As a consequence of this result and the Factor Theorem we get that every polynomial

$$
\begin{aligned}
& p(z)=a_{n} z^{n}+\ldots+a_{1} z+a_{0} \text { can be written } \\
& p(z)=a_{n}\left(z-z_{1}\right)\left(z-z_{2}\right) \ldots\left(z-z_{n}\right)
\end{aligned}
$$

where $p\left(z_{j}\right)=0 \quad j=1, \ldots, n$ (the roots can be repeated)
The next result we will prove is the maximum principle (for analytic functions). For this we need the concept of a connected set. An open set X is said to be connected it it is not the union of 2 droid, noneenty pen sets U and V We formulate this as follows:
it $U_{1} V$ open, $U_{1} V=\phi$, and $X=V_{0} V$ then $U=\phi \sim V=\phi$.
T For general sets X you should woke for U and V open in the induced topology. 1
Domain
In complex analysis an open connected set D is called a domain.
The Maximum Principle/ Maximum Modulus Theorem
Let f be analytic in a domain D. Assume that there exists a point $z_{0} \in D$ such that $|f(z)| \leqslant\left|f\left(z_{0}\right)\right|$ for very $z \in D$. Then f is constant in D.
Proof: Assume that $\left|f\left(z_{0}\right)\right|=M$ and choose R such that $\Delta\left(z_{0}, R\right) \subseteq D$ Pick r such that $0<r<R$.

By the Cauchy estimates we have

$$
\begin{aligned}
& \text { we have } \\
& \left|f\left(z_{0}\right)\right| \leqslant \frac{1}{2 \pi} \int_{\partial \Delta\left(z_{1}, r\right)} \frac{|f(z)|}{\left|z-z_{0}\right|}|d z| \text {. }
\end{aligned}
$$

Parametrize $\partial \Delta\left(z_{0} r\right)$ so that

$$
z-z_{0}=r e^{i \theta} \quad 0 \leq \theta \leq 2 \pi .
$$

Then $\left|f\left(z_{0}\right)\right| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\left|f\left(z_{0}+r e^{i \theta}\right)\right|}{r} r d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(z_{0}+r e^{i \theta}\right)\right| d \theta$ If $\left|f\left(z_{0}+r e^{i \theta}\right)\right|<M$ for some θ we get a contradiction

Hence $\left|f\left(z_{0}+r e^{i t}\right)\right|=M$ for all θ and $|f(z)|=M$ on $\Delta\left(z_{0}, r\right)$. This means $u=\{z \in D ; f(z) \|=M\}$ is open and non-empty. Since $|f(z)|$ is continuous the set $V=\{z \in D ;|f(z)| \angle M\}$ is open (queral trolagy).
Now $D=U_{U} V$ and since $U \neq \phi \Rightarrow V=\phi$.
Hence $D=u=\{z \in D ;|f(z)|=\mu\}$
Corollary: If D is a bounded domain in the plane and $f: \bar{D} \rightarrow \mathbb{C}$ is continuous which is analytic in D. Them $|f|$ attains it's maximum on ∂D.

Proof: The maximum of $|f|$ in \bar{D} exists since \bar{D} is compact (closed \& bounded) and If (is continuous. If $|f|$ attains the maximum inside D it is constant by the Maximum Principle and therefore also constant on \bar{D}. Then the maximum is attained on ∂D.
Ex Let $f(z)=z^{2}-2 z$. Compute the maximal value of $\mid f(z \mid$ in $Q=\{z ; 0 \leq x \leq 1,0 \leq y \leq 1\}$
Solution: We examine $|f(z)|$ on ∂Q.
$\xrightarrow[0 \text { (I) }]{\text { (iv) }} \underset{1}{1} \underset{\sim}{\text { (III) }}$

$$
\begin{aligned}
& \text { On (I): } 0 \leq x \leq 1, y=0 \\
& f(z)=f(x+i 0)=x^{2}-2 x \\
& g(x)=|f(z)|=2 x-x^{2}
\end{aligned}
$$

$$
g^{\prime}(x)=2-2 x=0 \Leftrightarrow x=1 \quad g(0)=0 \& \quad g(1)=2-1=1
$$

On(II): $x=1,0 \leq y \leq 1$

$$
\begin{aligned}
& f(z)=f(1+i y)=(1+i y)^{2}-2(1+i y)=1+1 i y-y^{2}-2-2 i y= \\
&=-y^{2}-1 \\
& h(y)=|f(z)|=1+y^{2} \Rightarrow h(0)=1 \& h(1)=2
\end{aligned}
$$

