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Preface to the Second Edition 

The first edition of this book presented the principles of vibration and sound 
with only a little discussion of applications of these principles. During the 
past eight years, our own experience, as well as that of other teachers who 
used it as a textbook, has indicated that students would benefit from more 
discussion of applications. In this edition we have revised some of the mate
rial in the first nine chapters, but more importantly we have added four new 
chapters dealing with applications, including microphones, loudspeakers, 
and other transducers; acoustics of concert halls and studios; sound and 
noise outdoors; and underwater sound. Of course we could have selected 
many additional applications of vibration and sound, but that would have 
led to a book with too much material for the average acoustics course in 
physics and engineering departments. We think there is now ample material 
in the book so that instructors may select the applications of particular in
terest and omit the others without loss of continuity. We have continued to 
stress concepts over detailed theory, as seems most appropriate for an in
troductory course. 

We appreciate the comments we have received from users, students, and 
teachers alike, and we continue to welcome feedback. 

September 2003 Thomas D. Rossing 
Neville H. Fletcher 



Preface to the First Edition 

Some years ago we set out to write a detailed book about the basic physics 
of musical instruments. There have been many admirable books published 
about the history of the development of musical instruments, about their 
construction as a master craft, and about their employment in musical perfor
mance; several excellent books have treated the acoustics of musical instru
ments in a semiquantitative way; but none to our knowledge had then at
tempted to assemble the hard acoustic information available in the research 
literature and to make it available to a wider readership. Our book The 
Physics of Musical Instruments, published by Springer-Verlag in 1991 and 
subsequently reprinted several times with only minor corrections, was the 
outcome of our labor. 

Because it was our aim to make our discussion of musical instruments as 
complete and rigorous as possible, our book began with a careful introduction 
to vibrating and radiating systems important in that field. We treated simple 
linear oscillators, both in isolation and coupled together, and extended that 
to a discussion of some aspects of driven and autonomous nonlinear oscilla
tors. Because musical instruments are necessarily extended structures, we then 
went on to discuss the vibrations of strings, bars, membranes, plates, and 
shells, paying particular attention to the mode structures and characteristic 
frequencies, for it is these that are musically important. The generation and 
propagation of acoustic waves in air is of obvious importance, and this too 
received fairly thorough discussion, at least in relation to those parts of the 
subject relevant to our major concern. Wind instruments, of course, consist 
of pipes and horns, and the propagation of waves in these structures, their 
normal modes, and their radiation properties were all carefully treated, again 
in the musical instrument context. The first third of our book thus presented 
a broad, but admittedly somewhat eclectic, treatment of the basic subject 
matter of vibrations and acoustics. 

In response to several suggestions, the publishers have decided to issue this 
first section of The Physics of Musical Instruments as a separate book, suitable 
for use as a text in standard courses in vibrations and acoustics. We will not 
conceal the fact that, had we set out to write such a book in the first place, its 



viii Preface to the First Edition 

content would probably have been rather different. But the subject matter of 
acoustics is so wide and the possible manners of approach so various that we 
believe the academic community may welcome this view of the subject. It is 
an unashamedly basic book, with emphasis on fundamental dynamical princi
ples rather than on practical applications and with a moderately mathematical 
approach. It must therefore be left to supplementary reading to fill in fasci
nating and important material on such topics as physical acoustics, micro
phones, loudspeakers, architectural acoustics, and auditory physiology. Even 
for musical instruments the interested reader is referred to our complete book. 
The references in the text are similarly eclectic, with emphasis on those re
lating to musical applications. 

To make the book more useful in general courses in acoustics and vibra
tions, we have added several new sections and one new chapter-on network 
analogs for acoustic systems. We have also included some problems at the end 
of each chapter to assist with the use of the book in a teaching environment. 

January 1994 Neville H. Fletcher 
Thomas D. Rossing 
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Part 1 
Vibrating Systems 



CHAPTER 1 

Free and Forced Vibrations 
of Simple Systems 

Mechanical, acoustical, or electrical vibrations are the sources of sound in 
musical instruments. Some familiar examples are the vibrations of strings 
(violin, guitar, piano, etc), bars or rods (xylophone, glockenspiel, chimes, 
clarinet reed), membranes (drums, banjo), plates or shells (cymbal, gong, 
bell), air in a tube (organ pipe, brass and woodwind instruments, marimba 
resonator), and air in an enclosed container (drum, violin, ~r guitar body). 

In most instruments, sound production depends upon the collective be
havior of several vibrators, which may be weakly or strongly coupled together. 
This coupling, along with nonlinear feedback, may cause the instrument as a 
whole to behave as a complex vibrating system, even though the individual 
elements are relatively simple vibrators. 

In the first seven chapters, we will discuss the physics of mechanical and 
acoustical oscillators, the way in which they may be coupled together, and the 
way in which they radiate sound. Since we are not discussing electronic 
musical instruments, we will not deal with electrical oscillators except as they 
help us, by analogy, to understand mechanical and acoustical oscillators. 

Many objects are capable of vibrating or oscillating. Mechanical vibrations 
require that the object possess two basic properties: a stiffness or springlike 
quality to provide a restoring force when displaced and inertia, which causes 
the resulting motion to overshoot the equilibrium position. From an energy 
standpoint, oscillators have a means for storing potential energy (spring), a 
means for storing kinetic energy (mass), and a means by which energy is 
gradually lost (damper). Vibratory motion involves the alternating transfer of 
energy between its kinetic and potential forms. 

The inertial mass may be either concentrated in one location or distributed 
throughout the vibrating object. If it is distributed, it is usually the mass per 
unit length, area, or volume that is important. Vibrations in distributed mass 
systems may be viewed as standing waves. 

The restoring forces depend upon the elasticity or the compressibility of 
some material. Most vibrating bodies obey Hooke's law; that is, the restoring 
force is proportional to the displacement from equilibrium, at least for small 
displacement. 

T. D. Rossing et al., Principles of Vibration and Sound
© Springer Science+Business Media New York 2004



4 1. Free and Forced Vibrations of Simple Systems 

1.1. Simple Harmonic Motion in One Dimension 

The simplest kind of periodic motion is that experienced by a point mass 
moving along a straight line with an acceleration directed toward a fixed 
point and proportional to the distance from that point. This is called simple 
harmonic motion, and it can be described by a sinusoidal function of time 
t: x(t) = A sin 2nft, where the amplitude A describes the maximum extent of 
the motion, and the frequency f tells us how often it repeats. 

The period of the motion is given by 

1 
T=y· 

That is, each T seconds the motion repeats itself. 

(1.1) 

A simple example of a system that vibrates with simple harmonic motion 
is the mass-spring system shown in Fig. 1.1. We assume that the amount of 
stretch xis proportional to the restoring force F (which is true in most springs 
if they are not stretched too far), and that the mass slides freely without loss 
of energy. The equation of motion is easily obtained by combining Hooke's 
law, F = - Kx, with Newton's second law, F = rna = mx. Thus, 

and 

where 

mx = -Kx 

mx + Kx = 0, 

d 2x 
x = dtz. 

The constant K is called the spring constant or stiffness of the spring 
(expressed in newtons per meter). We define a constant w0 =~,so that 
the equation of motion becomes 

x + wiix = 0. (1.2) 

This well-known equation has these solutions: 

x = A cos(w0 t + r/J) (1.3) 

X 

Fig. 1.1. Simple mass-spring vibrating system. 
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t=O 

A 
I 

Fig. 1.2. Relative phase of displacement x, velocity v, and acceleration a of a simple 
vibrator. 

or 
x = Bcosro0 t + Csinro0 t, (1.4) 

from which we recognize ro0 as the natural angular frequency of the system. 
The natural frequency fo of our simple oscillator is given by fo = 

(1/2n)y'K]iii, and the amplitude by .JB2 + C2 or by A; fjJ is the initial phase 
of the motion. Differentiation of the displacement x with respect to time gives 
corresponding expressions for the velocity v and acceleration a: 

v = x = -ro0 A sin(ro0 t + f/J), (1.5) 

and 
a = x = -w~ A cos(w0t + cp). (1.6) 

The displacement, velocity, and acceleration are shown in Fig. 1.2. Note that 
the velocity v leads the displacement by n/2 radians (90°), and the acceleration 
leads (or lags) by n radians (180°). 

Solutions to second-order differential equations have two arbitrary con
stants. In Eq. (1.3) they are A and f/J; in Eq. (1.4) they are B and C. Another 
alternative is to describe the motion in terms of constants x0 and v0 , 

the displacement and velocity when t = 0. Setting t = 0 in Eq. (1.3) gives 
x0 = Acosf/J, and setting t = 0 in Eq. (1.5) gives v0 = -ro0 Asinf/J. From 
these we can obtain expressions for A and f/J in terms of x0 and v0 : 

A= 2 Vo ( )
2 

Xo + roo , 

and (1.7) 

Alternatively, we could have set t = 0 in Eq. (1.4) and its derivative to obtain 
B = x 0 and C = v0 /ro0 from which 

Vo • 
x = x0 cosro0 t + -smro0 t. 

roo 
(1.8) 



6 1. Free and Forced Vibrations of Simple Systems 

1.2. Complex Amplitudes 

Another approach to solving linear differential equations is to use exponential 
functions and complex variables. In this description of the motion, the ampli
tude and the phase of an oscillating quantity, such as displacement or velocity, 
are expressed by a complex number; the differential equation of motion is 
transformed into a linear algebraic equation. The advantages of this formu
lation will become more apparent when we consider driven oscillators. 

This alternate approach is based on the mathematical identity e ±iwot = 
cosw0 t ±jsinw0 t, where j = .j=l. In these terms, cosw0 t = Re(e±iwot), 
where Re stands for the "real part of." Equation (1.3) can be written 

x =A cos(w0 t + l/J) = Re[Aei<wot+tfol] = Re(Aeitfoei"'o1) 

= Re(Aei"'01 ). (1.9) 

The quantity A= AeitP is called the complex amplitude of the motion and 
represents the complex displacement at t = 0. The complex displacement x is 
written 

The complex velocity iJ and acceleration ii become 

iJ = jwoAeiwot = jwoi, 

and 

(1.10) 

(1.11) 

(1.12) 

Each of these complex quantities can be thought of as a rotating vector or 
phasor rotating in the complex plane with angular velocity w 0 , as shown in 
Fig. 1.3. The real time dependence of each quantity can be obtained from the 
projection on the real axis of the corresponding complex quantities as they 
rotate with angular velocity w 0 . 

Fig. 1.3. Phasor representation of the complex displacement, velocity, and acceleration 
of a linear oscillator. 
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1.3. Superposition of Two Harmonic Motions in One Dimension 

Frequently, the motion of a vibrating system can be described by a linear 
combination of the vibrations induced by two or more separate harmonic 
excitations. Provided we are dealing with a linear system, the displacement at 
any time is the sum of the individual displacements resulting from each of the 
harmonic excitations. This important principle is known as the principle of 
linear superposition. A linear system is one in which the presence of one 
vibration does not alter the response of the system to other vibrations, or one 
in which doubling the excitation doubles the response. 

1.3.1. Two Harmonic Motions Having the Same Frequency 

One case of interest is the superposition of two harmonic motions having the 
same frequency. If the two individual displacements are 

X1 = A1 ej(wt+rf>tl 

and 

their linear superposition results in a motion given by 

Xt + Xz =(At eit/J, + A2eit/J')eicot = Aei(rot+t/J>. (1.13) 

The phasor representation of this motion is shown in Fig. 1.4. 
Expressions for A and ¢J can easily be obtained by adding the phasors 

A 1eicot/J, and A 2eicot/J, to obtain 

A = j(A 1 cos f/J1 + A 2 cos f/J2 ) 2 + (A 1 sin f/J1 + A 2 sin f/J2 ) 2 , (1.14) 

and 

(1.15) 

A, cos ¢>, + A, cos ~2 ___ ___,. 

Fig. 1.4. Phasor representation of two simple harmonic motions having the same 
frequency. 
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What we have really done, of course, is to add the real and imaginary parts 
of x 1 and x2 to obtain the resulting complex displacement x. The real dis
placement is 

x = Re(x) = A cos(wt + t/J). (1.16) 

The linear combination of two simple harmonic vibrations with the same 
frequency leads to another simple harmonic vibration at this same frequency. 

1.3.2. More Than Two Harmonic Motions Having the Same Frequency 

The addition of more than two phasors is accomplished by drawing them in a 
chain, head to tail, to obtain a single phasor that rotates with angular velocity 
w. This phasor has an amplitude given by 

A = J (LA, cos t/J,.)2 + (LA, sin t/J,.)2 , (1.17) 

and a phase angle t/J obtained from 

"" LA,.sint/J,. tan., = :=--"----'-"-
LA,cost/J, 

(1.18) 

The real displacement is the projection of the resultant phasor on the real axis, 
and this is equal to the sum of the real parts of all the component phasors: 

x = Acos(wt + cp) = ~A,cos(wt + cp,..) (1.19) 

1.3.3. Two Harmonic Motions with Different Frequencies: Beats 

If two simple harmonic motions with frequencies f 1 and f 2 are combined, the 
resultant expression is 

(1.20) 

where A, w, and t/J express the amplitude, the angular frequency, and the phase 
of each simple harmonic vibration. 

The resulting motion is not simple harmonic, so it cannot be represented 
by a single phasor or expressed by a simple sine or cosine function. If the ratio 
of w2 to w1 (or w 1 to w2 ) is a rational number, the motion is periodic with 
an angular frequency given by the largest common divisor of w2 and w 1 • 

Otherwise, the motion is a nonperiodic oscillation that never repeats itself. 
The linear superposition oftwo simple harmonic vibrations with nearly the 

same frequency leads to periodic amplitude variations or beats. If the angular 
frequency w2 is written as 

w2 = w 1 + Aw, 

the resulting displacement becomes 

x = A 1 ei<co,r+fl,> + A2 ei<co,r+Acor+fl2> 

= [A 1 eiflt + A2 ei<fl2+AcotJ]eico1r. 

(1.21) 

(1.22) 
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We can express this in terms of a time-dependent amplitude A(t) and a 
time-dependent phase r/J(t): 

(1.23) 

where 

and 
"'( ) A 1 sin r/J1 + A2 sin(r/J2 + L\wt) 

tan"' t = . 
A 1 cos r/J1 + A 2 cos(r/J2 + L\wt) 

(1.25) 

The resulting vibration could be regarded as approximately simple har
monic motion with angular frequency ro1 and with both amplitude and phase 
varying slowly at frequency L\wj2n. The amplitude varies between the limits 
A1 + A2 and IA1- A2l· 

In the special case where the amplitudes A 1 and A 2 are equal and r/J1 and 
r/J2 = 0, the amplitude equation [Eq. (1.24)] becomes 

A(t) = A 1 j2 + 2cosl\ro1t (1.26) 

and the phase equation [Eq. (1.25)] becomes 

"'( ) sin L\ro 1 t tan"' t = --,---------,--
1 + cos L\ro 1 t 

(1.27) 

Thus, the amplitude varies between 2A 1 and 0, and the beating becomes very 
pronounced. 

The displacement waveform (the real part of x) is illustrated in Fig. 1.5. This 
waveform resembles the waveform obtained by modulating the amplitude of 
the vibration at a frequency L\wj2n, but they are not the same. Amplitude 
modulation results from nonlinear behavior in a system, which generates 
spectral components having frequencies ro1 and ro 1 ± L\ro. The spectrum of 
the waveform in Fig. 1.5. has spectral components ro1 and ro1 + L\ro only. 

Audible beats are heard whenever two sounds of nearly the same frequency 
reach the ear. The perception of combination tones and beats is discussed in 
Chapter 8 of Rossing (1982) and other introductory texts on musical acoustics. 

Fig. 1.5. Waveform resulting from linear superposition of simple harmonic motions 
with angular frequencies w 1 and w 2 • 
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1.4. Energy 

The potential energy Ev of our mass-spring system is equal to the work done 
in stretching or compressing the spring: 

I X IX 1 EP =- Fdx = Kxdx = -Kx2 • 
0 0 2 

(1.28) 

Using the expression for x in Eq. (1.3) gives 

EP = !KA2 cos2 (w0 t + ¢). (1.29) 

The kinetic energy is Ek = !mv2, and using the expression for v in Eq. (1.5) 
gives 

Ek = !mw5A2 sin2 (w0 t + ¢) = !KA2 sin2 (w0 t + ¢). (1.30) 

The total energy E is then 

E = EP + Ek = !KA2 = !mw5A2 = !mU2 , (1.31) 

where U is the maximum velocity. The total energy in our loss-free system is 
constant and is equal either to the maximum potential energy (at maximum 
displacement) or the maximum kinetic energy (at the midpoint). 

1.5. Damped Oscillations 

There are many different mechanisms that can contribute to the damping of 
an oscillating system. Sliding friction is one example, and viscous drag in a 
fluid is another. In the latter case, the drag force F, is proportional to the 
velocity: 

F, = -Rx, 

where R is the mechanical resistance. The drag force is added to the equation 
of motion: 

mx + Rx + Kx = 0 

or 
:X + 2ax + w5x = 0, 

where a = Rj2m and w6 = Kjm. 

(1.32) 

We assume a complex solution x =AeYt and substitute into Eq. (1.32) to 
obtain 

(y 2 + 2ay + w5)Aert = 0. (1.33) 

This requires that y2 + 2ay + w6 = 0 or that 

y = -a± Ja2 - w6 = -a ±jJw6- a2 = -a ±jwd, (1.34) 

where wd = J w6 - a2 is the natural angular frequency of the damped oscil
lator (which is less than that of the same oscillator without damping). The 
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' 

Fig. 1.6. Displacement of a harmonic oscillator with v0 = 0 for different values of 
damping. The relaxation time is given by 1/et. Critical damping occurs when et = w0 • 

general solution is a sum of terms constructed by using each of the two values 
ofy: 

(1.35) 

The real part of this solution, which gives the time history of the dis
placement, can be written in several different ways as in the loss-free case. The 
expressions that correspond to Eqs. (1.3) and (1.4) are 

(1.36) 

and 
(1.37) 

Setting t = 0 in Eq. (1.37) and its derivatives gives the displacement in terms 
of the initial displacement x0 and initial velocity v0 : 

(1.38) 

Figure 1.6 shows a few cycles of the displacement for different values of o: when 
v0 = 0. 

The amplitude of the damped oscillator is given by x 0 e-at, and its motion 
is not strictly periodic. Nevertheless, the time between zero crossings in the 
same direction remains constant and equal to Td = 1/fd = 2njwd, which is 
defined as the period of the oscillation. The time interval between successive 
maxima is also Td, but the maxima and minima are not exactly halfway 
between the zeros. 

