This might seem strange since we already know that for any branch $g(z)$ of the inverse of e^{z} we have $g^{\prime}(z)=\frac{1}{z}$. However, it is impossible to define $g(z)$ on $\mathbb{C} \backslash\{0\}$! For example, $\log (z)$ is analytic on $\mathbb{C} \backslash(-\infty, 0]$ (but not $\mathbb{C} \backslash\{0\}$)

A look ahead

- We know it $f(z)$ has an analytic primitive function $F(z)$ then $\int_{\gamma} f(z) d z=0$ for all closed piece wise smother.
- We will now start proving Cauchy's Theorem which says that it $f(z)$ is analytic them $\int_{\gamma} f(z) d z=0$ for all closed piecewise
(This version true in disks)
- We do aim to prove the converse namely if $\int_{\gamma} f(z) d z=0$ for all closed piecewise smooth γ then $f(z)$ is analytic

We begin by proving Cauchy's Theorem for rectangles. We will need a version of Cantor's Theorem.

Special case
of Cantor's Theorem

Let R_{i} be a decreasing sequence of closed 7 rectangles. Then $\bigcap_{i=1}^{\infty} R_{i} \neq \varnothing$ (If $\operatorname{diam} R_{i} \rightarrow 0 \quad i=1$
then $\left.\bigcap_{i=1} R_{i}=\{z\}\right)$

Illustration of Cantor's Theorem

Lemma15(Cauchy's Theorem for rectangles)
If f is analytic in an open set $l C$ them
$\int_{\partial R} f(z) d z=0$ for every closed rectangle R in U.
Proof:

We see that

$$
\int_{\partial R} f(z) d z=\int_{\partial R_{1}^{\prime}}+\int_{\partial R_{1}^{2}}+\int_{\partial R_{1}^{\top}}+\int_{R_{1}^{4}}
$$

(with slimes abbreviation)
Put $I=\int_{\partial R}^{j} f(z) d z$ and $I_{1}^{j}=\int_{r_{1}^{j}} f(z) d z$.
The triangle inequality gives $|I| \leq\left|I_{1}^{1}\right|+\left|I_{1}^{2}\right|+\left|I_{1}^{3}\right|+\left|I_{1}^{4}\right|$.
Let $\left|I_{1}\right|=\max \left\{\left|I_{1}^{1}\right|,\left|I_{1}^{2}\right|,\left|I_{1}^{3}\right|,\left|I_{1}^{4}\right|\right\}$. We see that
$|I| \leq 4\left|I_{1}\right|$ (otherwise we get a contradiction)
Keep dividing and (with (hopefully?) obvious notation) we get

$$
|I| \leqslant 4^{n}\left|I_{n}\right| \quad \text { for } n=1,2,3, \ldots
$$

Let R_{n} be the rectangle corresponding to $\left|F_{n}\right|$.

By Cantor's Theorem $\bigcap_{n=1}^{\infty} R_{n} \neq \varnothing$ and therefore
Γ
diameter $=$ "maximal distance between ter points in the set",
$\exists z_{0}$ such $z_{0} \in R_{n}$ for $n=1,2,3, \ldots$
Note that the diameter of the rectangle R is $\sqrt{a^{2}+b^{2}}$ if R is
b Also the perimeter of R is $2 a+2 b$
Let $d=\sqrt{a^{2}+b^{2}}$ and $L=2 a+2 b$. Note that the diameter of $R_{n}=d_{n}=\frac{1}{2^{n}} d$ and the perimeter of $R_{n}=L_{n}=\frac{1}{\rho^{n}} L$ Since f is analytic we have (for z_{0} defined above)

$$
f(z)=f\left(z_{0}\right)+f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+E(z) \text { where } \lim _{z \rightarrow z_{0}} \frac{|E(z)|}{\left|z-z_{0}\right|}=0 \text {. }
$$