On (III):

$$
\begin{aligned}
0 \leq x & \leq 1, y=1 \\
f(z) & =f(x+i)=(x+i)^{2}-2(x+i)=x^{2}+2 x i+i^{2}-2 x-2 i \\
& =x^{2}-2 x-1+(2 x-2) i
\end{aligned}
$$

$O_{n}(\sqrt{ }): \quad \cdots$ maximum $=\sqrt{5}=$

$$
\Longrightarrow \max _{z \in \mathbb{Q}}|f(z)|=\sqrt{5}
$$

The Global Cauchy Theorem
Remember that so far we have only shown that

$$
\int_{\gamma} f(z) d z=0 \quad\left(f_{\text {analytic }}\right)
$$

when γ is a piecewise smooth closed path in a disk. It is desirable to remove this requirement. We will now explain how this is handled. This will not be a formal proof but hopetully the idem will be clear.

The idea is to modify the path step-by-step

Keep changing the path until y you can use the local version of Cauchy's Theorem. Hence

$$
\int_{\gamma} f(z) d z=0 \text { (in this case) }
$$

Is it always possible to change the path in this way?
No, for example, in this case it is nat possible

We also know that

$$
\begin{aligned}
& \int_{r}^{n} f(z) d z \neq 0 \\
& f(z)=\frac{1}{z-a}
\end{aligned}
$$

when a is any point in the "hole"

However if we add a path going around the hole in the opposite direction we are "back in busing"

The two paths cure be merged into one it we cut aport on the red/ blue portion.

Now we ane continue to change the path and see that

$$
\int_{\gamma_{u} \tilde{\gamma}} f(z) d z=0
$$

Why did it work now? The reason is that $n(\gamma, a) \neq 0$ but $n(\gamma, a)+n(\tilde{\gamma}, a)=0$ for any a in the bole.

In order to formulate the result in generality we need, to introduce cycles of piece bise smooth closed paths (or cycles for short)
Given a collection $\gamma_{1}, \ldots, \gamma_{k}$ of piecewise smooth closed paths in a set $A \subseteq \dot{\mathbb{C}}$ a cycle in A is a k-tuple $\sigma=\left(\gamma_{1}, \ldots, \gamma_{k}\right)$

We define

$$
\begin{aligned}
\int_{\sigma} f(z) d z & =\int_{\gamma_{1}} f(z) d z+\ldots+\int_{\gamma_{k}} f(z) d z \\
\text { and } n(\sigma, u) & =n\left(\gamma_{1}, a\right)+\ldots+n\left(\gamma_{k 1} a\right)
\end{aligned}
$$

We say that two cycles σ_{1} and σ_{2} are homologous in A if $n\left(\sigma_{1}, a\right)=n\left(\sigma_{2}, a\right)$ for every $a \in \mathbb{C} \backslash A$. We say that a cycle σ is homologous to zero in A if $n(\sigma, a)=0$ for every $a \in \mathbb{C} \backslash A$. Finally two non-dosed, piecewise smooth path γ_{1} and γ_{2} sharing initial and terminal points are ${ }^{2}$ homologous in A if $\sigma=\gamma_{1}-\gamma_{2}$ is homologous to zero in A.