One measure of the damping is the time required for the amplitude to 
decrease to 1/e of its initial value x0 . This time, -r, is called by various names, 
such as decay time, lifetime, relaxation time, and characteristic time; it is given 
by 

1 2m 
T=-=-. 

o: R (1.39) 

When o: ~ w 0 , the system is no longer oscillatory. When the mass is 
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displaced, it returns asymptotically to its rest position. For a = w0 , the system 
is critically damped, and the displacement is 

(1.40) 

For a> w0 , the system is overdamped and returns to its rest position even 
more slowly. 

It is quite obvious that the energy of a damped oscillator decreases with 
time. The rate of energy loss can be found by taking the time derivative of the 
total energy: 

djdt(Ep + EK) = djdt[!Kx2 + !mx2 ] = Kxx + mxx 

= x(Kx + mx) =.X( -Rx) = -2amx2 , (1.41) 

where use has been made ofEq. (1.32). Equation (1.41) tells us that the rate of 
energy loss is the friction force - Rx times the velocity .X. 

Often a Q factor or quality factor is used to compare the spring force to the 
damping force: 

(1.42) 

1.6. Other Simple Vibrating Systems 

Besides the mass-spring system already described, the following are familiar 
examples of systems that vibrate in simple harmonic motion. 

1.6.1. A Spring of Air 

A piston of mass m, free to move in a cylinder of area-S and length-£ [see 
Fig. 1.7(a)], vibrates in much the same manner as a mass attached to a spring. 
The spring constant of the confined air turns out to be K = YPaS/L, so the 

L 

~ 
mg 

(a) (b) (c) (d) 

Fig.1.7. Simple vibrating systems: (a) piston in a cylinder; (b) Helmholtz resonator with 
neck of length L; (c) Helmholtz resonator without a neck; and (d) simple pendulum. 
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natural frequency is 

£ = _!_ JYP::S 
Jo 2n '-/mL' (1.43) 

where Pa is atmospheric pressure, m is the mass of the piston, and 'Y is a 
constant that is 1.4 for air. 

1.6.2. Helmholtz Resonator 

In the Helmholtz resonator shown in Fig. 1.7(b), the mass of air in the neck 
serves as the piston and the large volume of air V as the spring. The mass of 
air in the neck and the spring constant of the confined air are given by the 
expressions 

m=pSL, 

and 
K = pS2c2jV, 

where p is the air density and c is the speed of sound. 
The natural frequency of vibration is given by 

fo =2~~= ;np;. 

(1.44) 

(1.45) 

Note that the smaller the neck diameter, the lower the natural frequency of 
vibration, a result which may appear surprising at first glance. 

The Helmholtz resonator in Fig. 1.7(c) has no neck to delineate the 
vibrating mass, but the effective length can be estimated by taking twice the 
"end correction" of a flanged tube (which is 8j3n ~ 0.85 times the radius a). 
Thus, 

( 16a) m = pSL = p(na2 ) 3; = 5.33pa3• (1.46) 

The natural frequency of a neckless Helmholtz resonator with a large face is 
thus expressed as 

£=~ ~ 
Jo 2n '-/ ----y-· (1.47) 

If the face of the resonator surrounding the hole is not large, the natural 
frequency will be slightly higher. The Helmholtz resonator is discussed in 
Section 6.5 and the end correction in Section 8.3. 

1.6.3. Simple Pendulum 

A simple pendulum, consisting of a mass m attached to a string of length l 
[Fig. 1.7(d)], oscillates in simple harmonic motion provided that x « l. As
suming that the mass of the string is much less than m, the natural frequency 
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is given by 
1 !9 

fo = 2rr vi' (1.48) 

where g is the acceleration due to gravity. Note that the frequency does not 
depend on the mass. 

1.6.4. Electrical RLC Circuit 

In the electrical circuit, shown in Fig. 1.8, the voltages across the inductor, the 
resistor, and the capacitor, respectively, should add to zero: 

di 1 I L dt + Ri + C i dt = 0. 

Differentiating each term leads to an equation that is analogous to Eq. (1.32) 
for the simple mechanical oscillator: 

00 0 1 
Li + Ri + C i = 0 

or 
i" + 2ai + w5 i = 0, 

where a= R/2L and w~ = 1/LC. 
The solution to Eq. (1.49) can be written as 

i = I 0 e-a.t cos(wdt + r/J), 

(1.49) 

(1.50) 

which represents a current oscillating at a frequency J w~ - a2 /2rr, with an 
amplitude that decays exponentially. If a « w 0 (small damping), the frequency 
of oscillation is approximately 

fo = Wo = 1 
2rr 2rr.JLC' 

(1.51) 

and the current has a waveform similar to that shown in Fig. 1.6. 

R 

Fig.1.8. Simple electrical oscillator with inductance L, resistance R, and capacitance C. 
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1.6.5. Combinations of Springs and Masses 

Several combinations of masses and springs are shown in Fig. 1.9, along with 
their resonance frequencies. Note the effect of combining springs in series and 
parallel combinations. Two springs with spring constants K 1 and K 2 will have 
a combined spring constant KP = K 1 + K 2 when connected in parallel but 
only K. = K 1 K 2/(K 1 + K 2) in series. When K 1 = K 2 , the parallel and series 
values become 2K1 and Kd2, respectively. The combinations in Fig. 1.9 all 
have a single degree offreedom. In Section 1.12, we discuss two-mass systems 
with two degrees of freedom; that is, the two masses move independently. 

K 

(a) (b) (c) (d) (e) 

Fig. 1.9. Mass-s~ combinations that vibrate at single frequencies: 
(a) / 0 = (1/2n)y' 15J!.rrl.; (b) / 0 = (1/2n)~; (c) / 0 = (1/2n)~; 
(d) / 0 = (1/2n)~; and (e) / 0 = (1/2n)~. 

1.6.6. Longitudinal and Transverse Oscillations 
of a Mass-Spring System 

Consider the vibrating system shown in Fig. 1.10. Each spring has a spring 
constant K, a relaxed length a0 , and a stretched length a. Thus, each spring 
exerts a tension K(a- a 0 ) on the mass when it is in its equilibrium position 

(a) (b) 

Fig. 1.10. Longitudinal (a) and transverse (b) oscillations of a mass-spring system. 
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(x = 0). When the mass is displaced a distance x, the net restoring force is the 
difference between the two tensions: 

Fx = K(a- x- a0)- K(a + x- a0 ) = -2Kx. (1.52) 

The natural frequency for longitudinal vibration is thus given by 

I'= _1 f2K 
Jl 2n ,Y --;n· (1.53) 

Now, consider transverse vibrations of the same systems, as shown in 
Fig. l.lO(b). When the mass is displaced a distance y from its equilibrium 
position, the restoring force is due to the y component of the tension: 

For small deflection y, the force can be written as 

'[ a ( y2)-112] Fy = -2Ky 1- ao 1 + a2 

(1.55) 

When the springs are stretched to several times their relaxed length (a» a0 ), 

the force is approximately - 2Ky, and the natural frequency is practically the 
same as the frequency for longitudinal vibrations given in Eq. (1.53): 

ft ~ 2~ ~- (1.56) 

When the springs are stretched only a small amount from their relaxed 
length (a ~ a0 ), however, the first term in Eq. (1.55) becomes very small, so the 
vibration frequency is considerably smaller than that given in Eqs. (1.53) and 
(1.56). Furthermore, the contribution from the cubic term in Eq. (1.55) takes 
on increased importance, making the vibration nonsinusoidal for all but the 
smallest amplitude. 

1.7. Forced Oscillations 

When a simple oscillator is driven by an external force f(t), as shown in 
Fig. 1.11, the equation of motion Eq. (1.32) then becomes 

mx + Rx + Kx = f(t). (1.57) 
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f(t) 

Fig. 1.11. A damped harmonic oscillator with driving force f(t). 

The driving force f(t) may have harmonic time dependence, it may be 
impulsive, or it may even be a random function of time. For the case of a 
sinusoidal driving force f(t) = F cos rot turned on at some time, the solution 
to Eq. (1.57) consists of two parts: a transient term containing two arbitrary 
constants, and a steady-state term that depends only on F and ro. 

To obtain the steady-state solution, it is advantageous to write the equation 
of motion in complex form: 

mi + Ri + Kx = Feiwt. (1.58) 

Since this equation is linear in x and the right-hand side is a harmonic 
function with angular frequency ro, in the steady state the left-hand side should 
be harmonic with the same frequency. Thus, we replace x by Aeiwt and obtain 

Aeiwt( -w2m + jwR + K) = Feiwt. (1.59) 

The complex displacement is 

_ Feiwt F/m 
x = K - ro2m + jwR = ro~ - ro2 + jw2rx' 

(1.60) 

where F = Feimt, OJ~ = K/m, and rx = R/2m. 
Differentiation of x gives the complex velocity v: 

_ Feiwt Fw/m 
v = R + j(wm - K/ro) = 2rorx + j(ro2 - ro~) · (1.6l) 

The mechanical impedance Z is defined as Fjv: 
Z = F/v = R + j(rom- K/ro) = R + jXm, (1.62) 

where X m = rom - Kfw is the mechanical reactance. The actual steady-state 
displacement is given by the real part of Eq. (1.60): 

x = Re . F _ = FZ sin( rot + ¢J). 
JWZ ro 

(1.63) 

A quantity x. = F/K = Ffmw~ can be defined as the static displacement of 
the oscillator produced by a constant force of magnitude F. At very low 
frequency, the displacement amplitude will approach FIK, and the oscilla
tor is said to be stiffness dominated. When "' = "'d• the amplitude becomes 

x0 = F/2rxmw0 = Qx •. (1.64) 
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In other words, Q becomes a sort of amplification factor, which is the ratio of 
the displacement amplitude at resonance (w0 = w) to the static displacement. 

At high frequency (w » w0 ), the displacement falls toward zero. The fre
quency response of a simple oscillator for different values of ct. (or Q) is shown 
in Jg. 1.12(a). The magnitude of x is less than x. for frequencies above 
w0 2 - l5 2 (where (j = 1/Q = 2ct./w0 ), which, for small values of ct., is about 

j2w0 . If ct.> w0 jj2, x < x. at all frequencies. 
The phase angle between the displacement and the driving force is the phase 

6 

5 

xlx, 

4 

3 

2 

stiffness 
dominated 

resistance 
dominated 

(a) 

(b) 

mass 
dominated 

Fig. 1.12. Frequency dependence of the magnitude x and phase (t/>x- ¢F) of the 
displacement of a linear harmonic oscillator. 
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angle of the denominator in Eq. (1.60): 

_ 1 2ocro 
tPx-tPF=tan 2 2' co -COo 

(1.65) 

At low frequency (ro ~ 0), tPx- tPF = 0. When co= ro0 , tPx- tPF = 90°, and at 
high frequency (ro » ro0 ), tPx- tPF ~ 180°, as shown in Fig. 1.12(b). 

There are other convenient ways to represent the frequency response of a 
simple oscillator. One way is to show how the real and imaginary parts of the 
mechanical impedance Z( =F/if) or the mechanical admittance (mobility) 
Y = 1/Z( = iJ/F) vary with frequency. At resonance, the real part of the admit
tance has its maximum value, while that of the impedance remains equal toR 
at all frequencies. The imaginary parts of both quantities are zero at resonance. 
Figure 1.13 shows the real and imaginary parts of the mechanical impedance 
and admittance for an oscillator of the same type as in Fig. 1.12. The graph 
of imaginary part versus the real part in'' Fig. 1.13(c) is sometimes called a 
Nyquist plot. 

z ,,z, 
' ' ' R ................. 1_.,....... 

-........................ 

I 

o~--------~1 ~----------~~f 

(a) 

(b) 

B 

(c) 

Fig. 1.13. Real and imaginary parts of the mechanical impedance and admittance 
for a harmonic oscillator of the same type as in Fig. 1.12: (a) mechanical impedance; 
(b) mechanical admittance or mobility; (c) Nyquist plot showing the imaginary part of 
admittance versus the real part, with frequency as a parameter. 
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1.8. Transient Response of an Oscillator 

When a driving force is first applied to an oscillator, the motion can be quite 
complicated. We expect to find periodic motions at the natural frequency / 0 

of the oscillator as well as the driving frequency f (or at all its component 
frequencies if the driving force is not harmonic). If the oscillator is heavily 
damped, the transient motion decays rapidly, and the oscillator quickly settles 
in to its steady-state motion. If the damping is small, however, the transient 
behavior may continue for many cycles of oscillation. If the driving frequency 
f is close to the natural frequency / 0 , for example, strong beats may be 
observed. 

In Section 1.5, the Q factor was defined by the equation Q = w0!2a = 
w07!2, where 7 is the time required for the amplitude of a free damped 
oscillator to decrease to lle(=0.37) of its initial value. Thus, the decay 
time 7 encompasses Qhr cycles of vibration. For Q = 10, for example, the 
amplitude falls to 370Jo of its initial value in just over three cycles, and it 
reaches 14% after six cycles, as shown in Fig. 1.14. 

If we suddenly apply a sinusoidal excitation with frequency f to an oscil
lator at rest, we observe aspects of both the impulsive response illustrated in 
Fig. 1.14 and the steady-state response discussed in ·section 1.7. The shock 
of the start of the vibration excites the natural oscillation of the system 
with frequency / 0 , and this dies away with a characteristic decay time 't. 

Simultaneously, there is present the forced oscillation at frequency f, and the 
resulting motion is a superposition of these two components. The simplest 
case is that in which the exciting frequency f is the same as the resonance 

A 

Fig. 1.14. Response of a damped oscillator (Q = 10) to impulsive excitation (by the 
application of a large force for a very short tinie, for example). The amplitude falls to 
37% of its initial value in time -r, which corresponds to Q/n cycles. 
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1.0 l'-ltlci+HrttHr+t+l-ttt-l+tt+H++++++++++++++++++++++++ 

Fig. 1.15. Response of a simple oscillator to a sinusoidal force applied suddenly. The 
ratio fifo varies from 0.2 to 4.0, and Q = 10 in each case. Note that the scale of 
amplitude is different in each case (from Fletcher, 1982). 

frequency f 0 , for the whole motion then builds steadily toward its final 
amplitude with time constant 1:. More generally, however, we expect to see the 
presence of both frequencies f and fo during the duration 1: of the attack 
transient and, if f is close to f 0 , these may combine to produce beats at 
frequency If- fol· These possibilities are illustrated in Fig. 1.15. 

Mathematically, the problem is one of finding the appropriate general 
solution of Eq. (1.57). Because Eq. (1.57) is a linear equation, the general 
solution is a combination of the general solution of the homogeneous equa
tion, Eq. (1.32), and a particular solution ofEq. (1.57), which we take to be the 
steady-state solution [Eq. (1.63)]. 

x = Ae-atcos(wdt + f/J) +~sin (wt + 8), 
wZ 

(1.66) 

where A and ¢J are arbitrary constants to be determined by the initial con
ditions. If the damping is small, wd can be replaced by w0. 

When the driving frequency matches the natural frequency (w = w0 ), the 
amplitude builds up exponentially to its final value without beats, as shown 
in Fig. 1.15(c). Note that irrespective of how the oscillator starts its motion, it 
eventually settles down to this steady-state motion. 
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1.9. Two-Dimensional Harmonic Oscillator 

An interesting oscillating system is the one shown in Fig. 1.16, which 
results from adding a second pair of springs to the system in Fig. 1.11. The 
displacement of the mass m from its equilibrium position is given by co
ordinates x and y, and both pairs of springs exert restoring forces. For a 
displacement in the x direction, the restoring force is approximately Fx = 
-2KAx- 2K8 x(l- b0 /b), where b0 is the unstretchedlength of one of a pair 
of springs. For a displacement in the y direction, the restoring force is Fy = 
-2KAY- 2KBy(l- aofa). 

When the mass is allowed to move in two dimensions, some interesting 
coupling phenomena occur. The potential energy of the system can be written 
as 

EP = !KA[j(a + x)2 + y2- ao]2 + !KA[j(a- x)2 + y2 - ao]2 

+ !Ka[J(b + y)2 + x2 - b0 ] 2 + !K8 [j(b- y)2 + x2 - b0 ]2. (1.67) 

Fx is obtained by differentiating Eq. (1.67). If we retain terms only to third 
order in x andy, we obtain the expression 

,.., 2K8 b0 (2KAao 2K8 b0 ) 2 K 8 b0 3 Fx = -2(KA + K 8 )x + -b-x + ~ + -p- xy - --,;Jx . 

(1.68) 

Note that the third term, which is ofthird order, couples the x andy motions. 
For small amplitudes of vibration, however, the x and y motions are in
dependent. Thus, we can solve the independent equations of motion, 

and 

.. 2KA + 2K8 (1 - b0 /b) O x+ x= , 
m 

(1.69) 

Fig. 1.16. Two-dimensional oscillator consisting of a mass m and two pairs of springs. 



1.10. Graphical Representations of Vibrations: Lissajous Figures 23 

y 

Fig. 1.17. Two-dimensional oscillator of Fig. 1.16 rotated through an angle 0. The 
normal modes remain unchanged, but the normal coordinates are no longer x and y. 

to obtain two independent or normal modes of vibration with natural 
frequencies: 

and (1.70) 

f = _!_J2KA(l- a0 /a) + 2K8 
2 2n m · 

When a0 and b0 are much smaller than a and b, f 1 and / 2 differ only slightly. 
When this oscillating system is set up on an air table and the mass is initially 
set into motion at 45° to the x and y axes, a slowly changing Lissajous figure 
is observed as the x andy components of motion change their relative phases. 

Since each of the normal modes corresponds to motion along one co
ordinate only, we call the x and y coordinates the normal coordinates of the 
motion. In general, the normal coordinates of a two-dimensional oscillator 
will not be the x and y axes. If the springs were oriented at angles ()to the axes, 
for example, the normal coordinates (which still lie in the directions of the 
springs) would be 1/11 = xcos() + ysin(J and 1/12 = ycos(J- xsin(J as illus
trated in Fig. 1.17. 

1.10. Graphical Representations of Vibrations: Lissajous Figures 

There are several useful ways to represent a vibrating object with a graphic 
display device, such as a cathode-ray oscilloscope or an X-Y plotter. Perhaps 
the most common way is to make a plot of position (or velocity) versus time 
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x(t) 

(b) 

Fig.1.18. Two useful displays of(a) force F(t) and (b) displacement x(t) from which the 
phase angle t/J can be determined. 

by incorporating a transducer that gives an electrical output proportional 
to position (or velocity). With a multiple-trace oscilloscope, the position, 
velocity, and acceleration waveforms may be combined, giving a display of 
the type shown in Fig. 1.2. 

