Complex integration
We want to define integrals of complex-valued functions along paths in the complex plane.
A path γ in the complex plane is a continues map

Smooth paths
A path is culled smooth if
$\dot{\gamma}(t)=\lim \frac{\gamma(t+h)-\gamma(t)}{h}$ exists for all $t \in[a, b]$ and $\dot{\gamma}(t) \neq 0$.
(One-sided derivatives at a and b)
A path is piecuvise smooth it it is made out of sweral smooth paths.

A path is closed if $\gamma(a)=\gamma(b)$ and is simple if $\gamma(t) \neq \gamma(s)$ when $t \neq s$ and $a<t<b$.

Some examples of paths
Line segments

Circle

$$
\begin{aligned}
& \gamma(t)=z_{0}+\left(z_{1} \cdot z_{0}\right) e^{i t} \\
& 0 \leq t \leq 2 \pi
\end{aligned}
$$

Reverse paths
Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a path. Then the reverse path $(-\gamma):[a, b] \rightarrow \mathbb{C}$ is $-\gamma(t)=\gamma(b+a-t)$
Ex

Path sum
Let $\gamma_{1}:\left[a_{1}, b_{1}\right] \rightarrow \mathbb{C}$ and $\gamma_{2}:\left[a_{2}, b_{2}\right] \rightarrow \mathbb{C}$ be two paths with $\gamma_{1}\left(b_{1}\right)=\gamma_{2}\left(a_{2}\right)$. Then the path sum is $\gamma_{1}+\gamma_{2}:\left[a_{1}, b_{1}+b_{2}-a_{2}\right] \rightarrow \mathbb{C}$ given by

$$
\left[\gamma_{1}+\gamma_{2}\right](t)= \begin{cases}\gamma_{1}(t) & \text { it } a_{1} \leq t \leq b_{1} \\ \gamma_{2}\left(t-b_{1}+a_{2}\right) & \text { if } b_{1} \leq t \leq b_{1}+b_{2}-a_{2}\end{cases}
$$

Ex

Let $f:[a, b] \rightarrow \mathbb{C}$ be continuous and write $f(x)=u(x)+i v(x)$. Then

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} u(x) d x+i \int_{a}^{b} v(x) d x
$$

The Fundamental Theorem of Calculus gives

$$
\int_{a}^{b} f(x) d x=F(b)-F(a) \text { where } F(x)=U(x)+i V(x)
$$ and $U^{\prime}(x)=u(x)$ and $V^{\prime}(x)=v(x)$.

Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a path. Let $f: A \rightarrow \mathbb{C}$ be continuous and $|8| \subset A$. Then we define the contour integral of f along γ as

$$
\int_{\gamma} f(z) d z:=\int_{a}^{b} f(\gamma(t)) \dot{\gamma}(t) d t
$$

and the integral of f along r with respect to arclength as

$$
\int_{\gamma} f(z)|d z|:=\int_{a}^{b} f(\gamma(t))|\dot{\gamma}(t)| d t
$$

$$
\begin{aligned}
\Rightarrow & \int_{\gamma} f(z) d z \approx \sum_{k} f\left(\gamma\left(t_{k}\right)\right)\left(\gamma\left(t_{k+1}\right)-\gamma\left(t_{k}\right)\right) \\
& \int_{\gamma} f(z) \mid d z
\end{aligned}
$$

Properties of ordinary Riemann integrals immediately carry over to these integrals

$$
\begin{aligned}
& \int_{\gamma} f(z)+c g(z) d z=\int_{\gamma} f(z) d z+c \int_{\gamma} g(z) d z \\
& \int_{\gamma} f(z)+c g(z)|d z|=\int_{\gamma} f(z)|d z|+c \int_{\gamma} g(z)|d z|
\end{aligned}
$$

We also have

$$
\begin{gathered}
\left|\int_{\gamma} f(z) d z\right| \leq \int_{\gamma}|f(z)||d z| \text { since } \\
\left|\sum_{k} f\left(\gamma\left(t_{k}\right)\right)\left(\gamma\left(t_{k+1}\right)-\gamma\left(t_{k}\right)\right)\right| \leq \sum_{k} \mid f\left(\gamma\left(t_{k}\right)| | \gamma\left(t_{k+1}\right)-\gamma\left(t_{t}\right) \mid\right.
\end{gathered}
$$

Deft: The length of γ is

$$
l(\gamma)=\int_{\gamma} 1|d z|
$$

Γ Notice not length of $|\gamma|$! Why?