This means that for $\varepsilon>0$ there exists $\delta>0$ such that $\left|z-z_{0}\right|<\delta$ them $|E(z)|<\varepsilon\left|z-z_{0}\right|$. Choose n so big that R_{n} fits in the disk $\left\{z \in U ;\left|z-z_{0}\right|<\delta\right\}$ ($d_{n}=\frac{1}{2^{n}} d<\delta$ does the trick). Then

$$
\begin{aligned}
I_{n} & =\int_{\partial R_{n}} f(z) d z=\int_{\partial R_{n}} f\left(z_{0}\right)+f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+E(z) d z= \\
& =\int_{\partial R_{n}} E(z) d z \quad\left(\sin c \frac{d}{d z} z=1 \text { and } \frac{d}{d z} \frac{\left(z-z_{0}\right)^{2}}{2}=\left(z-z_{0}\right)\right)
\end{aligned}
$$

We get $\left|I_{n}\right|=\left|\int_{\partial R_{n}} E(z) d z\right| \leq \int_{\partial R_{n}}|E(z)||d z| \leq \varepsilon d_{n} L_{n}$ Recall $|I| \leq 4^{n}\left|I_{n}\right| \leq 4^{n} \varepsilon d_{n} L_{n}=4^{n} \varepsilon \frac{d}{2^{n}} \frac{L}{2^{n}}=\varepsilon d L$ Since $\varepsilon>0$ is arbitrary we got $|I|=0$ and

$$
I=\int_{\partial R} f(z) d z=0
$$

We will weaken the assumptions a little in the previous result. It will turn out to be useful in the future. (when we prove Cancly's Integral Formula) Lemmas is If a function f is continuous in an ope set U and analytic in $U \backslash\left\{z_{0}\right\}$ for some point z_{0} of U, then $\int_{\partial R} f(z) d z=0$ for every closed rectangle R in U.
Proof: Assume $z_{0} \in R$ (otherwise we already lenoow)

-: For an integer n divide R into n^{2} conquest rectangles

We have $\int_{X R} f(z) d z=\sum_{k=1}^{n} \sum_{l=1}^{n} \int_{\partial f_{k l}} f(z) d z$ If $z_{0} \notin R_{k e}$ then $\int_{\partial R_{k c}} f(z) d z=0$ and if $z_{0} \in R_{k e}$ then $\left|\int_{\partial R_{k L}} f(z) d z\right| \leq \frac{M L}{n}$ where L is the perimeter of R and $M=\max \{|f(z)|, z \in R\}$ Since z_{0} is contained in at most 4 rectangles we get
$\left|\int_{\partial R} f(z) d z\right| \leq \frac{4 M L}{n}$ and n is arbitrary we get

$$
\int_{\partial R} f(z) d t=0
$$

Lemmalt Let Δ be an open dirk in the complex plane, and lit $f: \Delta \rightarrow \mathbb{C}$ be continuous with the property that
$\int_{\partial R} f(z) d z=0$ for wery rectangle R in Δ with sides parallel to the coordinate axes. Then f has an analytic primitive in Δ. Meaning as a consequence $\int_{8} f(z) d z=0$ for every close, piecewise sooth path γ in Δ. \lrcorner
Proof: Let z_{0} be the center of Δ.

$$
\begin{aligned}
& z_{0}=x_{0}+i y_{0} \quad z_{1}=x+i y_{0} \\
& z=x+i y \quad z_{2}=x_{0}+i y \\
& \text { Define } F(z)=\int_{\gamma_{2}} f(w) d w= \\
&=\int_{\gamma_{1}} f(w) d w
\end{aligned}
$$

(well-detined $\sin e{ }^{-\gamma_{1}} \int_{e} f(z) d z=0$)
We have $F(z)=\int_{y_{0}}^{y} f\left(x_{0} i t\right) i d t+\int_{x_{0}}^{x} f(t+i y) d t=$

$$
=\int_{x_{0}}^{x} f\left(t+i y_{0}\right) d t+\int_{y_{0}}^{y} f(x+i t) i d t
$$