Another useful display combines force and displacement [Eq. (1.63)] or 
force and velocity. This can be done by displaying force and displacement as 
functions of time, as in Fig. 1.18(a), or by making a plot of displacement as a 
function of force, as in Fig. l.l8(b). In Fig. l.l8(a), the phase angle rjJ would be 
determined as a fraction of the total period (multiplied by 360° to obtain the 
phase angle in degrees). In Fig. 1.18(b), the phase angle is obtained from the 
relationship 

rjJ = sin-1 ~. (1.71) 

Note that the display must be centered when measuring A and B. 
Two related harmonic motions with different frequencies are often repre

sented in a display like that of Fig. 1.18(b). If w 2 = w 1 + L\w, as in Eq. (1.19), 
the display will cycle between a straight line (tfo = 0, 180°), a horizontal or 
vertical ellipse (f/J = 90°, 270°), and ellipses of other orientations, as rjJ advances 
with a frequency L\wj2n. 

When w 2 and w 1 are related by the relationship mw1 = nw2 , where m and 
n are integers, stable patterns result. These patterns are called Lissajous figures 
in honor of Jules Antoine Lissajous. Examples of such figures are shown in 
Fig. 1.19. 

m= 1 
n=2 

3 
2 

2 
1 

3 
1 

Fig. 1.19. Lissajous figures obtained by displaying cos w2 t versus cos w1 t, where 
mw1 = nw2 for different integers m, n. 
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1.11. Normal Modes of Two-Mass Systems 

Further understanding of normal modes and normal coordinates of oscil
lating systems comes from considering the two-mass system in Fig. 1.20(a). 
The analysis is simplified by letting all three spring constants and both masses 
be the same. Letting x 1 and x 2 be the displacements of the two masses, we write 
the equations of motion: 

rn:X 1 + Kx 1 + K(x 1 - x2 ) = 0, 

and (1.72) 
rnx2 + Kx2 + K(x2 - xd = 0. 

In order to find the normal modes, we assume harmonic solutions x1 = 
A 1 cos wt and x 2 = A 2 cos wt, and substitute them into Eq. (1. 72) to obtain 

2 2K K 
-w A1 +~A1 --A2 =0, 

rn rn 
and 

2 2K K 
-w A 2 +~A2 --A1 = 0. 

rn rn 

Letting K/rn = w~ as before, these equations can be written as 

(w 2 - 2w~)A 1 + w~A2 = 0, 

and 
w~A 1 + (w 2 - 2w~)A2 = 0. 

(1. 73) 

The normal mode frequencies are obtained by setting the determinant of the 
coefficients equal to zero: 

I 2 2 2 2 I w - Wo Wo 4 2 2 4 4 
2 2 2 = 0 = w - 4w0 w + 4w0 - w0 , w0 w - 2w0 

(1.74) 

from which w2 = 2w~ ± w~ and w = w0 , J3w0 • 

It is easy to deduce the nature of these normal modes. The one with angular 
frequency w 0 ( = K/rn) describes the two masses moving together in the same 

(a) 

(b) 

Fig. 1.20. Oscillating systems consisting of two masses and three springs. In (a) the 
masses move in a line; in (b) they move in a plane, so transverse oscillations are possible 
as well as longitudinal oscillations. 
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direction (x1 = x2 ) so that the center spring is not stretched. Thus, each mass 
is acted on by one spring, and the frequency is the same as the one-mass 
system in Fig. 1.1. The normal mode of higher frequency .j3ro0 consists ofthe 
masses moving in opposite directions (x1 = -x2 ), so that the center spring is 
stretched twice as much as either of the end springs. 

This result can be obtained in a more formal way by substituting each value 
of w into the Eq. (1.73), in tum, and solving for A1 and A2 : 

and 

w = .j3ro0 : (3ro~ - 2ro~)A 1 + OJ~A2 = 0 

The normal coordinates are thus written as 

and 

from which 

(1.75) 

from which 

Now, consider the two-mass system in Fig. 1.20(b), where each mass is free 
to move in two directions. We define four coordinates x1 , x2 , y1 , and y2 . By 
analogy with the one-dimensional oscillator, we can see that there are now 
four normal modes: two transverse modes (motion in they directions) and two 
longitudinal modes (motion in the x directions). Each longitudinal mode will 
be higher in frequency than the corresponding transverse mode, as in the 
one-mass system discussed in Section 1.9. Each mode can be described 
as motion along a normal coordinate. A system given an initial excitation 
along a single normal coordinate (or vibrating in a single ~ormal mode) would 
ideally remain in that same normal mode of vibration until it runs out of 
energy. We will return to this subject in a later chapter. 

1.12. Nonlinear Vibrations of a Simple System 

Thus far, we have dealt almost exclusively with linear systems in which the 
restoring force is proportional to the displacement. Vibrations of such a 
system are harmonic; the equations of motion are linear differential equations. 
The sum of any two solutions to a linear differential equation is itself a 
solution. Thus, we construct a linear combination of simple solutions to fit the 
particular requirements of the problem of interest; this is known as the 
principle of superposition. 

Nonlinear equations are more difficult to solve. Vibrations of a nonlinear 
system can no longer be expected to be simple harmonic motion. The principle 
of superposition does not hold; doubling the force does not necessarily double 
the response. The response of a nonlinear system may depend on both the 
frequency and the amplitude of the excitation. 

Let us first consider a simple system with a cubic term in the restoring force: 
Fx = - kx - b:xl. One such system could be the mass-spring system in Section 
1.6.6, where b is found to be Kaof tl for transverse oscillations. If the amplitude 
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is small, the ratio x 3 ja 3 is so small that the cubic force term can be ignored; 
this is an example of a linear approximation. For increasing amplitude, how
ever, a point is reached where this is no longer advisable. 

The nonlinear equation of motion is 

mx = -Kx- bx3 - FoCOSOJt. (1.76) 

As a first approximation to x, we select x 1 = A cos wt and substitute into the 
right hand side ofEq. (1.76) to obtain a second approximation 

mx2 = - KA cos wt - bA 3 cos3 wt - F0 cos wt, (1. 77) 

where x2 is the second approximation to the exact value of x. 
Using the identity cos3 x = 3/4 cos x + 1/4 cos 3x gives 

.. (KA 3bA3 F0 ) bA3 
x 2 =- -- + --+- coswt- --cos3wt. 

m 4m m 4m 
(1.78) 

Integration of Eq. (1.78) gives 

( KA 3bA3 F0 ) bA3 
x 2 = --2 + -4 2 + --2 cos wt + -36 2 cos 3wt. 

mw mw mw mw 
(1. 79) 

This process of successive approximation, sometimes called Duffing's method, 
works well if b, A, and F0 are sufficiently small. Note that the term bx3 in the 
force is responsible for the generation of a third harmonic (cos 3wt term in the 
expression for x 2 ). 

If we equate the cos wt term in Eq. (1.79) to A cos wt, which was our first 
approximation for x, we obtain 

2 K 3bA3 F0 
Aw =-A+--+-

m 4m m 

or (1.80) 

The relationship of amplitude to frequency (for a given driving force F0 ) from 
Eq. (1.80) is shown in Fig. 1.21. Note that the curve is double valued for a 
certain range of frequency. The dotted curve, obtained by setting F0 = 0 in 
Eq. (1.80), describes free oscillations of the system. 

When b is positive, the effective spring constant increases with amplitude; 
we call this a hardening spring system. In a hardening spring system, the 
free-oscillation frequency increases with amplitude. When b is negative, the 
effective spring constant and the frequency decrease with increasing ampli
tude; this is called a softening spring system. Response curves for softening 
and hardening spring systems are shown in Fig. 1.22. Damping has been added 
in order to limit the amplitude. 

Many other types of nonlinear oscillators exist in physics, and their equa
tions of motion are, in general, more difficult to solve than the one we have 
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A 

Fig. 1.21. Amplitude versus frequency for a nonlinear oscillating system. The dashed 
curve represents free oscillations. 

briefly discussed. In an oscillator with several normal modes (and normal 
coordinates t/11 , t/12 , ... , t/Jj), the spring constant K; used in the equation 
describing the normal mode may include a function of other normal co
ordinates: K; = K 0 + K 1(t/Ji). In general, this leads to coupling between the 
normal modes at a finite amplitude of oscillation. Forces resulting from this 
nonlinear coupling may be added to the driving force in the equation of 
motion: 

(1.81) 

In musical instruments, we encounter quite a number of cases where the 
forcing functionf(t) depends upon the vibration amplitude of the system being 
driven. The force between a violin bow and string, for example, depends upon 
their relative velocities, and the air flow through a clarinet reed depends upon 
the pressure difference across it. Nonlinearities of these types, however, are 
quite different from the nonlinear vibrations of simple systems discussed in 
this section. 

A A 

/ 

w 

(a) (b) (c) 

Fig. 1.22. (a) Response curves for oscillating system with softening spring behavior 
at small and large amplitudes. (b) Response curve for hardening spring behavior. 
(c) Response curve illustrating amplitude jumps at certain frequencies that lead to 
hysteresis. 

w 
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APPENDIX 

A.l. Alternative Ways of Expressing Harmonic Motion 

We have written the solutions to the equation .X+ w~x = 0 in three ways: 

x = A cos(w0 t + r/J), (1.3) 

x = B cos w0 t + C sin w0 t, (1.4) 

and 
X = Re(Aejwo), (Al.l) 

where 
A= Aeiif> = Acos,P + jAsinrjJ. (Al.2) 

In order to establish a relationship between these constants, we can expand 
the cosine in Eq. (1.3): 

x = A cos rjJ cos w0 t - A sin rfJ sin w 0 t. 

Comparison with Eq. (1.4) gives the relationships 

B = Acos,P, 

C = -AsinrjJ, 

and 
rjJ = arc tan(- C/ B). 

Comparing Eq. (1.4) with Eq. (A1.2), it is clear that 

Re(A) = A cos rjJ = B, 

and 
Im(A) = Asin,P =-C. 

(A1.3) 

(A1.4) 

Yet, a fourth useful form is obtained by writing x = DeP1 and noting 
that this will be a solution to the differential equation when p2 = - w~ or 
p = ±jwo. The general solution can then be written as 

(A1.5) 

D and D* are complex conjugates, as are ei"'o' and e-iwot, of course; thus, the 
general solution is real (since any number added to its complex conjugate is 
real). 

Expanding the exponentials in Eq. (A1.5) gives 

x = Dcoswot+ jDsinwot+D*coswot- jD*sinwot. 

Comparison with Eq. (ALl) gives 

D + D* = 2 Re(D) = A cos ,P, 
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and 
i(D- D*) = -2Im(D) = -A sintfo. (Al.6) 

To summarize, we have four forms of the solution given by Eqs. (1.3), (1.4), 
(Al.l), and (Al.S). Each form includes two arbitrary constants. Although in 
Eqs. (A1.1) and (A1.5) the constants are complex, x is real in each case. In 
Eq. (Al.l), the real displacement xis obtained by taking the real part of a 
complex displacement x; in Eq. (Al.5), however, the real displacement is 
obtained by adding two terms that are complex conjugates. 

A.2. Equivalent Electrical Circuit for a Simple Oscillator 

Many mechanical systems are mathematically equivalent to corresponding 
electrical systems. It is often helpful to represent a mechanical oscillating 
system by an equivalent electrical circuit, so that electrical network theory can 
be applied. The simple mechanical oscillator in Fig. 1.11 [and in Fig. Al.l(a)], 
for example, can be represented by the equivalent electrical circuit in 
Fig. Al.l(c). In the two electrical circuits, we identify velocity x with current 
i, displacement x with charge q, and force f(t) with voltage v(t). Mass m is 
then analogous to inductance L and stiffness to reciprocal capacitance ljC; 
resistance R appears in both circuits. 

The mechanical and electrical impedances are 

Zm = R + jXm = R + j(wm- Kjw), (Al.7a) 

and 
z. = R + jX. = R + j(wL - 1/wC). (Al.7b) 

The resonance frequencies are 

fo=2~~' 

f(t) ~ 
V(t) 

mx + Ri + Kx = f(t) di q 
L- + Ri +- = V(t) 

dt c 
(a) (b) (c) 

Fig. Al.l. (a) A simple mechanical oscillator. (b) Its equivalent electrical circuit. (c) 
Circuit of electrical analogs. 
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(b) 

m 

(d) 

Fig. A1.2. Mechanical oscillating systems and their equivalent electrical circuits. 

and (Al.8) 
1 

fo = 2n}LC' 

The oscillator in Fig. Al.1(a) is represented by a series circuit, because all 
the elements experience the same displacement x. If the force were applied to 
the end of the spring opposite the mass, as in Fig. A1.2(a), the system would 
be represented by the parallel circuit shown in Fig. Al.2(b). Similarly, the 
system in Fig. A1.2(c) has the equivalent circuit shown in Fig. A1.2(d). 

The reciprocal of electrical impedance is electrical admittance. In mechani
cal systems, the reciprocal of impedance is called mechanical admittance or 
mobility. Mobility Y is velocity divided by force. 

Note that the oscillating system in Fig. A1.2(a) is represented by a circuit 
[Fig. Al.2(b)] in which the two reactive elements (1/K and m) are in parallel. 

Frequency 

Fig. A1.3. Frequency response of the oscillating system shown in Fig. Al.2(a) as 
represented by the equivalent circuit in Fig. Al.2(b). 
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At the natural frequency w0 , .X has a minimum rather than a maximum value 
(although the velocity of the mass xm does not). This behavior is called an 
antiresonance rather than a resonance. At an antiresonance, the driving point 
impedance reaches its maximum value and the admittance (mobility) reaches 
a minimum. 
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CHAPTER 2 

Continuous Systems in One Dimension: 
Strings and Bars 

In the last chapter, we considered vibrating systems consisting of one or more 
masses, springs, and dampers. In this chapter, we will focus on systems in 
which these elements are distributed continuously throughout the system 
rather than appearing as discrete elements. We begin with a system composed 
of several discrete elements, then allow the number of elements to grow larger, 
eventually leading to a continuum. · 

2.1. Linear Array of Oscillators 

The oscillating system with two masses in Fig. 1.20 was shown to have 
two transverse vibrational modes and two longitudinal modes. In both the 
longitudinal and transverse pairs, there is a mode of low frequency in which 
the masses move in the same direction and a mode of higher frequency in 
which they move in opposite directions. 

The normal modes of a three-mass oscillator are shown in Fig. 2.1. The 
masses are constrained to move in a plane, and so there are six normal modes 
of vibration, three longitudinal and three transverse. Each longitudinal mode 
will be higher in frequency than the corresponding transverse mode. If the 
masses were free to move in three dimensions, there would be 3 x 3 = 9 
normal modes, three longitudinal and six transverse. 

Increasing the number of masses and springs in our linear array increases 
the number of normal modes. Each new mass adds one longitudinal mode and 
(provided the masses move in a plane) one transverse mode. The modes of 
transverse vibration for mass/spring systems with N = 1 to 24 masses are 
shown in Fig. 2.2; note that as the number of masses increases, the system 
takes on a wavelike appearance. A similar diagram could be drawn for the 
longitudinal modes. 

As the number of masses in our linear system increases, we take less and 
less notice of the individual elements, and our system begins to resemble a 
vibrating string with mass distributed uniformly along its length. Presumably, 
we could describe the vibrations of a vibrating string by writing N equations 

T. D. Rossing et al., Principles of Vibration and Sound
© Springer Science+Business Media New York 2004
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Fig. 2.1. Normal modes of a three-mass oscillator. Transverse mode (a) has the lowest 
frequency and longitudinal mode (f) the highest. 

Mode 2 3 4 5 ... 24 

N = 1 ~ 

N=2 ~ ~ 
N= 3 ~ --v A./' 
N=4 ~ ~ ~ Vv 
N= 5 ~~ ............... ~ ~ 

N=24~ 

"" 1'\J"' • ••• 
Fig. 2.2. Modes of transverse vibration for mass/spring systems with different numbers 
of masses. A system with N masses has N modes. 
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of motion for N equally spaced masses and letting N go to infinity, but it is 
much simpler to consider the shape of the string as a whole. 

2.2. Transverse Wave Equation for a String 

The study of vibrating strings has a long history. Pythagoras is said to have 
observed how the division of a stretched string into two segments gave 
pleasing sounds when the lengths of these two segments had a simple ratio 
(2 : 1, 3 : 1, 3 : 2, etc.). These are examples of normal modes of a string fixed 
at its ends. Closer examination of the motion of a string reveals that the 
normal modes depend upon the mass of the string, its length, the tension 
applied, and the end conditions. 

Consider a uniform string (Fig. 2.3) with linear density 11 (kgjm) stretched 
to a tension T (newtons). The net force dF, restoring segments ds to its 
equilibrium position, is the difference between the y components of T at the 
two ends of the segment: 

dFY = (T sin e)x+dx - (T sin B)x· 

Applying the Taylor's series expansion f(x + dx) = f(x) + aj(x) dx + · · · to 
T sin 8 and keeping first-order terms gives ax 

dF = [(T . e) a(T sin e) d ] _ ( . e) = a(T sin e) d 
y sm X + ax X T sm X ax X. (2.1) 

T 

y I 

----------------~ dx 

X x +dx 

Fig. 2.3. Segments of a string with tension T. 
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For small displacement y, sin(} can be replaced by tan(}, which is also oyfox: 

dF - o(T oyfox) d - T azy d (2.2) 
y - OX X - OX2 X. 

The mass ofthe segment ds is Jl.ds, so Newton's second law of motion becomes 

azy azy 
T ox2 dx = (Jl.ds) ot2 . (2.3) 

Since dy is small, ds ~ dx. Also, we write c2 = T/Jl. and obtain 

o2y T o2y o2y 
ot2 = --;; ox2 = c2 ox2. (2.4) 

This is the well-known equation for transverse waves in a vibrating string. 

2.3. General Solution of the Wave Equation: Traveling Waves 

The general solution of Eq. (2.4) can be written in a form credited to 
d'Alembert (1717-1783): 

(2.5) 

The function f 1 (ct - x) represents a wave traveling to the right with a velocity 
c; similarly, f 2 (ct + x) represents a wave traveling to the left with the same 
velocity. The nature of functions f 1 and f 2 is arbitrary; they could be sinusoidal 
or they could describe impulsive waves, for example. In fact, the two in
dependent functions f 1 and f 2 can be chosen so that their sum represents any 
desired initial displacement y(x, 0) and velocity oyfot = y(x, 0). 

Differentiation of Eq. (2.5) by x and t leads to 

oyfox = -!~ + J;, 
and (2.6) 

where f{ and J; are derivatives of the two functions with respect to their 
arguments. 

2.4. Reflection at Fixed and Free Ends 

In order to understand wave reflection at the ends of a string, we first consider 
what happens to a single pulse at fixed and free ends of a string, as indicated 
in Fig. 2.4. By fixed end, we understand that the string is securely fastened, 
but free end requires some explanation. We need to maintain tension in the 
x direction, but we watJt the string to move freely in the y direction. Thus, we 
imagine it is fastened to a massless ring that slides up and down on a rod 
without friction. 
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Fig. 2.4. Reflection of a pulse at a fixed end (a) and at a free end (b). In (a) the appropriate 
boundary condition can be met by having an imaginary pulse of opposite phase meet 
the real pulse at x = 0. In (b) the imaginary pulse has the same phase. 

