (*) by v and ($* *$) by u and subtract to get

$$
\begin{gathered}
\left(u^{2}+v^{2}\right) u_{y}=0 \Rightarrow u_{y}=0 \\
\Rightarrow f=u+i v \text { is constant. }
\end{gathered}
$$

Branches of inverse functions
We have seen that many analytic functions $f: u \rightarrow f(a) \subseteq \mathbb{C}$ don't have single valued inverses (for example $f(z)=z^{2}$)

In this situation we conned find f^{-1} such that $f \circ f^{-1}(w)=w$ and $f^{-1} \circ f(z)=z$. However, we can find many $g: f(u) \rightarrow U$ such that $f \circ g(w)=w$. Such a function is called a right-inverse. Most of these are very "wild". "If we require that g is continuous we get a "branch of the inverse". This canst be dutined on the whole of $f(u)$ (unless f is injective (univalent popular in com plex analysis bootes))
Ex: $f(z)=z^{2}$

To "build" a branch start at any point in the w- plane say $\omega=1$ and choose one of the pre-inages $z=1$ or -1 . Lets pick $g(1)=1$. Since g is required to be continuous this determines the values of g in a small disk around 1. This porous um be continued to the whole plane minus a "branch cut".

What is a branch cut?

g is continuous in \mathbb{C} "minus the branch cut" g is nothing but the principal square root (not continuous across the branch cut). You get a different branch if you choose a differ nt simple curve starting at the origin ("branch point") and "ending at in tRinity".

Had you started with the choice $g(1)=-1$ you would have gittern a different broad namely $-\sqrt{z}$.

We will now see that branches of inverses gives us many new analytic functions. They are continuous (by definition) but are they analytic?

Theorem Il Suppose that $f: U \rightarrow \mathbb{C}$ is an analytic
(11)

$$
\left.F_{g}(D)=\{g(z) ; z \in D\}\right\}
$$ function and that g is a branch of f^{-1} in a domain D. Let $z_{0} \in D$ and $\omega_{0}=g\left(z_{0}\right)$. If $f^{\prime}\left(w_{0}\right) \neq 0$ them g is complex differentiable at z_{0} and $g^{\prime}\left(z_{0}\right)=1 / f^{\prime}\left(w_{0}\right)$. (Therefore, if $f^{\prime}(w) \neq 0$ when $w \in g(D)$, then g is analytic in D and $g^{\prime}(z)=1\left(f^{\prime}(g(z))\right.$.)

Proof: Let $w=g(z)$ for $z \in D$ (g is infective so ω is well-detined)
Note that $\omega \neq \omega_{0}$ when $z \neq z_{0} \quad(g$ infective) and $\omega=g(z) \rightarrow g\left(z_{0}\right)=\omega_{0}$ as $z \rightarrow z_{0}$ (g continuous)
we get

$$
\frac{g(z)-g\left(z_{0}\right)}{z-z_{0}}=\frac{g(z)-g\left(z_{0}\right)}{f(g(z))-f\left(g\left(z_{0}\right)\right)}=\frac{\omega-\omega_{0}}{f(1)-f\left(v_{0}\right)} \rightarrow \frac{1}{f^{\prime}\left(w_{0}\right)}
$$

and

$$
g^{\prime}\left(z_{0}\right)=\frac{1}{f^{\prime}\left(w_{0}\right)}
$$

Ex Let $g(z)$ be a branch of the square rot (That is a branch of f^{-1} where $f\left(w^{1}\right)=w^{2}$.) We get $f^{\prime}(w)=\alpha^{w}$ and $g^{\prime}\left(z_{0}\right)=\frac{1}{2 \omega_{0}}=\frac{1}{2 g\left(z_{0}\right)}$
when $g\left(t_{0}\right)=\omega_{0} \neq 0$ when $g\left(t_{0}\right)=\omega_{0} \neq 0$
For example, if $g(z)$ is the principal square root \sqrt{z} we get

$$
g^{\prime}(z)=\frac{1}{2 \sqrt{z}} \text { when } \begin{aligned}
& z \neq 0 \\
& \left.\begin{array}{l}
(\text { if } \operatorname{Re} z>0 \\
\text { if } \operatorname{Im}=0
\end{array}\right)
\end{aligned}
$$

We could also use $f(g(z))=g(z)^{2}=z$ and differentiate $J g(z) g^{\prime}(z)=1$ (we need to know $g^{\prime}(z)$ exists) and $g^{\prime}(z)=\frac{1}{2 g(z)}$ if $g(z) \neq 0$
Ex Let $g(z)$ be a branch of the logarithm.
$e^{g(z)}=z$ and

$$
g^{\prime}(z) e^{g(z)}=1 \text { or } g^{\prime}(z)=\frac{1}{e^{g(z)}}=\frac{1}{z}
$$

So, for example, $\frac{d}{d z} \log (z)=\frac{1}{z}$.
It is reasonable to wonder if it is possible to invert some analytic function f near $f\left(z_{0}\right)$ even though $f^{\prime}\left(z_{0}\right)=0$. It tums out that the answer is no. It is interesting to note that the situation for $\tilde{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is differed Lets discuss this without too much detail.

Say $\tilde{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given as $\tilde{f}(x, y)=\left(u(x, y), v(x, y)^{\top}\right.$ We know from Differential and Integral Calculus 2 that $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is (in the real sense) differentiable at $\left(x_{0}, y_{0}\right)$ it there is $A, B \in \mathbb{R}$ such that

$$
u(x, y)=u\left(x_{0}, y_{0}\right)+A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+D\left(\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\right)
$$

Similarly $\tilde{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is real differentiable at $\left(x_{0}, y_{0}\right)$ if there is a matrix $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ such that

$$
\vec{f}(x, y)=\tilde{f}\left(x_{0}, y_{0}\right)+\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\binom{x-x_{0}}{y-y_{0}}+O\left(\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\right)
$$

If \vec{f} is real differentiable in an open set containing (x_{0}, y_{0}) them

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{ll}
u_{x}\left(x_{0}, y_{0}\right) & v_{y}\left(x_{0}, y_{0}\right) \\
v_{x}\left(x_{0}, y_{0}\right) & \left.\left.v_{y}\left(x_{0} y_{0}\right)\right)=\tilde{f}\left(x_{0}, y_{0}\right)\right)
\end{array}\right.
$$

If we view $\tilde{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ as $f: \mathbb{C} \rightarrow \mathbb{C}$ using $f=$ uric and we see that real differentiability is not enough to imply complex differentiability. The $C R$-equations imply that

$$
d f\left(x_{0} y_{0}\right)=\left(\begin{array}{ll}
u_{x} & u_{y} \\
-u_{y} & u_{x}
\end{array}\right)=\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)
$$

TAnsther way of saying this is that df has to be complex linear and not only real linear d
The Inverse Function Theorem suns, $\tilde{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is invertible near points where let $d f \neq 0$. If $f: \mathbb{C} \rightarrow \mathbb{C}$ is analytic then $\operatorname{dit} d f=\left|f^{\prime}(z)\right|^{2} \geq 0$. It is possible that $\tilde{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is invertible near points where set $d f^{2}=0$ but for analytic functions this is not the case. So for analytic functions they ore invertible near points $w=f(z)$ exactly when $f^{\prime}(z) \neq 0$.

