Aalto university

Björn Ivarsson

Exercise sheet 1

Complex Analysis, MS-C1300.
Done during class Tuesday 24.10 or Wednesday 25.10.
(1) (a) Assume that $z \neq 1$. Prove that

$$
\sum_{j=0}^{n} z^{j}=\frac{1-z^{n+1}}{1-z}
$$

(b) Find all solutions $z \in \mathbb{C}$ such that

$$
z^{n-1}+z^{n-2}+\cdots+z+1=0
$$

where $n>1$ is an integer.
(2) For $z \in \mathbb{C}$ we have either $\sqrt{z^{2}}=z$ or $\sqrt{z^{2}}=-z$ (where $\sqrt{\cdot}$ is the principal square root). For which z does $\sqrt{z^{2}}=z$ hold? For which z does $\sqrt{z^{2}}=-z$ hold?
(3) Verify that $2 \operatorname{Arg}(1+z)=\operatorname{Arg}(z)$ when $|z|=1$, but $z \neq-1$. (Hint: What is the set $K=\{1+z ;|z|=1\}$?)
(4) If n is a positive integer, prove that
$1+\cos \theta+\cos 2 \theta+\cdots+\cos n \theta=\frac{1}{2}+\frac{\sin ((2 n+1) \theta / 2)}{2 \sin (\theta / 2)}$
unless θ is a multiple of 2π.

