Aalto university

Björn Ivarsson

Exercise sheet 2

Complex Analysis, MS-C1300.
Hand in exercise 1 and 2 in separate files for grading. Deadline Wednesday 25.10 at $23: 59$. The exercises should be uploaded to the correct folder on MyCourses as pdf-files with name and student number in the file name. Submission via MyCourses is the only accepted way. Done during class Thursday 26.10 or Friday 27.10.
(1) Express the following in the form $x+i y$:

$$
\begin{align*}
& \text { (a) } \log \left(-e^{2}\right) \tag{2p}\\
& \text { (b) }(-1)^{i} \tag{2p}\\
& \text { (c) } i^{\sqrt{2 i}}
\end{align*}
$$

(Remember that you should use the principal argument when calculating powers. That is, $z^{w}=e^{w \log (z)}$.)
(2) Let $A=\{z ; \operatorname{Re}(z)>0\}$ and let $f: A \rightarrow \mathbb{C}$ be given by $f(z)=$ $\log \left(1+z^{2}\right)$. Determine the range $B=f(A)$. (Hint: Look at f as a composition of $g(z)=z^{2}, h(z)=1+z$, and $k(z)=\log z$.)
(3) Show that the locus of points in the complex plane satisfying

$$
A z \bar{z}+B z+\bar{B} \bar{z}+C=0
$$

in which A and C are real numbers satisfying

$$
|B|^{2}-A C>0
$$

is a circle when $A \neq 0$ and a line if $A=0$. (The converse also holds but you don't need to show this.)
(4) Compute:
(a) all square roots of $-1+i \sqrt{3}$.
(b) all cube roots of -8 .