1. At a fixed end, y = 0. Assuming that the string is fixed at x = 0, the 
general solution [Eq. (2.5)] becomes 

y = 0 = f 1(ct- 0) + f 2(ct + 0), 

from which 
ft(ct) = -f2(ct). 

Thus, an up pulse reflects as a down pulse, as shown in Fig. 2.4(a). 

2. At a free end, oyfox = 0 because no transverse force is possible. 
Thus, from Eq. (2.6), 

f)_ (ct) = f~(ct). 

Integration of Eq. (2.8a) gives 

An up pulse now reflects as an up pulse, as shown in Fig. 2.4(b). 

(2.7) 

(2.8a) 

(2.8b) 

Of couse, many other end conditions are possible. For example, the string 
may be attached to a string with a different linear density f.l, to a spring, or to 
a mass. A particularly important case is that of an end support that is nearly 
fixed but yields slightly, such as the bridge of a piano or violin. 

2.5. Simple Harmonic Solutions to the Wave Equation 

In order to see how simple harmonic motions are propagated along a string, 
we let the functions f 1 and f 2 in the general solution [Eq. (2.5)] each consist 
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of a sine term and a cosine term 

y(x, t) =A sin~(ct- x) + Bcos w (ct- x) + e sin~(ct + x) 
c c c 

+ Dcos~(ct + x) =A sin(wt- kx) + Bcos(wt- kx) 
c 

+ e sin(wt + kx) + D cos(wt + kx), 

where k = wjc = 2n/A is known as the wave number. 
Alternatively, we could have used the complex notation 

y(x, t) = .Jei<wt-kx) + iJei<wt+kxl, 

where y, 1, and Bare complex. In this case, y(x, t) = Re .Y(x, t). 

2.6. Standing Waves 

(2.9) 

(2.10) 

Consider a string of length L fixed at x = 0 and x = L. The first condition 
y(O, t) = 0 requires that A = - e and B = - D in Eq. (2.9), so 

y = A[sin(wt- kx)- sin(wt + kx)] + B[cos(wt- kx)- cos(wt + kx)]. 
(2.11) 

Using the sum and difference formulas, sin(x ± y) = sin x cosy ± cos x sin y 
and cos(x ± y) = cos x cosy + sin x sin y, 

y = 2A sin kx cos wt - 2B sin kx sin wt 

= 2[Acoswt- Bsinwt] sinkx. (2.12) 

The second condition y(L, t) = 0 requires that sin kL = 0 or wLjc = nn. 
This restricts w to values wn = nnc/L or f, = n(cj2L). Thus, the string has 
normal modes of vibration: 

(2.13) 

These modes are harmonic, because each f, is n times f 1 = cj2L. 
The general solution of a vibrating string with fixed ends can be written as 

a sum of the normal modes: 

(2.14) 
n 

and the amplitude of the nth mode is en = J A; + n;. At any point 

y(x, t) = L Yn(x, t). 
n 

Alternatively, the general solution could be written as 

(2.15) 
n 

where en is the amplitude of the nth mode and tPn is its phase. 
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2.7. Energy of a Vibrating String 

When a string vibrates in one of its normal modes, the kinetic and potential 
energies alternately take on their maximum value, which is equal to the total 
energy,just as in the simple mass-spring system discussed in Section 1.3. Thus, 
the energy of a mode can be calculated by considering either the kinetic or the 
potential energy. The maximum kinetic energy of a segment vibrating in its 
nth mode is 

dE = w~ Jl (A. 2 B2) . 2 nnx d 
n 2 n + n sm L X. 

Integrating over the entire length gives 

E = w~JlL (A2 + B2) = w~JlL c2 
n 4 n n 4 n· (2.16) 

The potential and kinetic energies of each mode have a time average value 
that is En/2. The total energy of the string can be found by summing up the 
energy in each normal mode: 

2.8. Plucked String: Time and Frequency Analyses 

When a string is excited by bowing, plucking, or striking, the resulting vibration 
can be considered to be a combination of several modes of vibration. For 
example, if the string is plucked at its center, the resulting vibration will consist 
of the fundamental plus the odd-numbered harmonics. Fig. 2.5 illustrates how 
the modes associated with the odd-numbered harmonics, when each is present 
in the right proportion, .add up at one instant in time to give the initial shape 
of the center-plucked string. Modes 3, 7, 11, etc., must be opposite in phase 
from modes, 1, 5, and 9 in order to give maximum displacement at the center, 
as shown at the top. Finding the normal mode spectrum of a string given its 
initial displacement calls for frequency analysis or Fourier analysis. 

~H,=mri< Relative 
amplitude Phase 

~1 "' 
Spectrum 

+ "0 
::I 

~ 
2 0 % 
3 .l s 9 

4 0 
o:l 
Oil 

~ 5 _L 0 
25 + ~ 

6 0 f, 
~ 7 I Frequency 49 

Fig. 2.5. Frequency analysis of a string plucked at its center. Odd-numbered modes of 
vibration add up in appropriate amplitude and phase to give the shape of the string. 



40 2. Continuous Systems in One Dimension: Strings and Bars 
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Fig. 2.6. Time analysis of the motion of a string plucked at its midpoint through one 
half cycle. Motion can be thought of as due to two pulses traveling in opposite 
directions. 

Since all the modes shown in Fig. 2.5 have different frequencies of vibration, 
they quickly get out of phase, and the shape of the string changes rapidly after 
plucking. The shape of the string at each moment can be obtained by adding 
the normal modes at that particular time, but it is more difficult to do so 
because each of the modes will be at a different point in its cycle. The resolution 
of the string motion into two pulses that propagate in opposite directions on 
the string, which we might call time analysis, is illustrated in Fig. 2.6. If the 
string is plucked at a point other than its center, the spectrum or recipe of the 
constituent modes is different, of course. For example, if the string is plucked 
! of the distance from one end, the spectrum of mode amplitudes shown in 
Fig. 2.7 is obtained. Note that the 5th harmonic is missing. Plucking the string 
! of the distance from the end suppresses the 4th harmonic, etc. (In Fig. 2.5, 
plucking it at t the distance eliminated the 2nd harmonic as well as other 
even-numbered ones.) 

A time analysis of the string plucked at ! of its length is shown in Fig. 2.8. 
A bend racing back and forth within a parallelogram boundary can be viewed 
as the resultant of two pulses (dashed lines) traveling in opposite directions. 
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Fig. 2.7. Spectrum of a string plucked one-fifth of the distance from one end. 
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Fig. 2.8. Time analysis through one half cycle ofthe motion of a string plucked one-fifth 
of the distance from one end. The motion can be thought of as due to two pulses 
[representing the two terms in Eq. (2.5)] moving in opposite directions (dashed curves). 
The resultant motion consists of two bends, one moving clockwise and the other 
counterclockwise around a parallelogram. The normal force on the end support, as a 
function of time, is shown at the bottom. 
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Each of these pulses can be described by one term in d' Alembert's solution 
[Eq. (2.5)]. 

Each of the normal modes described in Eq. (2.13) has two coefficients A. 
and B. whose values depend upon the initial excitation of the string. These 
coefficients can be determined by Fourier analysis. Multiplying each side of 
Eq. (2.14) and its time derivative by sin mnx/L and integrating from 0 to L 
gives the following formulae for the Fourier coefficients: 

2 iL . nnx A. = -- y(x, 0) sm-dx, 
m.L 0 L 

(2.17) 

2 iL . nnx B.=- y(x,O)sm-dx. 
L 0 L 

(2.18) 

Using these formulae, we can calculate the Fourier coefficients for the string 
oflength L plucked with amplitude h at one-fifth of its length, as shown in the 
time analysis in Fig. 2.8. The initial conditions are 

y(x,O) = 0, 

5h 
y(x,O) = Lx, 

=5h(1-~) 
4 L' 

0 ~X~ L/5, 
(2.19) 

L/5 ~X~ L. 

Using tbe first condition in Eq. (2.17) gives A. = 0. Using the second condition 
in Eq. (2.18) gives 

2 iL/5 5h mcx 2 IL 5h ( x) nnx B = - - x sin- dx + - - 1 - - sin -L dx 
n L 0 L L L L/5 4 L 

25h . nn 
= 2n2n2sm5. (2.20) 

The individual B.'s become: B1 = 0.7444h, B2 = 0.3011h, B3 = 0.1338h, 
B4 = 0.0465h, B5 = 0, B6 = -0.0207h, etc. Figure 2.7 shows 20 log!B.I for 
n = 0 to 15. Note that B.= 0 for n = 5, 10, 15, etc., which is the signature of 
a string plucked at 1/5 of its length. 

2.9. Struck String 

In considering the plucked string, we assumed an initial displacement (varying 
from 0 to 2h along the length of the string) but a zero initial velocity (every
where) at t = 0. Now, we consider the opposite set of conditions: zero initial 
displacement with a specified initial velocity. This velocity could be imparted 
by a hard hammer that strikes the string at t = 0, for example. Of course, a 
blow by a real hammer does not instantly impart a velocity to the string; in 
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fact, the nature of the initial velocity depends in a complicated way on a 
number of factors, such as the compliance of the hammer. Various models 
of hammer-string interaction are discussed in a series of papers by Hall 
(1986, 1987a,b). 

Suppose that the string is struck by a hard, narrow hammer having a 
velocity V. Mter a short timet, a portion of the string with length 2ct and mass 
2J1.ct is set into motion. As this mass increases and becomes comparable to the 
hammer mass M, the hammer is slowed down and would eventually be 
stopped. With a string of finite length, however, reflected impulses return while 
the hammer still has appreciable velocity, and these reflected impulses interact 
with the hammer in a rather complicated way, causing it to be thrown back 
from the string. 

At the point of contact, the string and hammer together satisfy the equation 

a2y (ay) 
M at2 = TA ax ' (2.21) 

while elsewhere the string continues to satisfy Eq. (2.4). The discontinuity in 

the string slope A(:~). according to Eq. (2.21), is responsible for the force 

that slows down the hammer. Equation (2.21) is satisfied at the contact point 
by a velocity 

v(t) = ve-tft, (2.22) 

where • = Mc/2T may be termed the deceleration time (Hall, 1986). The 
corresponding displacement is 

y(t) = V•(1 - e-tft). (2.23) 

The displacement at the contact point approaches VMcj2T, and the velocity 
approaches zero. If the string were very long, the displacement and velocity 
elsewhere on the string could be found by substituting t- [(x- x0 )/c] fort 
in Eqs. (2.24) and (2.25), as shown in Fig. 2.9. 

Only when the string is very long or the hammer is very light does the 
hammer stop, as in Fig. 2.9. In a string of finite length, reflected pulses return 
from both ends of the strings and interact with the moving hammer in a fairly 
complicated way. Eventually, the hammer is thrown clear of the string, and 
the string vibrates freely in its normal modes. 

In general, the harmonic amplitudes in the vibration spectrum of a struck 
string fall off less rapidly with frequency than those of the plucked strings 
shown in Figs. 2.5 and 2.7. For a very light hammer whose mass M is much 
less than the mass of the string M., the spectrum dips to zero for harmonic 
numbers that are multiples of 1/P (where the string is struck at a fraction p 
of its length), but otherwise does not fall off with frequency, as shown in 
Fig. 2.10(a). (The spectrum of sound radiated by a piano, which may be 
quite different from the vibration spectrum of the string, will be discussed in 
Chapter 12). 
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Fig. 2.9. Displacement and velocity of a long string at successive times after being struck 
by a hard narrow hammer having a velocity V. 

If the hammer mass is small but not negligible compared to the mass of the 
string, the spectrum envelope falls off as 1/n (6 dB/octave) above a mode 
number given by nm = 0.73 M8/M, as shown in Fig. 2.10(b). Note that for 
high harmonic (mode) numbers, there are missing modes between those in 
Fig. 2.10(a). 

0 

-10 

-20 

0 fdP 2!,/P 3fdP 0 fdP 2!,/P 3fdP 4fdP Sf,/P 
Frequency Frequency 

(a) (b) 

!"ig. 2.10. Spectrum envelopes for a string struck at a fraction p of its length: (a) hammer 
mass M « string mass Ms; (b) M = 0.4 PMs (from Hall, 1986). 
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2.1 0. Bowed String 

The motion of a bowed string has interested physicists for many years, and 
much has been written on the subject. In this chapter, we give only a brief 
description of some of the important features. 

As the bow is drawn across the string of a violin, the string appears to 
vibrate back and f-orth smoothly between two curved boundaries, much like 
a string vibrating in its fundamental mode. However, this appearance of 
simplicity is deceiving. Over a hundred years ago, Helmholtz (1877) showed 
that the string more nearly forms two straight lines with a sharp bend at the 
point of intersection. This bend races around the curved path that we see, 
making one round trip each period of the vibration. 

To observe the string motion, Helmholtz constructed a vibration micro
scope, consisting of an eyepiece attached to a tuning fork. This was driven in 
sinusoidal motion parallel to the string, and the eyepiece was focused on a 
bright-colored spot on the string. When Helmholtz bowed the string, he saw 
a Lissajous figure (see Section 1.10). The figure was stationary when the tuning 
fork frequency was an integral fraction of the string frequency. Helmholtz 
noted that the displacement of the string followed a triangular pattern at 
whatever point he observed it, as shown in Fig. 2.11. The velocity waveform 
at each point alternates between two values. 

Other early work on the subject was published by Krigar-Menzel and 
Raps (1891) and by Nobel laureate C.V. Raman (1918). More recent experi
ments by Schelleng (1973), Mcintyre, et al. (1981), Lawergren (1980), Kondo 
and Kubata (1983), and by others have verified these early findings and have 
greatly added to our understanding of bowed strings. An excellent discussion 
of the bowed string is given by Cremer (1981) .. 

The motion of a bowed string is shown in Fig. 2.12. A time analysis in 
Fig. 2.12(A) shows the Helmholtz-type motion of the string; as the bow moves 
ahead at a constant speed, the bend races around a curved path. Fig. 2.12(B) 
shows the position of the point of contact at successive times; the letters 
correspond to the frames in Fig. 2.12(A). Note that there is a single bend in 
the bowed string, whereas in the plucked string (Fig. 2.8), we had a double 
bend. 

y(t)~A/'v~ 
v(t) LrlJ Lfl_J n....____.n...._____.l 

(a) (b) (c) 

Fig. 2.11. Displacement and velocity of a bowed string at three positions along its 
length: (a) at x = L/4, (b) at the center, and (c) at x = 3Lj4. 
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<tf----------------:;.. (•l (i) ----------------
( ~-----------------, (b) 

~' ~' 
---------------
~ ----------- --- .... ... + ... ~(c) _, ______________ , 

+ -

(e) 

(h) 
... -_____________ ,..,.,. 

(A) 

Time 
(B) 

Fig. 2.12. Motion of a bowed string. (A) Time analysis ofthe motion, showing the shape 
of the string at eight successive times during the cycle. (B) Displacement of the bow 
(dashed line) and the string at the point of contact (solid line) at successive times. The 
letters correspond to the letters in (A). 

The action of the bow on the string is often described as a stick and slip 
action. The bow drags the string along until the bend arrives [from (a) in 
Fig. 2.12(A)] and triggers the slipping action ofthe string until it is picked up 
by the bow once again [frame (c)]. From (c) to (i), the string moves at the s~ 
ofthe bow. The velocity of the bend up and down the string is the usual.J T/JJ.. 

The envelope around which the bend races [the dashed curve in Fig. 
2.12(A)] is composed of two parabolas with a maximum amplitude that is 
proportional, within limits, to the bow velocity. It also increases as the string 
is bowed nearer to one end. 

The actual string motion may be a superposition of several Helmholtz-type 
motions. Also, if the bowing point is at an integral fraction of the length, so 
that certain harmonics are not excited, the displacement curves take on 
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ripples. These and many other details of bowed string motion are treated 
elegantly by Cremer (1981). 

2.11. Driven String: Impedance 

One way to excite a string is to apply a transverse force f(t) to one end. We 
first consider an infinite string with tension T and a transverse force j(t) = 
Feirot as shown in Fig. 2.13. Since the string is infinitely long and the force is 
applied at the left end, the solution consists only of waves moving to the right. 

y(x, t) = Aei<wt-kxl, 

where A is a complex constant giving the amplitude and the phase with respect 
to the driving force and k = wjc = 2njJ... 

Since there is no mass concentrated at x = 0, the driving force should 
balance the transverse component of the tension: 

F = -TsinO ~ -T(oyfox) x=O. 

Substitution of j(t) = Feicot and y(x, t) = Aei<wt-kxl gives 

Feiwt = jkTAeiwt 

or 
A= F/jkT, 

so 
-jF . 

y(x, t) = kT eJ<wt-kx>. 

The velocity u = iJYfot becomes 

u(x t) = Fw ei<wt-kxJ = Fe ei<wt-kxJ 
' kT T . 

(2.24) 

(2.25) 

(2.26) 

We define the mechanical input impedance Zin as the ratio offorce to velocity 
at the driving point, so 

j(t) 
Zin = u(O, t) . 

Fig. 2.13. Forces at x = 0 on a string free to move in they direction. 

(2.27) 
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In a string of infinite length (or a string terminated so that no reflections 
occur), Zin equals the characteristic impedance Z0 , which is a real quantity; 
the input impedance is purely resistive in an infinite string. 

T 
Z0 = -- = .JTP- = J-lC. 

c 
(2.28) 

The behavior of a string of finite length is more complicated because iJYfiJx 
at x = 0 depends upon the reflected wave as well. 

y(x, t) = Aej(wt-kx) + Bej(wt+kx). (2.29) 

Assume that the string is fixed at x = L and driven at x = 0 as before. 
Substitution of Eq. (2.29) into Eq. (2.24) gives 

Feiwt = T(jkA- jkB)eiwt. 

The boundary condition at x = L gives 

0 = Ae-ikL + fieikL_ 

Solving Eqs. (2.30) and (2.31) together gives 

and 

from which 

and 

- FeikL 
A=----

2jkTcoskL' 

- Fe-ikL 
B=---:----

-2jkTcoskL' 

_( )- F sink(L-x) jwt 
y x, t - kT cos kL e ' 

_( ) _ jwF sin k(L - x) jwt 
ux,t --k- k e . 

T cos L 

The input impedance at x = 0 is 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

- -jkT 
Zin = f(t)/il(x,t) = --cotkL = -jZ0 cotkL. (2.34) 

(1) 

This impedance is purely reactive and varies from 0 (kL = n/2, 3nj2, etc.) to 
±joo (kL = 0, n, etc.). These are the resonances and antiresonances of the 
string, respectively. 