Now, by the Fundamental Theorem of Calculus,

$$
\frac{\partial}{\partial x} F(z)=f(x+i y)=f(z) \text { and } \frac{\partial}{\partial y} F(z)=i f(x+i y)=i f(z)
$$

So F satisties the $C R$-equations, has continuous partial derivatives and hence is analytic. Also $F^{\prime}(z)=f(z)$

$$
\left.\begin{array}{l}
\Gamma \frac{\partial F}{\partial x}=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=u(z)+i v(z) \\
\frac{\partial F}{\partial y}=\frac{\partial u}{\partial y}+i \frac{\partial}{\partial y}=i(u(z)+i v(z))=-v(z)+i u(z)
\end{array}\right\} \Rightarrow \begin{aligned}
& \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \\
& \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}
\end{aligned}
$$

Theorem 18 (Cauchy Theorem - Local Form en) Assume that Δ is an open disk in the complex plane and that f is analytic in S (continuous in Δ and analytic in $\Delta \backslash\left\{z_{0}\right\}$ enough). Then $\int_{\gamma} f(z) d z=0$ for every closed, piecewise smooth path γ in \triangle.
Proof: By Lemma $16 \int_{\partial R} f(z) d z=0$ for every closed rectangle in ΔR and by lemma 17 $f: \Delta \rightarrow \mathbb{C}$ has an analytic primitive function in Δ. By Corollary 14 the result follows.
Notice that the path must be contained in a disk. We will later remove this restriction. The following example hints at ways of doing this.
Ex Let R be a rectangle with center z_{0}. Show that $\int_{\gamma R} \frac{1}{z-z_{0}} d z=2 \pi i$ if ∂R is oriented positively ${ }^{\gamma R}$ (counterclockwise)
Solution:

We know that

$$
\int_{r \Delta\left(z_{0}, p\right)} \frac{1}{z-z_{0}} d z=2 \pi i
$$

We see

since $\frac{1}{z-z_{0}}$ is holomorphic
Repent for all sides of R in $\Delta\left(w_{0}, p_{0}\right)$. and we get $\int_{\partial R} \frac{1}{z-z_{0}} d z=\int_{\partial \Delta\left(z_{01}\right)} \frac{1}{z-z_{0}} d z=2 \pi i$.
The next result will give us a way of creating analytic functions.
(19)

Proposition 19 Let γ be a piecewise smooth path in the complexplane, let h be a function continuous on $|\gamma|$, and let k be a position integer $(k=1,2,3, \ldots)$. The function H defined in the open set $U=\mathbb{C},|\gamma|$ by

$$
H^{\text {aulic }}(z)=\int_{\gamma} \frac{h(S)}{(S-z)^{k}} d S
$$

is analytic and

$$
H^{\prime}(z)=k \int_{\gamma} \frac{h(s)}{(S-z)^{k+1}} d s
$$

Proof: We want to show that, for $z \in \mathbb{C}|\gamma|$, we have

$$
\left|\frac{H(z+0)-H(z)}{w}-k \int_{\gamma} \frac{h(S)}{(S-z)^{k+1}} d S\right| \rightarrow 0
$$

as $w \rightarrow 0$. Let $r>0$ and $s>0$ such that disks $\Delta(z, 2 r)$ and $\Delta(0, s)$ satisfies $\Delta\left(z, \alpha_{r}\right) \subseteq \mathbb{C} \backslash|\gamma|$ and $|\gamma| \subseteq \Delta(0, s)$

For $\omega \neq 0$ we have

$$
\begin{aligned}
& \frac{H(z+w)-H(z)}{w}-k \int_{\gamma} \frac{h(S)}{(s-z)^{k+1}} d S= \\
& =\int_{\gamma} h(s) \underbrace{\left(\frac{1}{w}\left(\frac{1}{(s-z-w)^{k}}-\frac{1}{(s-z)^{k}}\right)-\frac{k}{(s-z)^{k+1}}\right)} d S
\end{aligned}
$$

Put $a=S-z$.