Ex Evaluate $\int_{\gamma} \frac{1}{z} d z$ and $\int_{\gamma} \frac{1}{z^{2}}|d z|$ where $\gamma(t)=2 e^{\text {it }}$ for $0 \leq t \leq 2 \pi$.
Solution:

$$
\dot{\gamma}(t)=2_{i} e^{i t}
$$

$$
|\dot{\gamma}|(t) \mid=2
$$

$$
\begin{aligned}
\int_{\gamma} \frac{1}{z} d z & =\int_{0}^{2 \pi} \frac{1}{2 e^{i t}} \cdot 2 i e^{i t} d t=\int_{\gamma}^{2 \pi} i d t=2 \pi i \\
\int_{\gamma} \frac{1}{z^{2}} d z & =\int_{0}^{2 \pi} \frac{1}{4 e^{2 i t}} 2 d t=\frac{1}{2} \int_{0}^{2 \pi} e^{-2 i t} d t= \\
& =\frac{1}{2} \int_{0}^{2 \pi} \cos (2 t)-i \sin (2 t) d t=0
\end{aligned}
$$

「 In fut, we could also use $\frac{d}{d t} e^{-2 i t}=-2 e^{-2 t}$,
We also have the following properties

$$
\begin{aligned}
& \int_{-\gamma} f(z) d z=-\int_{\gamma} f(z) d z \\
& \int_{\gamma_{1}+\gamma_{2}} f(z) d z=\int_{\gamma_{1}} f(z) d z+\int_{\gamma_{2}} f(z) d z \\
& \left.\int_{\gamma_{1}+\gamma_{2}} f(z) d z\right)=\int_{\gamma_{1}} f(z)|d z|+\int_{\gamma_{2}} f(z)|d z|
\end{aligned}
$$

BU I

$$
\int_{-\gamma} f(z)|d z|=\int_{\gamma} f(z)|d z|
$$

Reparametrization of curves and integrals

We say that η is a reparametrization of γ with change of parameter h if h is continuous and strictly increasing with $h(\alpha)=a$ and $h(\beta)=b$. We say that h is a smooth change of parameter if h is smooth as a function. (Piecewise smote in the same wang) If we use the chain rule we see that

$$
\int_{\eta} f(z) d z=\int_{\gamma} f(z) d z
$$

and $\int_{\eta} f(z)|d z|=\int_{\gamma} f(z)|d z|$

Proof:

$$
\begin{aligned}
& \left|\int_{\gamma} f(z) d z\right| \leq M \ell(\gamma) \\
& \left|\int_{\gamma} f(z) d z\right| \leq \int_{\gamma}|f(z)||d z| \leq M \int_{\gamma}|d z|=M l(\gamma)
\end{aligned}
$$

Ex Let $\gamma(t)=2 e^{\text {it }}$ when $-\frac{\pi}{6} \leq t \leq \frac{\pi}{6}$.
Estimate $\left|\int_{\gamma} \frac{1}{z^{3}+1} d z\right|$ from above.
Solution: Notice that $|\gamma(t)| \equiv 2$. Therefore

$$
\left|z^{3}+1\right| \geq\left|z^{3}\right|-1=8-1=7 \text { or }|\gamma|
$$

Hence $\left|\frac{1}{z^{3}+1}\right| \leqslant \frac{1}{7}$ on $|\gamma|$ and

$$
\left|\int_{\gamma} \frac{1}{z^{3}+1} d z\right| \leqslant \frac{1}{7} \cdot \frac{2 \pi}{6} \cdot 2=\frac{2 \pi}{21}
$$

Primitive functions
Assume that $U \subseteq \mathbb{C}$ is gen and $f: U \rightarrow \mathbb{C}$. A function $F: u \rightarrow \mathbb{C}$ is a primitive function of f if F is analytic and $F^{\prime}(z)=f(z)$ for $z \in l$.

Theorem 13 Assume that f is continuous on an open set u and that F is a primitive function of f in U. If $\gamma:[a, b] \rightarrow U$ is a piecewise smooth path, then

$$
\begin{aligned}
\int_{\gamma} f(z) d z & =[F(z)]_{\gamma(a)}^{\gamma(b)}= \\
& =F(\gamma(b))-F(\gamma(a))
\end{aligned}
$$

Proof. Assume $\gamma:[a, b] \rightarrow M$ is smooth (The arse γ piecewise smooth follows easily from this.)
Write $\gamma(t)=x(t)+i y(t)$ and put

$$
G(t)=F(\gamma(t))=U(x(t), y(t))+i V(x(t), y(t))
$$

Then
(2)
(3)

$$
\begin{equation*}
G^{\prime}(t)=U_{x} \cdot x^{\prime}(t)+i V_{x} \cdot x^{\prime}(t)+U_{y} \cdot y^{\prime}(t)+i V_{y} \cdot y^{\prime}(t) \tag{4}
\end{equation*}
$$

by the chain rule. The $C R$-equations give
(1)

$$
\begin{align*}
G^{\prime}(t) & =U_{x} \cdot x^{\prime}(t)+i U_{x} \cdot y^{\prime}(t)+i V_{x} \cdot x^{\prime}(t)-V_{x} \cdot y^{\prime}(t) \tag{2}\\
& =U_{x} \cdot\left(x^{\prime}(t)+i y^{\prime}(t)\right)+i V_{x} \cdot\left(x^{\prime}(t)+i y^{\prime}(t)\right)= \tag{3}\\
& =\left(U_{x}+i V_{x}\right) \cdot \gamma^{\prime}(t)=F^{\prime}(\gamma(t)) \gamma^{\prime}(t)= \\
& =f(\gamma(t)) \cdot \gamma^{\prime}(t) .
\end{align*}
$$