The closed paths α, β, and α are rot homologous to in A zero. The cycles $(\alpha, \beta),(\alpha, \gamma)$, and (β, γ) are not homologous to zero. However (α, β, γ) is homologous to zero in A. The paths λ_{1} and λ_{2} are not ha mologous in A.
We haven't proved the following but I hope the previous discussion is convincing.
Cauchy's Theorem (Global version)
Let σ be a cycle in an open set U. Then
$\int_{\sigma} f(z) d z=0$ for every analytic function $f: U \rightarrow C C$ if σ and only if σ is homologous to zero in U.
(29)
(30)

Corollary 29: If f is analytic in an open set $l e$ and if σ_{0} and σ_{1} are cycles that are homologous in U, them

$$
\int_{\sigma_{0}} f(z) d z=\int_{\sigma_{1}} f(z) d z
$$

Corollary 30 : If f is analytic in an open set U and λ_{0} and λ_{1} are ron-closed piecewise smooth paths in $l l$ that are homologous in U, then $\int_{\lambda_{0}} f(z) d z=\int_{\lambda_{1}} f(z) d z$.

Cauchy's Integral Formula (Global version)
Suppose that f is analytic in an open set l and that σ is a cycle that is homologous to zero in U. Then

$$
n(\sigma, z) f(z)=\frac{1}{2 \pi i} \int_{\sigma} \frac{f(\zeta)}{S-z} d S
$$

for every $z \in U \backslash|\sigma|$

Ex Evaluate $\int_{\gamma} \frac{z^{2}+z+1}{z^{3}+z^{2}} d z$ where γ is us in the figure

Solution: First we note that $f(z)=\frac{z^{2}+z+1}{z^{3}+z^{2}}$ is analytic in $\mathbb{C} \backslash\{0,-1\}$ (since $z^{3}+z^{2}=z^{2}(z+1)$)
It is not really clear how to do this calculation.
Lets experiment a little and see it we can make some progress. If we use partial fractions decomposition we see $\frac{z^{2}+z+1}{z^{2}(z+1)}=\frac{1}{z^{2}}+\frac{1}{z+1}$. Now since $-\frac{1}{z}$ is a primitive function for $\frac{1}{t^{2}}$ we see

$$
\begin{aligned}
\int_{\gamma} f(z) d z & =\left[-\frac{1}{z}\right]_{1}^{i}+\int_{\gamma} \frac{1}{z+1} d z=-\frac{1}{i}+1+\int_{\gamma} \frac{1}{z+1} d z \\
& =i+1+\int_{\gamma} \frac{1}{z+1} d z
\end{aligned}
$$

We now concentrate on $\int_{\gamma} \frac{1}{z+1} d z$.
$\frac{1}{z+1}$ is analytic in $\mathbb{C} \backslash\{-1\}$.

$\ln \mathbb{C} \backslash\{-1\} \quad \gamma$ and $\tilde{\gamma}$ are homologous! Also $\log (z+1)$ is a primitive function for $1 /(z+1)$ in $\mathbb{C} \backslash(-\infty,-1]$.
Therefore

$$
\begin{aligned}
& \text { Therefore } \int_{\gamma} \frac{1}{z+1} d z=\int_{\widetilde{\gamma}} \frac{1}{z+1} d z=[\log (z+1)]_{1}^{i}= \\
& =\log (1+i)-\log (2)=\ln \sqrt{2}+i \frac{\pi}{4}-\ln 2= \\
& -\frac{1}{2} \ln 2+i \frac{\pi}{4} .
\end{aligned}
$$

and $\int_{\gamma} \frac{z^{2}+z+1}{z^{3}+z^{2}} d z=1+i-\frac{1}{2} \ln 2+i \frac{\pi}{4}=1-\ln \sqrt{2}+i\left(1+\frac{\pi}{4}\right)$.
Sequences and Series of Analytic Functions
Given a complex sequence $\left(z_{n}\right)_{n=1}^{\infty}$ we can form the partial sums $s_{n}=\sum_{k=1}^{n} z_{k}$. If the sequence $\left(s_{n}\right)_{n=1}^{\infty}$ converges to s (that is $\lim _{n \rightarrow \infty} s_{n}=s$) then we say that $\sum_{n=1}^{\infty} z_{n}$ is convergent with sum s. We write $s=\sum_{n=1}^{\infty} z_{n}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} z_{k}$.