2.12. Motion of the End Supports 

In Section 2.6, we considered the string to be terminated by two rigid end 
supports (y = 0 at x = 0 and x = L). We will now consider what happens 
when one of the end supports is not completely rigid. 
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We can generally describe the termination by writing its complex im
pedance. If the imaginary part of the complex impedance is masslike, the 
resonances of the string will be raised slightly above those given by Eq. (2.13); 
if it is springlike, on the other hand, the resonance frequencies will be lowered. 
The real part of the complex impedance is indicative of the rate of energy 
transfer from the spring to the support (the bridge and sound board of a guitar, 
for example). 

Let us consider a string fixed at x = 0 and terminated at x = L by a support 
that can be characterized by a mass m. The transverse force exerted on the 
mass by the string is - T(8yf8x)x=L· By Newton's second law, 

- T(ay;ax)L = m(82y/8t2)L. (2.35) 

Applying the boundary condition at x = 0 to Eq. (2.11) gives 

0 = Aeirot + Beiwt, 

so A = - B, and the harmonic solution becomes 

y(x, t) = A(- e-kx + ekx)eirot = A sin kxeiwt. 

Substituting Eq. (2.37) into Eq. (2.35) gives 

- kT A cos kL eiwt = - w 2mA sin kL eiwt, 

and 
w2 m ky2m km m 

cot kL = -- = ---- = -kL 
kT T p. M ' 

(2.36) 

(2.37) 

(2.38) 

where M = p.L is the total mass of the string. The transcendental equation, 
Eq. (2.38), can be solved graphically, as shown in Fig. 2.14, for two values of 
m/M. As m » M, the roots approach the values k = mr for the string fixed at 
x = L as well as at x = 0. Note that the normal mode frequencies obtained 

Fig. 2.14. Graphical solution of cot kL = (m/M)kL. 
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from Eq. (2.38) are slightly compressed from the harmonic relationship; the 
frequency of the lowest mode is raised slightly more than the second. 

2.13. Damping 

Damping of vibrating strings can generally be attributed to three different loss 
mechanisms: (1) air damping, (2) internal damping, and (3) transfer of energy 
to other vibrating systems. The damping due to these mechanisms will vary 
with frequency, and their contributions will be comparable in size in many 
systems. (Fletcher, 1976, 1977). 

2.13.1. Air Damping 

A vibrating string is not a good sound radiator. The reason for this is that 
the string acts as a dipole source, producing a compression in front and a 
rarefaction behind as it moves; its radius is so small that these effectively cancel 
each other. This does not mean, however, that the string has little interaction 
with the air. Viscous flow of air around the moving string may be the major 
cause of damping of its vibrations under some conditions. 

The complex problem of viscous drag on a vibrating string was solved 
long ago by Stokes, who showed that the force on the string has two com
ponents. One is an additional masslike load that lowers the mode frequencies 
very slightly; the other produces exponential decay of amplitude. 

Over a range of wire diameters and frequencies encountered in musical 
instruments, the retarding force experienced by a cylinder of length L and 
radius r moving with a velocity v and frequency f is 

2 2 (v'2 1 ) Fr = 2n Paf vr L M + 2M 2 , (2.39) 

where M = (r/2)J2nfl'fa, p8 ( ~ 1.2 kg/m3 ) is the density of air, and 'fa(~ 1.5 x 
w-s m2/s) is the kinematic viscosity. For typical harpsichord strings, M is in 
the range of 0.3 to 1.0. 

Since F, oc v, the rate of loss varies as v2 , which is proportional to kinetic 
energy. Thus, for oscillation at a single frequency, the amplitude should decay 
exponentially with a decay time constant 1:. 

p 2M2 
71 = 27rpJ 2..J2M + t" 

(2.40) 

The decay time is proportional to the wire density, but depends in a more 
complicated way on wire radius and frequency. 1:1 oc pr2 at low frequency and 
t 1 oc pr/.Jl at high frequency. 
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2.13.2. Internal Damping 

String material has so far been characterized by its radius, its density, and its 
Young's modulus, but more can be said than this. All real materials show an 
elastic behavior in which, when a stress is applied, an instantaneous strain 
occurs and then, over some characteristic time -r, the strain increases slightly. 
This second elongation may be moderately large or extremely small, and the 
time t may be anything from less than a millisecond to many seconds. In 
viscoelastic materials, the second elongation increases slowly but without 
limit. 

Such behavior can be represented by making the Young's modulus for the 
material complex: 

(2.41) 

According to a relaxation formula attributable to Debye, E 2 has a peak at 
the relaxation frequency w = 1/t. Equation (2.41) can, however, be used in the 
more general case where many relaxation times contribute, both E1 and E2 

varying with frequency. This behavior is simple to understand, E1 being 
contributed by normal elastic bond distortions and E 2 by relaxation processes 
such as dislocation motion or the movement of kinks in polymer chains. 
Typically E 2 /E 1 may be less than 10-4 in hard crystals, rather larger in 
metals, and perhaps as large as 10-1 in some polymer materials, though in 
such cases it may also depend on temperature. One elastic constant is really 
inadequate to describe even isotropic materials, but we shall neglect this added 
complication here. 

By substituting Eq. (2.41) into the equation of motion, the decay time for 
this internal damping can be found to be 

1 E1 
!2=--. 

nf E2 
(2.42) 

Clearly, internal damping is a material property independent of string 
radius, length, or tension. It is generally negligible for solid metal strings but 
may become the prime damping mechanism for gut or nylon strings or, more 
particularly, for strings of nylon overspun with metal. The decay time due to 
this mechanism is clearly shortest at high frequencies if, as is often the case, 
E1 is nearly independent of frequency. 

2.13.3. Energy Loss Through the Supports 

In considering energy transfer to a movable support (and through it to 
other vibrating systems), it is easier to consider admittance than impedance. 
Admittance (the reciprocal of impedance) is the ratio of velocity to force, and 
its real part G is called conductance. 

For a given string mode n, the velocity imparted to the support can be 
written 

(2.43) 
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In r 

Fig. 2.15. Schematic behavior of decay times 't; caused by various mechanisms as 
functions of the fundamental frequency / 1 of the string, which is assumed to be varied 
by changing only the string length. 1: 1 is determined by air damping, 1:2 by internal 
damping, and 1: 3 by loss to the support. Arrows indicate the directions in which the 
curves would be shifted by an increase in the string radius r, the density tension T, and 
the imaginary part ofthe Young's modulus E 2 , and by the mechanical conductivity G 
of the bridge (Fletcher, 1976). 

where Fn is the vertical component of the force and rx is a constant. An analysis 
of the energy loss process again leads to an exponential energy decay with a 
time constant given by (Fletcher, 1977) 

-r3 = (8JJ.Lj2G)-1• (2.44) 

When all three mechanisms contribute to damping, the decay time -r is 
obtained by adding reciprocals: 

(2.45) 

This relationship is shown schematically in Fig. 2.15 on the assumption 
that G and E 2 are independent of frequency. The curves show the various 
contributions to the decay time as functions of frequency on the assumption 
that we are dealing with a single string whose frequency is raised by reducing 
its length. Also indicated are the directions in which the various curves would 
move in response to increases in various string parameters. The curve for the 
resultant decay time is a smoothed lower envelope to the individual decay time 
curves. 

In most musical instruments, the rate at which energy is transferred from 
the string to the bridge and soundboard is quite small. For thin metal strings, 
the decay time is determined mostly by air viscosity, and so the decay time for 
the upper partials varies as 1/JJ: For instruments with gut or nylon strings, 
internal damping becomes dominant for most modes, and the decay time for 
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the upper partials varies as 1/f Such strings therefore have a much less 
brilliant sound than do metal strings. If a finger tip is used to stop the string 
or if the bridge is so light that end losses predominate, the decay time for the 
upper partials varies more nearly as 1/f2 • 

2.14. Longitudinal Vibrations of a String or Thin Bar 

Longitudinal waves in a string are much less common than transverse waves. 
Nevertheless, they do occur, and they may give rise to standing waves or 
longitudinal modes of vibration. Unlike transverse waves, their velocity (and 
hence their frequency) does not change with tension (except for possible 
changes in the physical properties of the string). Longitudinal waves in a thin 
bar travel at the same velocity as do longitudinal waves in a string of the same 
material. 

When a bar is strained, elastic forces are produced. Consider a short 
segment of length dx of a bar having a cross section area S, as shown in 
Fig. 2.16. The plane at x moves a distance w to the right while the plane at 
x + dx moves a distance w + dw. The stress is given by F / S and the strain 
(change in length per unit of original length) by owjox. If E is Young's 
modulus, Hooke's law can be written 

!_ = Eow 
s ox" 

(2.46) 

Expanding F + dF in a Taylor's series, and differentiating Eq. (2.46) gives 

oF o2w 
dF = F(x + dx) - F(x) = ox dx = SE ox2 dx. (2.47) 

The mass segment under consideration is pS dx, and thus, the equation of 
motion becomes 

o2w o2w 
pS dx ot2 = SE ox2 dx, 

o2 w E o2w o2w ------c2_ 
Ot2 - p OX2 - L OX 2 . 

(2.48) 

This is a one-dimensional wave equation for waves with a velocity cL = JE!P. 
w w+dw 

,...--. ~ 

F :-I I i -FM 

X X +dx 

Fig. 2.16. Forces and strains in a short segment of a bar (or string). 
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The general solution of Eq. (2.48) has the same form as the equation (2.5) 
for transverse waves in a string: 

(2.49) 

The normal modes of vibration depend upon the end conditions. If both ends 
are fixed, or if both ends are free, the mode frequencies are given by 

n = 1, 2, 3, ... , (2.50) 

and for a bar fixed at one end and free at the other, 

m = 1, 3, 5, .... (2.51) 

If the bar (or string) is terminated by a movable support, the modal frequencies 
are found by methods similar to that described in Section 2.12. 

2.15. Bending Waves in a Bar 

A bar or rod is capable of transverse vibrations in somewhat the same manner 
as a string. The dependence of the frequency on tension is more complicated 
than it is in a string, however. In fact, a bar vibrates quite nicely under zero 
tension, the elastic forces within the bar supplying the necessary restoring force 
in this case. 

When a bar is bent, the outer part is stretched and the inner part is 
compressed. Somewhere in between is a neutral axis whose length remains 
unchanged, as shown in Fig. 2.17. A filament located at a distance z below the 
neutral axis is compressed by an amount dt/J. The strain is z dt/Jfdx, and the 
amount of force required to produce the strain is 

dt/J 
EdSz dx' (2.52) 

where dS is the cross sectional area of the filament and E is Young's modulus. 

M(x)~ 
F(x + dx) , 

+ 
F(x) 

(b) 

Fig. 2.17. (a) Bending strains in a bar. (b) Bending moments and shear forces in a bar. 
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~K-h/.fii 
~ K=a/2 

~ 

Fig. 2.18. Radii of gyration for some simple shapes. 

The moment of this force about the center line is dM = [E dS z(dq)jdx)]z, 
and so the total moment to compress all the filaments is 

M = f dM = E~~ f z2 dS. (2.53) 

It is customary to define a constant K called the radius of gyration of the cross 
section such that 

(2.54) 

where S = f dS is the total cross section. The radius of gyration for a few 

familiar shapes is shown in Fig. 2.18. The bending moment is thus 

M = Edq) SK2 ~ -ESK2 a2 y 
dx - ax2 ' 

(2.55) 

since dq) ~ - ( :~) dx for small dq). 

The bending moment is not the same for every part of the bar. In order to 
keep the bar in equilibrium, there must be a shearing force F with a moment 
F dx, as shown in Fig. 2.17(b). 

F dx = (M + dM) - M = dM, 

and 
aM 2 a3y 

F = 7);: = -ESK ax3 • 

But the shearing force F is not constant, either; the net force dF = (aF ;ax) dx 
produces an acceleration perpendicular to the axis of the bar. The equation 
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of motion is 

(oF) o2y 
ox dx = (pS dx) ot2 

o4y o2y 
- ESK2 ox4 = pS iJt2 (2.56) 

02y EK2 iJ4y 
iJt2 = -P iJx4" 

This is a fourth-order differential equation. It is not possible to construct 
a general solution from transverse waves traveling with velocity v, as in 
the longitudinal case. The velocity of transverse waves is, in fact, quite 
dependent on frequency; that is, the bar has dispersion. 

We write the complex displacement as ji = Y(x)ei"'1; 

o2 - o4.Y d4Y . - EK2 d4Y 
__1'_ = -w2 Yeiwt and - = dx4 e1"'1, so -m2 Y= -----
W ~ P~ 

or 

where 
v2 = mK.JE[P = mKcL. 

Note that the wave velocity v(f) is proportional to fro. 
We now write Y(x) = Ae1"' and substitute 

or 

(JJ4 
y4Aeyx = -AeYx 

v4 ' 

(JJ 

y= ±-
v 

or 
.m 

±J-. v 

(2.57) 

The complete solution is a sum of four terms, each corresponding to one of 
the roots of Eq. (2.57): 

y(x, t) = ei"'t(Ae"'x'v + Be-wxjv + Eejwxjv + f5e-jwxfv). (2.58) 

Since e±x = cosh x ± sinh x and e±ix = cos x ± j sin x, another way of 
writing Eq. (2.58) is 

y = cos(mt + tP) A cosh-+ Bsmh- + Ccos- + Dsm- , [ 
WX . WX WX • WX J 
v v v v 

(2.59) 

where A, B, C, and D are now real constants (Kinsler et al., 1982). 
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Since the equation of motion is a fourth-order equation, we have four 
arbitrary constants. We thus need four boundary conditions (two at each end) 
to determine them. 

2.16. Bars with Fixed and Free Ends 

We will consider three different end conditions for a bar: free, supported 
(hinged), and clamped. For each of these, we can write a pair of boundary 
conditions. At a free end, there is no torque and no shearing force, so the 
second and third derivatives are both zero, as given in Fig. 2.19. At a simply 
supported (or hinged) end, there is no displacement and no torque, soy and 
its second derivative are zero. At a clamped end, y and its first derivative are 
zero. 

1. Example 1: A bar oflength L free at both ends. The boundary conditions 
at x = 0 become 

a2y (w)2 ox2 = 0 = cos(wt + t/J) --;- (A - C), 

and 
a3y (w)3 ox3 = 0 = cos(wt + t/J) --;- (B - D), 

from which A = C and B = D, so the general solution [Eq. (2.59)] becomes 

[ ( WX WX) ( . WX . WX)] y(x, t) = cos(wt + t/J) A cosh-;-+ cos-;- + B smh-;- + sm-;- . 

(2.60) 

At x = L, the boundary conditions become 

B( . hwL . wL)] + sm -;-- sm-;- , 

Free end 

Supported end )\ 

Clamped end y=O,oyfox= o 

Fig. 2.19. Three different end conditions for a bar. 
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03y (w)3 
[ ( wL wL) ox3 = 0 = cos(wt + ¢J) --;;-- A sinh----;- + sin--;;-

( wL wL)] + B cosh--;;- - cos--;;- . 

These equations can have a common solution only for certain values of w. 
Setting the expressions in brackets equal to zero, and dividing the first by the 
second gives 

cosh wLjv - cos wLjv sinh wLjv - sin wLjv 
sinh wLjv + sin wLjv cosh wLjv + sin wLjv · 

Cross multiply and note that sin2 x + cos2 x = cosh2 x - sinh2 x = 1: 

cosh2 wLjv- 2coshwLjvcoswLjv + cos2 wLjv = sinh2 wLjv- sin2 wLjv, 

wL wL 
2- 2cosh-cos- = 0, 

v v 

or 
wL 1 

cosh- = ------,::-:-
v coswLjv 

(2.61) 

This equation could be solved by graphing the two functions, but this is 
not very practical since the hyperbolic cosine increases exponentially. An 
alternative is to make use of the indentities: 

and 

X 
tan-= 

2 
1- COSX 

1 + COSX 

x coshx- 1 
tanh2 = coshx + 1' 

so that Eq. (2.61) becomes 

wL wL 
tan2v = ±tanh2V. (2.62) 

A graph of these two functions is shown in Fig. 2.20. The intersections of 
these curves give roots wLj2v = n/4 (3.011, 5, ... ). But v2 = wKJEfP, so 
w2 = (v 2n2j4L2 ) (3.011 2, 52, 72 , •••• ), and the allowed frequencies are given by 

nK fE 2 2 2 )2 ( ) !,= 8L2 ~p[3.011 ,5 ,7 , ... ,(2n+1 ]. 2.63 

The frequencies and nodal positions for the first four bending vibrational 
modes of a bar with free ends are given in Table 2.1. Note that the frequencies 
are not harmonically related as they were for longitudinal modes. 
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Fig. 2.20. Curves showing tangent, cotangent, and hyperbolic tangent functions (from 
Kinsler eta!., "Fundamentals of Acoustics," 3rd ed., copyright © 1982, John Wiley & 
Sons, Inc. Reprinted by permission). 

2. Example II: A bar oflength of L clamped at x = 0 and free at x = L. The 
boundary conditions at x = 0 now lead to the result that A + C = 0 = B + D. 
The transcendental equation, which gives the allowed values of frequency, is 
now [see equation 3.55 in Kinsler et al. (1982)] 

wL wL 
cot-= +tanh-. 

2v - 2v 

Again, we obtain the frequencies by using Fig. 2.20: 

nK (if 2 2 2 2 
fn = 8L 2 VP[l.194, 2.988 , 5, ... , (2n- 1) ]. (2.64) 

These frequencies are in the ratios / 2 = 6.267/1 , / 3 = 17.55/1,/4 = 35.39/1 , 

Table 2.1. Characteristics of transverse vibrations in a bar 
with free ends. 

Frequency 
(Hz) 

/ 1 = 3.5601K/UJE/p 
2.756!1 
5.404!1 
8.933!1 

Wavelength 
(m) 

1.330L 
0.800L 
0.572L 
0.445L 

Nodal positions 
(m from end of 1-m bar) 

0.224, 0.776 
0.132, 0.500, 0.868 
0.094, 0.356, 0.644, 0.906 
0.073, 0.277, 0.500, 0.723, 0.927 
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Fig. 2.21. Bending vibrations of (a) a bar with two free ends, (b) a bar with one clamped 
end and one· free end, and (c) a bar with two supported (hinged) ends. The numbers are 
relative frequencies; to obtain actual frequencies, multiply by (nK/L 2 )y'FjP. 

etc. The lowest frequency has the frequency / 1 = 0.5598K/ L 2 JE!P, which is 
only about i of the lowest frequency of the same bar with two free ends. 

3. Example III: A bar oflength L with simple supports (hinges) at the ends. 
The frequencies are given by 

f,. = ;~ Am2 m = 1, 2, 3, . .. . (2.65) 

These frequencies are considerably lower than those given by Eq. (2.63), since 
the bending wavelengths are longer than the corresponding modes of the free 
bar, as shown in Fig. 2.21. 

