Aalto university Björn Ivarsson

0

Exercise sheet 2

Complex Analysis, MS-C1300.

Hand in exercise 1 and 2 in separate files for grading. Deadline Wednesday 25.10 at 23:59. The exercises should be uploaded to the correct folder on MyCourses as pdf-files with name and student number in the file name. Submission via MyCourses is the only accepted way. Done during class Thursday 26.10 or Friday 27.10.

- (1) Express the following in the form x + iy:
 - (a) $\operatorname{Log}(-e^2)$ (2p)
 - (b) $(-1)^i$ (2p)
 - (c) $i^{\sqrt{2i}}$ (2p)

(Remember that you should use the principal argument when calculating powers. That is, $z^w = e^{w \operatorname{Log}(z)}$.)

- (2) Let $A = \{z; \operatorname{Re}(z) > 0\}$ and let $f: A \to \mathbb{C}$ be given by $f(z) = \operatorname{Log}(1+z^2)$. Determine the range B = f(A). (*Hint:* Look at f as a composition of $g(z) = z^2$, h(z) = 1 + z, and $k(z) = \operatorname{Log} z$.) (6p)
- (3) Show that the locus of points in the complex plane satisfying

$$Az\overline{z} + Bz + \overline{B}\overline{z} + C = 0$$

in which A and C are real numbers satisfying

 $|B|^2 - AC > 0$

is a circle when $A \neq 0$ and a line if A = 0. (The converse also holds but you don't need to show this.)

- (4) Compute:
 - (a) all square roots of $-1 + i\sqrt{3}$.
 - (b) all cube roots of -8.