Then (A) is

$$
\begin{aligned}
& \frac{1}{w}\left(\frac{1}{(a-w)^{k}}-\frac{1}{a^{k}}\right)-\frac{k}{a^{k+1}}=\frac{1}{w}\left(\frac{a^{k}-(a-w)^{k}}{a^{k}(a-w)^{k}}\right)-\frac{k}{a^{k+1}}= \\
& =\frac{1}{w}\left(\frac{a^{k}-\sum_{j=1}^{k}\left(\begin{array}{l}
k \\
j
\end{array} a^{k j-j}(-w)^{j}\right.}{a^{k}(a-w)^{k}}\right)-\frac{k}{a^{k+1}}=\frac{\sum_{j=1}^{k}\binom{k}{j} a^{k-j}(-w)^{j}}{a^{k}(a-w)^{k}}-\frac{k}{a^{k+1}}= \\
& =\frac{\sum_{j=1}^{k}\left(\begin{array}{l}
\left.a^{k}\right) a^{k+1}(-j-j-w)^{j-1} \\
a^{k+1}(a-w)^{k}
\end{array} k(a-w)^{k}\right.}{a^{k}}=\frac{k a^{k}+\sum_{j=2}^{k}\left(j_{j}^{k} a^{k+1-j}(-w)^{j-1}-k \sum_{j=1}^{k}(k) a^{k} a^{k j}(-)^{k}\right)^{j}}{a^{k+1}(a-w)^{k}}=
\end{aligned}
$$

Notice that $r<|z-s|=|a|<s$ and if $|w|<r$ we get $|a-w| \geq r$ then $|\nexists| \leqslant \frac{C s^{k-1}}{r^{2 k-1}}|w|$
If $L=l(\gamma)$ and $M=\max _{z a x \mid 1}|h(z)|$ (which both are Finite since $|\gamma|$ is compact and h continuous) we see $\left|\frac{H((z+w)-H(z)}{w}-k \int_{\gamma} \frac{h(5)}{(5-z)^{k+1}} d s\right| \leq$

$$
\leq \frac{C s^{k-1}}{r^{2 k-1}} L M|w| \rightarrow 0 \text { as }|w| \rightarrow 0
$$

Do $k=1$ as an exercise (if needed \because) 」
We can use this result to "create" many analytic functions. However, the functions created are not always so ans y to work with.

Winding Numbers
Let γ be a closed piecewise smooth path and let z be a point in $\mathbb{C} \backslash|\gamma|$.
Def: The winding number (or index) of γ about z is $n(\gamma, z)=\frac{1}{2 \pi i} \int_{8} \frac{d s}{5-z}$.
Properties: $n(\gamma, z)$ is always an integer.

$2 \pi i \quad \eta(\gamma, z)=2 \pi i+2 \pi i$
A branch of $\log (\rho-z)$ is a primitive analytic function of $\frac{1}{s-z}$

- $\eta(\gamma, z)$ is locally constant (since $\eta(\gamma, z)$ is analytic in $\mathbb{C}||\gamma|$ and hence continuous)
Ex:

$\eta(\gamma, z)=0$ always true in unbounded componatit.
- If 8 is a simple closed piecewise smooth path (simple $=$ no selt-intersection (except for $\gamma(a)=\gamma(b))$)
them $n(\gamma, z)=1$ or $n(\gamma, z)=1$ if z is in bounded component.
This depends on the Jordan Curve Theorem that states that a simple dosed path divides the plane in two components (one bounded and ane unbounded) This seems obvious but is difficult to prove.

Terminology: We say that a simple, closed, and piecewise smooth path γ is positively oriented if $n(\gamma, z)=1$ for z in the bounded component (Negatively oriented if $n(\gamma, z)=-1$ in the bounded component.)

Theorem 20 (Cauchy's Integral Formula Suppose f is analytic in -Local Form an open disk Δ and that γ is a closed, piecewise smooth path in Δ. Then

$$
n(\gamma, z) f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(S)}{S-z} d S
$$

for every $z \in \Delta \backslash|\gamma|$