2.17. Vibrations of Thick Bars: 
Rotary Inertia and Shear Deformation 

Thus far, we have considered transverse motion of the bar due to the bending 
moment only. Such a simplified model is often called the Euler-Bernoulli 
beam. It is essentially correct for a long, thin bar or rod. The Timoshenko 
beam, a model that considers rotary inertia and shear stress, is prefered in 
considering thick bars. 

As a beam bends, the various elements rotate through some small angle. 
The rotary inertia is thus equivalent to an increase in mass and results in a 
slight lowering of vibrational frequencies, especially the higher ones. 

Shear forces, which we considered in deriving the equation of motion 
[Eq. (2.56)], tend to deform the bar; in particular they cause rectangular 
elements to become parallelograms and thus decrease the transverse deflection 
slightly. Therefore, the frequencies of the higher modes are decreased slightly 
in a thick bar as compared with a thin one. 
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2.18. Vibrations of a Stiff String 

In real strings, the restoring force is partly due to the applied tension and 
partly due to the stiffness of the string (although the former usually dominates). 
Thus, the equation of motion of a flexible string [Eq. (2.4)] can be modified 
by adding a term appropriate to bending stiffness: 

i]2y - i]2y 2 i]4y 
J1 ot2 - T ox2 - ESK ox4. (2.66) 

In this equation, J1 is mass per unit length, Tis tension, E is Young's modulus, 
S is the cross-sectional areas and K is the radius of gyration, as before. 

Solving this equation is difficult, but if the stiffness of the string is small, the 
mode frequencies can be written (Morse, 1948) as 

o 2 n2n2 2 
fn = nf1 [1 + {3 + {3 + - 8-{3 ], (2.67) 

where ft is the fundamental frequency of the same string without stiffness and 
f3 = (2K/L)ftSfi'. For a string with a circular cross section, K is half the 
radius a, so f3 = (a 2/L)_J;E!T. The second two terms in Eq. (2.67) raise the 
frequency of all the modes, but the fourth term depends upon n2 and thus 
stretches the intervals between the higher modes. 

String stiffness is of considerable importance in the tuning of piano strings. 
To minimize beating between the upper strings and the inharmonic overtones 
of the lower strings, octaves are stretched to ratios that are greater than 2 : 1. 
In a 108-cm (42-inch) upright piano, for example, the fourth harmonic of C4 

(middle C) is about 4 cents (0.2%) sharp, but this increases to about 18 cents 
(1.1%) for C 5 (Kent, 1982). In a large grand piano with long strings, inhar
monicity is considerably less, but in small spinets it is substantially greater. 

The stiffness of a violin string is of considerable importance when it is 
excited by bowing. In our discussion of Helmholtz-type motion in Section 
2.10, we envisioned a very sharp bend propagating back and forth on an ideal 
string with great flexibility. On a real string, however, the bend is rounded 
appreciably by the stiffness of the string (and to a lesser extent by damping of 
high-frequency components). The rounded Helmholtz bend is sharpened each 
time it passes the bow, however, and so the resultant motion represents 
an equilibrium between the rounding and sharpening process. Two effects 
that depend upon rounding of the Helmholtz corner are noise due to small 
variations in period (jitter) and the note flattening with increased bow pressure 
(Cremer, 1981; Mcintyre and Woodhouse, 1982). 

2.19. Dispersion in Stiff and Loaded Strings: Cutoff Frequency 
Waves on an ideal string travel without dispersion; that is, the wave velocity 
is independent of frequency. Thus, a pulse does not change its shape as it 
propagates back and forth on an ideal, lossless string. Two sources of dispersion 
in real strings are stiffness and mass loading. In addition, loss mechanisms in 
strings are frequency dependent. 
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(1) (1) 

(b) (c) 

Fig. 2.22. Graphs of OJ versus k for (a) an ideal string, (b) a stiff string, and (c) a string 
loaded with masses spaced a distance a apart. 

In an ideal string, OJ and k are related by the simple expression m = ck, so 
the wave velocity equals the slope ofthe line obtained by plotting m versus k, 
as in Fig. 2.22(a). In order to draw a graph of m versus k for a stiff string, we 
write Eq. (2.67) as 

n fi( 2 4K2 ES 2 2 ) 
wn = 2n 2L '>/ Ji 1 + P + P + 8L 2 T n n 

= k /;( 1 + P + p2 + K;:s k2) 
= k ~; ( 1 + p + P2 + rlk2 ). (2.68) 

The graph of Eq. (2.68) is shown in Fig. 2.22(b). When the graph of w versus 
k is a curved line, we observe two different wave velocities: a phase velocity v,p 
and a group velocity v8• These are given by 

V,p = wfk and v8 = dmfdk. (2.69) 

The phase velocity is the velocity of a wave crest or a given phase angle, 
whereas the group velocity is the velocity of the wave envelope of a given 
amplitude of the wave packet. 

For a string loaded with equally spaced masses, dispersion of a different 
type is observed. The dispersion relationship can be written (see p. 76 in 
Crawford, 1965) as 

w(k) = 2 Jr sin ka, (2.70) 

where a is the spacing between beads of mass m. The maximum value of w 
is 2-JTTiiiQ, which occurs when k = 1rla. The allowed values of k between 
0 and 1rla equal the number of normal modes of the system, which is also 
equal to the number of equally spaced masses. 

The maximum value of w divided by 2n is called the cutoff frequency J.,: 

J., = !._ {T. (2.71) 
n V;Ji, 

It represents the highest frequency of wave disturbance that can propagate on 
the loaded string. Note that when k = nfa, the group velocity v8 = dmfdk = 0. 
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2.20. Torsional Vibrations of a Bar 

Torsional waves are a third type of wave motion possible in a bar or rod. 
The equation of .motion for torsional waves is derived by equating the net 
torque acting on an element of the bar to the product of moment of inertia 
and angular acceleration. Young's modulus is replaced by the shear modulus. 
The resulting wave equation is quite similar to the equation for longitudinal 
waves. 

Torsional waves in a bar, like compressional waves (but unlike bending 
waves), are nondispersive; that is, they have a wave velocity that is independent 
of frequency 

(2.72) 

where GKT is the torsional stiffness factor that relates a twist to the shearing 
strain produced, pi is the polar moment of inertia per unit length, p is density, 
and G is the shear modulus. For a circular rod, KT ~I, so the velocity is 
.JG!P; for square and rectangular bars, it is slightly less, as shown in Fig. 2.23. 

In many materials the shear modulus G is related to the Young's modulus 
E and Poisson's ratio v by the equation 

G= E 
2(1 + v) 

(2.73) 

In aluminum, for example, v = 0.33, so G = 0.376£, and the ratio of torsional 
to longitudinal wave velocity in a circular aluminum rod is 0.61. 

The torsional modes of vibration of a bar with free ends have frequencies 
that equal the torsional wave velocity times n/2L in direct analogy to the 
longitudinal modes. (If one end of the bar is clamped, the frequencies become 
m/4L (m = 1, 3, 5, ... ). 

Bowing a violin string excites torsional waves as well as transverse waves. 
For a steel E string tuned to 660 Hz, the torsional wave speed vT is about 
7.5 times the transverse wave speed c, but for a gut E string, vT/c ~ 2 
(Schelleng, 1973). Gillan and Elliott (1989) found values of vT/c from 2.6 to 7.6 
in violin strings and 5.7 for a steel cello string. Furthermore, they found 
damping factors from 1% to 7.7%, which suggests that torsional damping is 
dominated by internal damping in the string rather than reflection losses at 
the bridge and nut. Torsional waves change the effective compliance of the 
string and affect the mechanics of the bow/string interaction in other ways 
as well (Cremer, 1981). 

~ ~ hM W= 2h ·~ w>6h 

CT = v'GiP CT = 0.92v'G;P CT = 0.74v'G;P CT = (2hjw)fojP 

Fig. 2.23. Torsional wave velocities for bars with different cross sections. 
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CHAPTER 3 

Two-Dimensional Systems: 
Membranes and Plates 

In this chapter, we will consider two-dimensional, continuous vibrating sys
tems, with and without stiffness. An ideal membrane, like an ideal string, has 
no stiffness of its own, and thus, its oscillations depend upon the restoring force 
supplied by an externally applied tension. A plate, on the other hand, like a 
bar, can vibrate with fixed or free ends and with or without external tension. 

3.1. Wave Equation for a Rectangular Membrane 

The simplest two-dimensional system we can consider is a rectangular mem
brane with dimensions Lx and Ly, with fixed edges, and with a surface tension 
T that is constant throughout. 

Consider an element with area density u, as shown in Fig. 3.1. It has been 
displaced a small distance dz, and the surface tension T acts to restore it to 
equilibrium. The forces acting on the edges dx have the magnitude T dx, and 
their vertical components are - T sin a. dx and - T sin p dx. For small a. and p, 

. (az) sma. ~tan a.= a 
y y+dy 

and 

sinp ~ tanp = (!;); 
Therefore, 

Fy = Tdx[ (!;)y+dy- (!;)J = Tdx;;~ dy. 

Similarly, the vertical component of the forces acting on the edges dy is 

o2z 
Fx = Tdy oy2 dx. 

The total force on element dx dy is F = Fx + Fy, so the equation of motion 

T. D. Rossing et al., Principles of Vibration and Sound
© Springer Science+Business Media New York 2004
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Tdx 
z 

~--dx ----1~ 
X 

Fig. 3.1. Forces on a rectangular membrane element. 

(F =rna) becomes 

or 

o2z T (o2z o2z) 
ot2 = ---;; ox2 + oy2 = c2 v2 z. (3.1) 

This is a wave equation for transverse waves with a velocity c = )Tra. It 
is easily solved by writing the deflection z(x, y, t) as a product of three func
tions, each of a single variable: z(x, y, t) = X(x) Y(y) T(t). The second deriva-
tives are 

and 

so that the equation becomes 

1 d2T c2 d2X c2 d2Y 
-----+--
T dt2 - X dx2 Y dy2 . 

(3.2) 

This equation can only be true if each side of the equation is a constant, which 
we denote as -w2 • This gives two equations: 

d2 T 
dt2 + w2T = 0, 

with solutions T(t) = E sin wt + F cos wt, and 

1 d2X w2 1 d2Y 
--+-=--
X dx2 c2 Y dy2 · 
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Again, each side must equal a constant, which we will call k2 • This gives 

d2x + (w2 - k2)x = o, 
dx 2 c2 

with solutions X(x) = AsinJ(w2jc2)- k2 x + BcosJ(w2jc2)- k2 x, and 

d2 Y 
dy2 + k2Y = 0, 

with solutions Y(y) = C sin ky + D cos ky. For a rectangular membrane of 
dimensions Lx by Ly, fixed at all four sides, the boundary conditions require 
that z = 0 for x = 0, x = Lx, y = 0, and y = Ly. From the first condition, we 
see that B = 0; from the second, 

v-:; 
Asin..J-;?-"' Lx = 0, so 

( ) . mnx 
Xx =Asm~-, 

LX 

and 

with m = 1, 2, .... From the third, D = 0; and from the fourth, C sin kLy = 0, 
so kLy = nn and Y(y) = C sin(nn/Ly}y, with n = 1, 2, .... Therefore, 

. mnx C . nny ( . ) 
Zmn = A s1n ~- sm- E sm wt + F cos wt 

Lx Ly 

. mnx . nny ( . N . ) 
= s1n ~- sm -- M sm wt + cos wt , 

Lx Ly 
m = 1, 2, . . . . (3.3) 

To determine the modal frequencies, solve j(w2/c2)- k2 = mn/Lx for w: 

and 

m, n = 1, 2, .... (3.4) 

Comparison of Eqs. (3.3) and (3.4) with Eqs. (2.13) and (2.14), which describe 
the modes in a string, suggests that the normal modes of a rectangular 
membrane might be called two-dimensional string modes. Standing waves in 
the x direction appear to be independent of standing waves in they direction. 
Some of the modes are illustrated in Fig. 3.2. 

DCJBGJ [J] till' I I -T-,--
• ' ' I I 

m = n = 1 m = 2, n = 1 m = 1, n = 2 m = n = 2 m = 3, n = 1 m = 3, n = 2 

Fig. 3.2. Some normal modes of a rectangular membrane. 
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3.2. Square Membranes: Degeneracy 

In a square membrane (L. = Ly), fmn = fnm; the mn and nm modes are said 
to be degenerate, since they have the same frequency. Although there are now 
fewer allowed frequencies, there are just as many characteristic functions as in 
the rectangular case. In fact, the membrane can vibrate with simple harmonic 
motion at a frequency fmn with any of an infinite number of different shapes 
corresponding to different values of a and bin the equation. 

z(x, y, t) = (azmn + bznm) COS Wmnt where a2 + b2 = 1. (3.5) 

Various combinations of z13 and z31 are shown in Fig. 3.3. 
An important difference between a string and a membrane is in the reaction 

to a force applied at a single point, as shown in Fig. 3.4. A string pulled aside 
by a force F applied a distance x from one end will deflect a distance h so that 
T(hjx) and T[h/(L - x)] add up to F. An ideal membrane, on the other hand, 
cannot support a point force F, and the displacement theoretically becomes 
infinite no matter how small the force! If a force F is applied to a small circle 

Fig. 3.3. Degenerate modes of vibration in a square membrane corresponding to 
different values of a and bin Eq. (3.5). Arrows point to the nodal lines (Morse, 1948). 

F 

F 

Fig. 3.4. Reaction of a string and membrane to a force applied at a point. 
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of radius rat the center of a membrane of radius a, the displacement becomes 

2F a z =Tin,-:, (3.6) 

which goes to infinity as r-+ 0 (Morse, 1948, p. 176). 

3.3. Circular Membranes 

For a circular membrane, the wave equation [Eq. (3.1)] should be written in 
polar coordinates by letting x = r cos t/J and y = r sin t/J. 

o2z (o2z 1 oz 1 o2z) 
ot2 = c2 or2 + r or + r2 ot/J2 . (3.7) 

We write solutions of the form z(r, t/J, t) = R(r)<l>(t/J)eicot leading to the 
equations: 

and (3.8) 
d2<1> . 
dt/J2 + m2<1> = 0. 

The solution to the second equation is <l>(t/J) = Ae±imt/>. The first equation is a 
formofBessel'sequation(d 2yjdx2 ) + (1/x)(dyjdx) + [1- (m2/x 2 )]y = Owith 
y = R and x = kr = wrjc. The solutions are Bessel functions of order m. Each 
of these functions Jo(X), J1 (x), ... , Jm(X) goes to zero for Several values of X as 
shown in Fig. 3.5. 

J0 (x) = 0 

J1(x) = 0 

when 

when 

X = 2.405, 5.520, 8.654, ... . 

X = 0, 3.83, 7.02, 10.17, ... . 

X 

Fig. 3.5. First three Bessel functions. 
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OCDEB©®@ 
1.000 1.594 2.136 2.296 2.653 2.918 

®@@00@~ 
3.156 3.501 3.600 3.652 4.060 4.154 

Fig. 3.6. First 12 modes of an ideal membrane. The mode designation (m, n) is given 
above each figure and the relative frequency below. To convert these to actual fre
quencies, multiply by (2.405/2na)jf,0, where a is the membrane radius. 

The nth zero of Jm(kr) gives the frequency of the (m, n) mode, which has m 
nodal diameters and n nodal circles (including one at the boundary). In the 
fundamental (0, 1) mode, the entire membrane moves in phase. The first 14 
modes of an ideal membrane and their relative frequencies are given in Fig. 3.6. 

3.4. Real Membranes: Stiffness and Air Loading 

The normal mode frequencies of real membranes may be quite different from 
those of an ideal membrane given in Fig. 3.6. The principal effects in the 
membrane acting to change the mode frequencies are air loading, bending 
stiffness, and stiffness to shear. In general, air loading lowers the modal 
frequencies, while the other two effects tend to raise them. In thin membranes, 
air loading is usually the dominant effect. 

The effect on frequency of the air loading depends upon the comparative 
velocities for waves in the membrane and in air, and also upon whether the 
air is confined in any way. A confined volume of air (as in a kettledrum, 
for example) will raise the frequency of the axisymmetric modes, especially 
the (0, 1) mode. When a membrane vibrates in an unconfined sea of air, 
however, all the modal frequencies are lowered, the modes oflowest frequency 
being lowered the most. The confining effect of the kettle enhances this 
frequency lowering in the non-axisymmetric modes such as (1, 1) and (2, 1) 
(Rossing, 1982b). Further discussion will be given in Chapter 18. 

Stiffness to shear is a second-order effect whose effect on frequency can be 
considerable if the amplitude of vibration is not small. Stiffness to shear is 
encountered when one tries to distort a sheet of paper so that it will fit snugly 
around a bowling ball, for example (Morse and Ingard, 1968). It is quite 
different from bending stiffness, which is encountered when the paper is rolled 
up. Bending stiffness will be discussed in Section 3.12. 
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3.5. Waves in a Thin Plate 

A plate may be likened to a two-dimensional bar or a membrane with stiffness. 
Like a bar, it can transmit compressional waves, shear waves, torsional waves, 
or bending waves; and it can have three different boundary conditions: free, 
clamped, or simply supported (hinged). 

A plate might be expected to transmit longitudinal (compressional) waves 
at the same velocity as a bar: cL = ft!P. This is not quite the case, however, 
since the slight lateral expansion that accompanies a longitudinal compression 
is constrained in the plane of the plate, thus adding a little additional stiffness. 
The correct expression for the velocity of longitudinal waves in an infinite 
plate is 

(3.9) 

where vis Poisson's ratio (v ~ 0.3 for most materials). 
Actually, pure longitudinal waves [Fig. 3.7(a)] occur only in solids whose 

dimensions in all directions are greater than a wavelength. These waves 
travel at a speed c~, which is slightly less than the quasi-longitudinal waves 
[Fig. 3.7(b)] that propagate in a bar or a plate (see Cremer et al., 1973). 

E(1- v) 
(3.10) c~ = 

p(1 + v)(1 - 2v) · 

Transverse waves in a solid involve mainly shear deformations, although 
both shear stresses and normal stresses may be involved. Solids not only 

r--

<------- A. ------> 

(a) 

,.........- r-- ___ ..--

- ......... l-- ---.__ 
.!c 

(b) 

Fig. 3.7. (a) Pure longitudinal wave in an infinite solid. (b) Quasi-longitudinal wave in 
a bar or plate. 
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resist changes in volume (as do fluids), but they resist changes in shape as 
well. Plane transverse waves occur in bodies that are large compared to the 
wavelength in all three dimensions, but also in flat plates of uniform thickness 
(see Chapter 2 in Cremer et al., 1973). Transverse w~ropagate at the same 
speed as torsional waves in a circular rod (cT = .jG/p). The shear modulus 
G is considerably smaller than Young's modulus E, so transverse and torsional 
waves propagate at roughly 60% of the speed of longitudinal waves. The 
radiation of sound in both cases is rather insignificant compared to the case 
of bending waves, which we now discuss. 