Therefore

$$
\begin{aligned}
\int_{\sigma} f(z) d z & =\int_{a}^{b} f\left(\gamma(t) \gamma^{\prime}(t) d t=\int_{a}^{b} G^{\prime}(t) d t=G(b)-G(a)=\right. \\
& =F(\gamma(b))-F(\gamma(a))=[F(z)]_{\gamma(a)}^{\gamma(b)}
\end{aligned}
$$

Corollary 14 If $f: u \rightarrow \mathbb{C}$ is a continuous function
(14) on an open set $u \subset \mathbb{C}$ with a primitive (analytic) fun action $F: U \rightarrow C$ then

$$
\int_{\gamma} f(z) d z=0 \quad \text { for every closed, pieceroise }
$$ smooth path γ in U.

Proof

$$
\begin{array}{r}
\int_{\gamma} f(z) d z=[F(z)]_{\gamma(a)}^{\gamma(b)}=0 \\
\gamma(\mid)=\gamma(v)
\end{array}
$$

Ex Calculate $\int_{\gamma} z^{2} d z$ when

$$
\gamma(t)=t^{2}+i t, \quad 0 \leq t \leq 1
$$

Solution: Since $F(z)=\frac{z^{3}}{3}$ is a primitive function for z^{2} we get

$$
\begin{aligned}
& \int_{\gamma} z^{2} d z=\left[\frac{z^{3}}{3}\right]_{\gamma(0)}^{\gamma(1)}=\left[\frac{z^{3}}{3}\right]_{0}^{1+i}= \\
& =\frac{(1+i)^{3}}{3}=\frac{1+3 i+3 i^{2}+i^{3}}{3}=\frac{-2+2 i}{3}
\end{aligned}
$$

Ex Evaluate $\int_{y} z \sin z d z$ when $|\gamma|$ is the curve

Solution: We can use partial integration to find a primitive function since we have

$$
\frac{d}{d z} f(z) g(z)=f^{\prime}(z) g(z)+f(z) g^{\prime}(z)
$$

for analytic functions.

$$
\begin{aligned}
\left.\int_{\gamma}(z) \hat{\sin z}\right) d z & =[-z \cos z]_{0}^{2 i}+\int_{\gamma} \cos z d z= \\
& =-\lambda_{i} \cos h_{i}+[\sin z]_{0}^{2 i}= \\
& =-2 i\left(\frac{e^{2 i i^{2}}+e^{-2 i i^{2}}}{2}\right)+\sin \sin ^{2 i}= \\
& =-i\left(e^{-2}+e^{2}\right)+\frac{e^{2 i i^{2}}-e^{-2 i i^{2}}}{2 i}= \\
& =-i\left(e^{-2}+e^{2}+\frac{1}{2} e^{-2}-\frac{1}{2} e^{2}\right)= \\
& =-i\left(\frac{1}{2} e^{2}+\frac{3}{2} e^{-1}\right)
\end{aligned}
$$

EX The analytic function $f(z)=\frac{1}{z}$ defined in $\mathbb{C}, ~ 50\}$ has no primitive function! This must be true since $\quad \int_{\gamma} \frac{1}{z} d z=2 \pi i$ when γ is the mit circle oriented cumber clockwise.

This might seem strange since we already know that for any branch $g(z)$ of the inverse of e^{z} we have $g^{\prime}(z)=\frac{1}{z}$. However, it is impossible to define $g(z)$ on $\mathbb{C} \backslash\{0\}$! For example, $\log (z)$ is analytic on $\mathbb{C} \backslash(-\infty, 0]$ (bat not $\mathbb{C} \backslash\{0\})$

A look ahead

- We know it $f(z)$ has an analytic primitive function $F(z)$ then $\int_{\gamma} f(z) d z=0$ for all closed piece wise smother.
- We will now start proving Cauchy's Theorem which says that it $f(z)$ is analytic them $\begin{array}{ll}\int_{\gamma} f(z) d z=0 & \text { for all closed piecewise } \\ & \text { smooth } \gamma .\end{array}$
- We do ain to prove the converse namely if $\int_{\gamma} f(z) d z=0$ for all closed piecewise smooth γ then $f(z)$ is analytic

We begin by proving Cauchy's Theorem for rectangles. We will need a version of Cantor's Theorem.

Special case
of Cantor's Theorem

Let R_{i} be a decreasing sequence of closed 7 rectangles. Then $\bigcap_{i=1}^{\infty} R_{i} \neq \varnothing$ (If $\operatorname{diam} R_{i} \rightarrow 0 \quad i=1$
then $\left.\bigcap_{i=1}=\{z\}\right)$