The equation of motion for bending or flexural waves in a plate is 

iJ2z Eh2 
iJt2 + 12p(1 - v2) V4z = 0, (3.11) 

where pis density, vis Poisson's ratio, E is Young's modulus, and his the plate 
thickness. For harmonic solutions, z = Z(x,y)eiwt: 

(3.12) 

where 

Bending waves in a plate are dispersive; that is, their velocity v depends upon 
the frequency 

.(3.13) 

The frequency of a bending wave is proportional toP: 

f = wj2n = 0.0459hcLP. (3.14) 

The values of k that correspond to the normal modes of vibration depend, of 
course, on the boundary conditions. 

3.6. Circular Plates 

For a circular plate, V2 is expressed in polar coordinates, and Z(r, r/J) can be a 
solution of either (V2 + P)Z = 0 or (V2 - k2)Z = 0. Solutions of the first 
equation contain the ordinary Bessel functions Jm(kr), and solutions to the 
second, the hyperbolic Bessel functions Im(kr) = rm Jm(jkr). Thus, the possible 
solutions are given by a linear combination of these Bessel functions times an 
angular function: 

Z(r, r/J) = cos(m,P + ~) [AJm(kr) + Blm(kr)J. (3.15) 



3.6. Circular Plates 73 

If the plate is clamped at its edger= a, then Z = 0 and oZjor = 0. The first 
of these conditions is satisfied if AJm(ka) + Bim(ka) = 0, and the second if 
AJ;,.(ka) + BI:.,(ka) = 0. 

The allowed values of k are labeled kmn' where m gives the number of nodal 
diameters and n the number of nodal circles in the corresponding normal 
mode: 

k01 = 3.189/a, k11 = 4.612/a, 

k 02 = 6.306/a, k12 = 7.801/a, 

k 03 = 9.425/a, k 13 = 10.965/a, 

[kmn ~ (2n + m)n/2a as 

k21 = 5.904/a, 

k 22 = 9.400/a, 

k23 = 12.566/a, 

n~oo]. 

The corresponding mode frequencies are given in Table 3.1. 

Table 3.1. Vibration frequencies of a circular plate with clamped edge. 

j 01 = 0.4694cLh/a2 

fo2 = 3.89fo1 
fo3 = 8.72fo1 

fu = 2.08fo1 
! 12 = 5.95!01 
!13 = 11.75fo1 

!21 = 3.41fo1 
!22 = 8.28fo1 
!23 = 15.06fo1 

!31 = 5.00fo1 
!32 = 10.87!01 
!33 = 18.63fo1 

!41 = 6.82fo1 
!42 = 13.7lfo1 
!43 = 22.47fo1 

A plate with a free edge is more difficult to handle mathematically. The 
boundary conditions used by Kirchoff lead to a rather complicated expression 
for kmn' which reduces to (2n + m)n/2r for large ka (see Rayleigh, 1894). The 
(2, 0) mode is now the fundamental mode; the modal frequencies are given in 
Table 3.2. The mode frequencies for a plate with a simply supported (hinged) 
edge are given in Table 3.3. 

Table 3.2. Vibration frequencies of a circular plate with free edge. 

fo1 = 1.73f2o 
fo2 = 7.34f2o 

f2o = 0.2413cLhfa2 f3o = 2.328f2o f4o = 4.llf2o fso = 6.30f2o 
f 11 = 3.9lf20 
!12 = 11.40f2o 

!21 = 6.71f~o !31 = 10.07f2o !41 = 13.92f2o fs1 = 18.24f2o 
!22 = 15.97f2o !32 = 21.19f2o !42 = 27.18f2o fs2 = 33.31f2o 

Table 3.3. Vibration frequencies of a circular 
plate with a simply supported edge. 

fo 1 = 0.2287cLh/a2 

fo2 = 5.98fo1 
fo, = 14.91fo1 

!11 = 2.80fo1 
!12 = 9.75fo1 
! 13 = 20.66!01 

!11 = 5.15fo1 
!22 = 14.09fo1 
! 23 = 26.99fo1 

The frequencies in Tables 3.1-3.3 are derived mainly from calculations 
given by Leissa (1969). Measurements on two large brass plates by Waller 
(1938) are in good agreement with the data in Table 3.2. Some modes of 
circular plates are shown in Fig. 3.8. 

Chladni (1802) observed that the addition of one nodal circle raised the 
frequency of a circular plate by about the same amount as adding two nodal 
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Fig. 3.8. Vibrational modes of circular plates: (a) free edge and (b) clamped or simply 
supported edge. The mode number (n, m) gives the number of nodal diameters and 
circles, respectively. 

diameters, a relationship that Rayleigh (1894) calls Chladni's law. For large 
values of ka, ka ~ (m + 2n)n/2, so that f is proportional to (m + 2n)2• The 
modal frequencies in a variety of circular plates can be fitted to families of 
curves: fmn = c(m + 2n)P. In flat plates, p = 2, but in nonflat plates (cymbals, 
bells, etc.), pis generally less than 2 (Rossing, 1982c). 

3.7. Elliptical Plates 

The fundamental frequency of an elliptical plate of moderately small eccentri
city with a clamped edge is given approximately by the formula (Leissa, 1969) 

f ,.., 0.291cLh J 2 (a)2 (a)4 - 1+-- +-a2 3b b' (3.16) 

where a and b are the semimajor and semiminor axes. An elliptical plate with 
a/b = 2 has frequencies 37% greater than a circular plate with the same area. 
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Waller (1950) shows Chladni patterns and gives relative frequencies for 
elliptical plates with ajb = 2 and ajb = 5/4. The nodal patterns resemble those 
in rectangular plates of similar shape. 

3.8. Rectangular Plates 

Since each edge of a rectangular plate can have any of the three boundary 
conditions listed in Section 3.5 (free, clamped, or simply supported), there are 
27 different combinations of boundary conditions, and each leads to a different 
set of vibrational modes. Our discussions will be limited to three cases in 
which the same boundary conditions apply to all four edges. 

3.8.1. Simply Supported Edges 

The equation of motion is easily solved by wntmg the solutions as a 
product of three functions of single variables, as in the rectangular membrane 
(Section 3.1). 

The displacement amplitude is given by 

. (m + l)nx . (n + l)ny 
Z = Asm sm , 

L. Ly 
(3.17) 

where L. and Ly are the plate dimensions, and m and n are integers (beginning 
with zero). The corresponding vibration frequencies are 

fmn = 0.453cLh[ (m ~ 1Y + (n ~ 1YJ (3.18) 

The displacement is similar to that of a rectangular membrane, but the modal 
frequencies are not. Note that the nodal lines are parallel to the edges; this is 
not the case for plates with free or clamped edges, as we shall see. 

It is convenient to describe a mode in a rectangular plate by (rn, n), where 
m and n are the numbers of nodal lines in they and x directions, respectively 
(not counting nodes at the edges). To do this, we use m + 1 and n + 1 in 
Eq. (3.17) rather than m and n, as in a rectangular membrane [Eq. (3.4)]. Thus, 
the fundamental mode is designated (0, 0) rather than (I, 1 ). 

3.8.2. Free Edges 

Calculating the modes of a rectangular plate with free edges was described 
by Rayleigh as a problem "of great difficulty." However, Rayleigh's own 
methods lead to approximate solutions that are close to measured values, and 
refinements by Ritz bring them even closer. Results of many subsequent 
investigations are summarized by Leissa (1969). 

The limiting shapes of a rectangle are the square plate and the thin bar. The 
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modes of a thin bar with free ends have frequencies [from Eq. (2.63)] 

O.l13h !P 2 2 2 fn = - 2- -[3.0112, 5 , ... , (2n + 1) ]. 
L p 

(3.19) 

The nth mode has n + 1 nodal lines perpendicular to the axis of the bar. As the 
bar takes on appreciable width, bending along one axis causes bending in a 
perpendicular direction. This comes about because the upper part of the bar 
above the neutral axis (see Fig. 2.17) becomes longer (and thus narrower), 
while the lower part becomes shorter (and thus wider). We have already 
seen how Poisson's constant v is a measure of the lateral contraction that 
accompanies a longitudinal expansion in a plate (Section 3.5) and how the 
factor 1 - v2 appears in the expression for both longitudinal and bending 
wave velocities [Eqs. (3.9) and (3.13)]. 

Several bending modes in a rectangular plate can be derived from the 
bending modes of a bar. The (m, 0) modes might be expected to have nodal 
lines parallel to one pair of sides, and the (0, n) modes would have nodes 
parallel to the other pair of sides. Because of the coupling between bending 
motions in the two directions, however, the modes are not pure bar modes. 
The nodal lines become curved, and the plate takes on a sort of saddle shape 
(i.e., concave in one direction but convex in the perpendicular direction). This 
can be called anticlastic bending, and it is quite evident in the modes of two 
different rectangular plates shown in Fig. 3.9. 

0 2 3 4 

0 

2 

0 z 3 4 

0 

z 

3 

Fig. 3.9. Chladni patterns showing the vibrational modes of rectangular plates of 
different shapes: (a) L./Ly = 2; (b) L.fLr = 3/2 (Waller, 1949). 
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(2, 0) - (0, 2) 

(2,0) [[]] [IT] [] lTil ~ I I I 
Lx/Ly = 4 2 3/2 12/11 21/20 1 

(2, 0) + (0, 2) 

(0.2) 3 g gg D lQl 
Fig. 3.10. Mixing ofthe (2, 0) and (0, 2) modes in rectangular plates with different L,/Ly 
ratios (after Waller, 1961). 

It is interesting to note how the combinations develop in a rectangle as 
L./Ly approaches unity. Fig. 3.10 shows the shapes of two modes that are 
descendents of the (2, 0) and (0, 2) beam modes in rectangles of varying L,/ Ly. 
When L. » Ly, the (2, 0) and (0, 2) modes appear quite independent. However, 
as Ly -+ L., the beam modes mix together to form two new modes. In the 
square, the mixing is complete, and two combinations are possible depending 
upon whether the component modes are in phase or out of phase. 

Frequencies for the modes that have as their bases the (2, 0) and (0, 2) beam 
modes are shown in Fig. 3.11. The frequencies have been normalized to L., 
and the normalized frequency of the (2, 0) mode is seen to be relatively 
independent of Ly. The dashed curves are obtained from an approximate 
formula using the Rayleigh method, whereas the solid curves are from a more 
exact numerical calculation (Warburton, 1954). 
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0.7 0.8 0.9 1.0 

Fig. 3.11. Normalized frequencies for the (2,0) and (0,2) modes (and modes based on 
combinations of these) in rectangular plates with free edges and varying L,/Ly ratios 
(from Warburton, 1954). B = 2.2l(L;/h)jp(l- v2 )/E. 
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3.9. Square Plates 

It is obvious from Fig. 3.10 that in plates with L, » Ly (or Ly » L,), two 
normal modes are similar to the (2, 0) and (0, 2) beam modes, with nodal lines 
nearly parallel to the edges. As the plate becomes more nearly square, these 
modes are replaced by normal modes that are essentially linear combinations 
of the beam modes. The nodal patterns of the two modes can be understood 
from the graphical construction in Fig. 3.12. Zeros denote regions in which 
the contributions from the (2, 0) and (0, 2) modes cancel each other and lead 
to nodes. The (2, 0) + (0, 2) and (2, 1) - (0, 2) modes are sometimes referred to 
as the ring mode and X mode, respectively, on account of the shapes of their 
nodal patterns. 

From Fig. 3.11, it is clear that the (2, 0) + (0, 2) ring mode has a higher 
frequency than the (2, 0) - (0, 2) X mode. In the X mode, the bending motions 
characteristic of the (2, 0) and (0, 2) beam modes aid each other through 
an elastic interaction that we call Poisson coupling, since its strength de-

0 - 0 

' / 

+ ' , + .o, , 
' 

0 - 0 ~ 
(a) 

[] + [:] + 0 + 
/ ' 

0 - )o 
+ '0 + fa 

(b) 

B + ~ -
-

+ 

'o, - a + 
+ b, -'a 

Q + Q -
- b, +b 

= ~ 
(c) 

B + c;J = + 
- -

+ d - ,d 
0- , 0 + 
- ,d + d 

0 + 0 -
= tBJ 

(d) 

Fig. 3.12. Graphical construction of combination modes in a square isotropic plate: 
(a) (2, 0 - 0, 2), X mode; (b) (2, 0 + 0, 2), ring mode; (c) (2, I - I, 2) mode; and 
(d) (2, I + I, 2) mode. 
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(1, 1) (2, 0) - (0, 2) (2, 0)+ (0, 2) (2, 1) (1, 2) 

rn~DJarn 
1.00 1.52 1.94 2.71 2.71 

Emum~~rn 
4.81 5.10 5.10 5.30 6.00 

Fig. 3.13. The first 10 modes of an isotropic square plate with free edges. The modes are 
designated by m and n, the numbers of nodal lines in the two directions, and the relative 
frequencies for a plate with v = 0.3 are given below the figures. 

pends upon· the value of Poisson's constant. In the (2, 0) + (0, 2) ring mode, 
however, there is an added stiffness due to the fact that the (2, 0) and (0, 2) 
bending motions oppose each other. Thus, the Poisson coupling splits a modal 
degeneracy that otherwise would have existed in a square plate. The ratio of 
the (2, 0 + 0, 2) and (2, 0 - 0, 2) mode frequencies is (Warburton, 1954) 

f+ 1 + 0.7205v 

f- 1- 0.7205v' 
(3.20) 

Also shown in Fig. 3.12 are the (2, 1)- (1, 2) and (2, 1) + (1, 2) modes, which 
have the same frequency as the (2, 1) and (1, 2) modes, since Poisson coupling 
does not aid or oppose either combination. Thus, any of these four modes can 
be excited depending upon where the driving force is applied. There are, in 
fact, a large number of degenerate modes, all linear combinations of the (2, 1) 
and (1, 2) modes, which can be excited. 

The first 10 modes of an isotropic square plate with free edges are shown 
in Fig. 3.13. The mode oflowest frequency, the (1, 1) mode, is a twisting mode 
in which opposite corners move in phase. Its frequency is given by 

CT h {G h ~ hcL [1'=V 
! 11 = 2Ly = LxLy VP = L 2 v~ = L 2 v~-2-, (3.21) 

where the torsional wave velocity cT from Fig. 2.23 is used (subject to the 
restriction that Lx > 6h). In this equation, his the thickness and G is the shear 
modulus. 

Note that the (2, 1) and (1, 2) modes form a degenerate pair, as do the (3, 0) 
and (0, 3) modes. However, Poisson coupling removes the degeneracy in the 
case of the (3, 1)/(1, 3) pair just as it does in the (2, 0)/(0, 2) case. The general 
rule is that a nondegenerate pair of modes (m, n ± n, m) exists in a square plate 
when m - n = ± 2, 4, 6, .... 
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Fig. 3.14. Modal frequencies of an isotropic aluminum plate (L. constant). Lines repre
senting the (1, 1) and (2, 2) twisting modes have a slope of 1; lines representing the (0, 2) 
and (0, 3) bending modes have a slope of 2 (from Caldersmith and Rossing, 1983). 

The modal frequencies in an aluminum plate with a varying length to width 
ratio are shown in Fig. 3.14. In this case, Lx was kept constant as Lr was varied, 
so the frequency of the (3, 0) mode, for example, is unchanged. The (1, 1) mode 
has a slope of 1, as predicted by Eq. (3.19). The (0, 3) bending mode has a 
slope of 2, as does the (0, 2) mode above and below the region of Lx = Lr. The 
(2, 1) mode, which combines twisting and bending motions, has a slope of 
about-!. 
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3.10. Square and Rectangular Plates with Clamped Edges 

The first eight modes of a square plate with clamped edges are shown in 
Fig. 3.15. There is considerable variation in the mode designation by various 
authors, and so we have used the same designation that was used in Section 
3.8.1 for a plate with simply supported edges: m and n are the numbers of nodes 
in the directions of the y and x axes, respectively, not counting the nodes at 
the edges. The fundamental (0,0) mode has a fre uency: 00 = 1.654cLhfL2 , 

where his the thickness, Lis length, and cL = Efp(1 - v2 ) is the longitudinal 
wave velocity (Leissa, 1969). The relative frequencies of the modes are given 
below the patterns in Fig. 3.15. 

Comparing the modes of the square plate with clamped edges to one with 
free edges, we note that 

1. the (1, 1) mode has a frequency nearly 10 times greater than the (1, 1) mode 
in a free plate. 

2. three other modes exist below the (1, 1) mode in the clamped plate. 
3. the X mode and ring mode are only about 0.5% different in frequency, and 

the diameter of the ring node is smaller than it is in a free plate. · 
4. nondegenerate mode pairs (m, n ± n, m) exist when m - n = ± 2, 4, 6, ... , 

as in the free plates, but the transition from modes characteristic of rect
angular plates to those of square plates changes much more abruptly as 
Lx--+ Ly in clamped plates than in free plates (Warburton, 1954). 

Relative frequencies of rectangular plates with clamped edges (from Leissa, 
1969) are given in Table 3.4. The actual frequencies can be obtained by 
multiplying the relative frequencies by 1.654cLh/L;. 

om am 
1.00 2.04 2.04 3.01 

(2,0)- (0,2) (2,0) + (0,2) (2, 1) (1,2) 

~[Q]ffi]~ 
3.66 3.67 4.58 4.58 

Fig. 3.15. Modal patterns for the first eight modes of a square plate with clamped edges. 
Relative frequencies are given below the patterns. 
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Table 3.4. Relative vibrational frequencies of rectangular plates with clamped edges. 

Mode Mode L,/Lr = 1 1.5 2 2.5 3 OCJ 

(0,0) CJ 1.00 0.75 0.68 0.66 0.64 0.62 

(0, 1) E3 2.04 1.88 1.82 1.79 1.78 1.72 

(1,0) OJ 2.04 1.16 0.88 

(1, 1) EE3 3.01 '2.27 2.02 1.91 1.86 1.72 

3.11. Rectangular Wood Plates 

Wood can be described as an orthotropic material; it has different mechanical 
properties along three perpendicular axes (longitudinal, radial, and tangential, 
which we denote by L, R, and T). Thus, there are three elastic moduli and six 
Poisson's ratios, although they are related by expressions of the form (Wood 
Handbook, 1974) 

i,j = L, R, T. 

Most plates in musical instruments are quarter-cut plates (the log is split or 
sawed along two radii); the growth rings lie perpendicular to the plate. For a 
quarter-cut plate, the axes L and R lie in the plane and the axis T in the 
direction of the thickness. Thus, the constants of interest are EL, ER, vLR• and 
VRL = VLRER/EL. 

To describe the vibrational modes of wood plates generally requires four 
elastic constants. These may be Young's moduli along (Ex) and across (Ey) the 
grain, the in-plane shear modulus G, and the larger of the two Poisson ratios 
Vxy· For a quarter-cut plate in the xy plane, Ex = EL, Ey = ER, G = GLR, Vxy = 
vLR• and vyx = vRL· For other plate orientations, the elastic constants of the 
plate may be combinations with other elastic constants of the wood (see 
Fig. 1 in Mcintyre and Woodhouse, 1986). 

Since EL >ERin wood, the modal patterns in Fig. 3.13 that are particularly 
characteristic of a square plate will not exist in square wood plates. However, 
the corresponding modal patterns may appear in rectangular wood plates 
when the ratio of length (along the grain) to width (across the grain) is 

Lx = (EL)l/4 
Ly ER 

For Sitka spruce, for example, EdER = 12.8, vRL = 0.029, and vLR = 0.37 
(Wood Handbook, 1974). Thus (2,0 ± 0,2) combination modes of the type in 
Fig. 3.15, for example, might be expected in a rectangular plate with Lx/Ly = 
1.9. (This is somewhat greater than the value 1.5, which has appeared several 
places in the literature.) 
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Fig. 3.16. Modal frequencies of a quarter-cut spruce plate (Lx constant). The (1, 1) 
twisting mode has a slope of 1; the (0, 2) bending mode has a slope of 2 (Caldersmith 
and Rossing, 1983). 

The modal frequencies of a quarter-cut spruce plate are shown in Fig. 3.16. 
The (2, 0 ± 0, 2) ring mode and X mode occur at about Lx/Ly = 2, as expected. 
The curve relating the frequency ofthe (1, 1) mode to Lx/Ly has a slope of one, 
as in the aluminum plate in Fig. 3.14, and for the (2, 0) mode, the slope is two. 

Some modal patterns obtained in the same spruce plate are shown in 
Fig. 3.17. The (2,0) and (0,2) beam modes appear relatively unmodified when 
Lx/Ly is well above or below the critical ratio of 2.08 where the X mode and 
ring mode appear. Note that the (2, 0) and (0, 2) modes mix oppositely in phase 
for L.)Ly above and below 2.08. 

Modes of vibration closely resembling the X mode and ring mode, along 
with the (1, 1) twisting mode, have been used by violin makers for centuries to 
tune the top and back plates of violins before assembling the instruments. If 
a plate is held with the fingers at a nodal line and tapped at an antinode, the 
trained ear of a skilled violin maker can ascertain whether the plate has a clear 
and full ring. In recent years, many violin makers, following the lead of Carleen 
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Fig. 3.17. Modal shapes of the A(2, 0) + B(O, 2) combination modes in a quarter-cut 
spruce plate. In (a) and (e), lA I« 1 (opposite in sign in the two cases). In (f) and (j), 
IBI « 1. In (c) and (h), A/B = ± 1 (Caldersmith and Rossing, 1983). 

Hutchins, have used Chladni patterns to test and guide the tuning of these 
three important modes (see Fig. 3.18). 

Many of the formulas in Chapters 2 and 3 for vibrations of bars and plates 
of isotropic material are easily modified for wood by substituting Ey or E. for 
E and vyx vxy for v 2• For example, Eqs. (3.18) and (3.19) become 

[ (m + 1)2 (n + 1)2] fmn = 0.453h Cx ~ + Cy ---r;;- , (3.18') 

where 
Cx = VEx/ p(l - VxyVyx) and 

and 
- 0.113h 1/ 2 2 2 2 fn---v-(cxcy) [(3.0112) ,5 , ... ,(2n+l) ]. (3.19') 
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Back 

Fig. 3.18. Chladni patterns showing two modes of vibration in the top and back of a 
viola (Hutchins, 1977). 

The torsional stiffness Dxy of a wooden plate depends upon E,, Ey, and G, but 
it can be approximated by the geometric average fo:)J; of the bending 
stiffness in the x andy directions (Caldersmith, 1984). Thus, Eq. (3.21) can be 
written as 

fi = _h_ @. ~ h(cycx) 1/ 2 ./1-~. 
11 LxLy y-;; LyLx V 2 

(3.21 ') 

The analogue to Eq. (2.73) is, approximately, 

y'ExE; 
G = ..,--,-,----'--------,-

2(1 + v'VxyVyx) 
(2.73' ) 

3.12. Bending Stiffness in a Membrane 

In Chapter 2, we described a stiff string as being slightly barlike and added a 
term to the equation of motion to represent the bending stiffness. We follow 
the same approach now by describing a stiff membrane as being slightly 
platelike, and we add a term to the equation of motion [Eq. (3.1) or (3.7)] to 
represent the bending stiffness: 

iJ2z = !_ V2z - h2 E V4z = c2 V2z - S4 V4z, (3.22) 
ot2 (1 12p(l - v2 ) 

where Tis tension, u is mass per unit area, his thickness, E is Young's modulus, 
pis density, vis Poisson's ratio, and cis the velocity of transverse waves in the 
membrane without stiffness. 

Assuming a solution z = AJm(kr) cosmO cos wt leads to the equation 

es4 w2 
p + - - - = 0. (3.23) 

c2 c2 
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Solving for the frequency gives 

(J) ckp;2S4 

f=-2 =-2 1 +-2 . 
1t 1t c 

(3.24) 

For a typical Mylar membrane used on a kettledrum, E = 3.5 x 109 Njm2 , 

h = 1.9 x 10-4 m, a (radius)= 0.328 m, p = 1.38 x 103 kgjm3, and u = 0.262 
kgjm2, so that c = 100 mjs, S4 = 8.7 X 10-3 m4 js2• For ku = 10 m-1, the 
k2S4 jc2 term in Eq. (3.24) is about 10-4, so the frequency of the (1, 1) mode is 
raised about 0.005% by the effect of bending stiffness. In other drums, the 
frequency change may be as large as 0.1%. 

3.13. Shallow Spherical Shells 

Vibrations of curved shells have been extensively studied, both theoretically 
and experimentally, by various investigators. In addition to the flexural modes 
of vibration found in a flat plate, a curved shell has many longitudinal, 
torsional, and thickness shear modes. Fortunately, the lowest modes in a 
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Fig. 3.19. Calculated motion center B and frequency w for vibrations of amplitude A 
on a thin spherical-cap shell of dome height H. The normal mode frequency for 
small-amplitude vibrations is w0 (Fletcher, 1985). 



3.13. Shallow Spherical Shells 87 

shallow shell are mainly flexural, and thus a simple theory of transverse 
vibrations is quite accurate for treating the lowest modes. 

Equation (3.11) for a flat' plate can be suitably modified to describe a 
shallow spherical shell by adding a term V 2F/R, where R is the radius of 
curvature of the shell, and F is Airy's stress function: 

a2z Eh2 V2F 
at2 + 12p(l - v2) V4z + R = 0. (3.25) 

A second equation, in which his the shell thickness, completes the problem 
(Johnson and Reissner, 1958): 

V4F- hE:2z = 0. (3.26) 
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Fig. 3.20. Calculated motion center B and frequency ro for vibrations of amplitude A 
on a spherical-cap shell of dome height H when the normalized shell thickness h/H has 
the value shown as a parameter. The normal mode frequency for small-amplitude 
vibrations is ro0 • The broken curve shows the limited range behavior of a moderately 
thin everted shell (Fletcher, 1985). 
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The modal frequencies of a spherical shell are generally somewhat greater 
than those of a flat plate. In a clamped edge shell whose apex height H (above 
the edge plane) equals shell thickness h, for example, the fundamental mode 
has a frequency about 40% greater than that of a flat plate with the same radius 
and thickness (Kalnins, 1963). Other modal frequencies for a shell with a 
clamped edge are given in Kalnins (1963) and for a free edge in Reissner (1955). 

In a very thin shell, in which flexural rigidity makes a minor contribution 
to the restoring force, the frequency of the fundamental mode initially decreases 
with amplitude A, as shown in Fig. 3.19. After reaching a minimum at an 
amplitude A ~ 0.8H, it increases with amplitude (Fletcher, 1985). 

When the shell is not ideally thin, the flexural rigidity cannot be ignored, 
the frequency can be calculated by using a variational method (Reissner, 1964). 
The results for values of h/H up to 2.0 are shown in Fig. 3.20. Again, the 
fundamental frequency in each case falls initially with increasing amplitude, 
reaches a minimum, and then rises again to exceed the original frequency w0 

for A greater than about 2H (Fletcher, 1985). 
Also shown in Figs. 3.19 and 3.20 are calculated values of B, the centroid 

of the oscillation. For very thin shells (h ~ 0.3H), there is a second equilibrium 
position with B < - H, but this is stable only for small amplitude vibrations, 
and for which the mode frequency is less than w 0 • 

In a curved shell, there are five possible edge conditions (free, fixed, clamped, 
hinged, and simply supported), whereas in a flat plate there are only three 
(free, clamped, and simply supported). The clamped and simply supported 
conditions allow the edges of a shell to move tangentially, so that inextensional 
modes can occur (Grossman et al., 1969). 

3.14. Nonlinear Vibrations in Plates and Shallow Shells 

Equation (3.11) can be extended to large-amplitude vibrations by adding a 
term of the form - NV2z, where N includes both radial and transverse stresses. 
Physically, this represents an amplitude-dependent, membrane-type restoring 
force due to stretching the plate on the outside of the bulge, compressing it on 
the inside. The frequency of the fundamental mode rises approximately with 
the square of the amplitude (Fletcher, 1985): 

(3.27) 

Thus, a flat plate is said to exhibit hardening spring behavior (see Section 1.11 ). 
In a shallow spherical shell, the nonlinearity at large amplitude can be 

either of the hardening or softening spring type, depending upon the curvature. 
In a shell with a fixed edge, softening occurs when the apex height H exceeds 
the thickness h. When H = 2h and A = h, for example, the frequency is about 
10% less than its small-amplitude value (Grossman et al., 1969). 

The softening effect at moderately large amplitude offsets some of the 
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increase in vibrational frequency with curvature. Again using as an example 
a shell with a fixed edge having H = 2h, at small amplitude the fundamental 
frequency is approximately twice that of a flat plate, but the ratio diminishes 
to 1.6 when A = h. 

Spherical, cylindrical, and conical shells all show nonlinear behavior of 
the softening spring type at moderately large amplitude. A shell with two 
independent radii of curvature Rx and Ry can show either hardening or 
softening behavior, however. For most ratios of Rx/Ry, shells with a rect
angular edge, for example, show an initial softening followed by a hardening 
at very large amplitude. The hyperbolic parabola (Rx/Ry = -1), however, 
shows the same type of hardening behavior as a flat plate (Leissa and Kadi, 
1971). 

An interesting case of nonlinear frequency shift has been noted in a small 
gong used in Chinese opera. The gong, which has a slightly domed striking 
surface, surrounded by conical shoulders, glides upward by about two semi
tones after being struck (Rossing and Fletcher, 1983). That is, the frequency 
at the large initial amplitude is some 12% lower than at small amplitude, thus 
illustrating a nonlinearity ofthe softening spring type shown in Fig. 3.19. 

Nonlinear behavior at large amplitude gives rise to harmonics of the 
fundamental frequency. For small amplitudes, the amplitude A 2 ofthe second 
harmonic varies with A~ and that ofthe third harmonic A3 with A~, where A1 

is the fundamental amplitude. For A1 ;;::: H, however, the motion becomes 
more nearly symmetric, and A 2 decreases with increasing A1 • Indeed, in 
the thin-shell approximation, A2 is zero for A1 ;;::: 0.8H (Fletcher, 1985). In 
approximations of higher order, the influence of A2 on A3 , etc., is taken into 
account, and the harmonic structure changes in a rather complex way with 
amplitude. 

3.15. Driving Point Impedance 

In Section 1.7, we discussed the mechanical impedance Z (and its reciprocal, 
the mobility or mechanical admittance Y) of a simple oscillator. In Fig. 1.13(a), 
the real part of the admittance reaches its maximum value at resonance, while 
the imaginary part goes through zero. On the Nyquist plot in Fig. 1.13( c), the 
entire frequency span from w = 0 to w -+ oo represents a complete circle. 

In a more complex system, the impedance depends upon the location at 
which the force F and the velocity v are measured. If the force F is applied at 
a single point and the velocity v is measured at the same point, the quotient 
F(nd/v(n1 ) = Z, is called the driving-point impedance. Measuring F and vat 
different locations gives a transfer impedance. 

The driving point impedance is often measured by means of an impedance 
head, which incorporates both a force transducer and accelerometer, as 
shown in Fig. 3.21. Both transducers employ piezoelectric crystals, and the 
accelerometer has an inertial mass attached to the crystal, as shown. Since 
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Acceleration 
output 

Excitation 

Test structure 

Fig. 3.21. Impedance head consisting of an accelerometer and force transducer. 

attaching the impedance head adds mass m to the structure, the measured 
impedance z~ is the true driving point impedance zl plus the impedance jwm 
of the added mass m below the force transducer: 

z~ = zl + jwm. (3.28) 

The second term can be minimized by placing the force transducer next to the 
structure and making its mass as small as possible. 

In practice, the impedance head is generally attached to an electromagnetic 
shaker, which furnishes the driving force or excitation. The output of the 
accelerometer is integrated to obtain a velocity signal, which is divided by the 
force to obtain the admittance (or vice versa for impedance). The driving force 
may be a swept sinusoid, random noise, or pseudorandom noise. When 
random noise is used, it is necessary to employ a real-time spectrum analyzer 
to obtain the admittance or impedance of the structure as a function of 
frequency "(often called the frequency response function). 

3.15.1. Impedance of Infinite Bars and Thin Plates 

The input impedance for longitudinal waves in an infinitely long bar is simply 
JlCL , where Jl is the mass per unit length and cL is the longitudinal wave speed. 
The input impedance for flexural waves is a little more difficult to calculate, 
since the speed of flexural waves is frequency dependent (Section 2.15), and 
also because in flexure, there are exponentially decaying near fields in addition 
to the propagating waves (Cremer et al., 1973). The impedance is 

- 1+j 
Z(f) = JlV(f)-2- . (3.29) 

The impedance is complex and increases with .Jl, as does the flexural wave 
speed v(f), up to a certain limiting frequency. 
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The input impedance of a thin, isotropic, infinite plate, on the other hand, 
turns out to be real and independent of the frequency (Cremer et al., 1973): 

Ea h3 

1- v2 12' 
(3.30) 

where B is the flexural stiffness, a is the mass per unit area, h is the thickness, 
and v is Poisson's ratio. 

3.15.2. Impedance of Finite Bars and Plates 

When the driving point impedance or admittance of a finite structure is plotted 
as a function of frequency, a series of maxima and minima are added to the 
curves for the corresponding infinite structure. The normalized driving-point 
impedance at one end of a bar with free ends is shown in Fig. 3.22. The heavily 
damped curve (J = 1) approximates Eq. (3.29) for an infinite bar, while the 
lightly damped curve (J = 0.01) has sharp maxima and minima. 

The minima in Fig. 3.22 correspond to normal modes of the bar, whereas 
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Fig. 3.22. Normalized driving-point impedance at one end of a bar with free ends. Note 
that the horizontal axis is proportional to Jl; the normalized impedance, which 
includes a factor 1/f, decreases with frequency even though the actual driving-point 
impedance increases as jj. Three different values of damping are shown (Snowdon, 
1965). 
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Fig. 3.23. Driving-point admittance of a rectangular plate with simply-supported 
edges: (a) driven at the center and (b) driven off center (after Cremer et al., 1973). 

the maxima occur at frequencies for which the bar vibrates with a nodal line 
passing through the driving point. Impedance minima (admittance maxima) 
correspond to resonances, while impedance maxima (admittance minima) 
correspond to antiresonances. 

The driving-point admittance at two different locations on a rectangular 
plate with simply supported edges is shown in Fig. 3.23. In these graphs, 
resonances corresponding to normal modes of the plate give rise to maxima 
on the curves. Note that some normal modes are excited at both driving points 
but some are not (when a node occurs too near the driving point). 
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CHAPTER 4 

Coupled Vibrating Systems 

4.1. Coupling Between Two Identical Vibrators 

In Chapter 1, we considered the free vibrations of a two-mass system with 
three springs of equal stiffness; we found that there were two normal modes of 
vibration. Such a system could have been viewed as consisting of two separate 
mass/spring vibrators coupled together by the center spring (see Fig. 1.20). If 
the coupling spring were made successively weaker, the two modes would 
become closer and closer in frequency. 

A similar behavior is exhibited by two simple pendulums connected by 
a spring, as in Fig. 4.1. Each pendulum, vibrating independently at small 
amplitude, has a frequency given by 

1 rg 
fo = 2n vi' 

where l is the length of the pendulum and g is the acceleration of gravity. 
The coupled system has two normal modes of vibration given by 

1 rg 
! 1 = 2n vi and 

1 
fz=-

2n 
(4.1) 

where Kc is the spring constant and m is mass. The pendulums move in phase 
in the mode of lower frequency and in opposite phase in the mode of higher 
frequency. 

The coupling can be expressed in terms of a coupling frequency we = 
~,in which case wi = w6 and w~ = w6 + 2w~. If either pendulum is 
clamped in place, the other pendulum oscillates at a frequency w2 = w6 + w~. 
This is not a normal mode frequency, however. If the system is started with 
pendulum A at its rest position and pendulum B in a 'displaced position, 
for example, the resulting motion changes with time. During each swing, 
pendulum B gives up some of its motion to pendulum A until pendulum B 
finds itself at rest and pendulum A has all the motion. Then, the process 
reverses. The exchange of energy between the two pendulums takes place at 
a rate that depends on the coupling frequency we. 

T. D. Rossing et al., Principles of Vibration and Sound
© Springer Science+Business Media New York 2004
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m m -Xu 

Fig. 4.1. Two simple pendulums coupled by a spring. 

4.2. Normal Modes 

Solution of the equations of motion to obtain the normal modes is relatively 
easy in this case. The equations of motion for small vibrations are 

and 

mxu + ~g Xu + K(xu - xA) = 0. 

These can be rewritten in terms of w0 and we, previously defined: 

xA + (w~ + w:)xA - w:xu = 0, 

and 

If the two equations are added together, we obtain 

d2 
dt2 (xA + Xu) + w~(xA + xu) = 0. 

If they are subtracted, we obtain 

~t: (xA - xu) + (w~ + 2w:)(xA - xu) = 0. 

(4.2a) 

(4.2b) 

(4.3a) 

(4.3b) 

(4.4a) 

(4.4b) 

These are equations for simple harmonic motion. In the first, the variable is 
(xA + xu), and the frequenc is w /2n. In the second, the variable is (xA - xu), 
and the frequency is co~ + 2w: /2n. These represent the two normal modes 
described previously. 

It is sometimes desirable to define normal coordinates q 1 and q2 along 
which displacements can take place independently. In this case, q1 = xA +Xu 
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q, 

Fig. 4.2. Relationship of the normal coordinates (q1 ,q2 ) of two coupled oscillators to 
the individual coordinates (x A• x8 ). 

and q2 = xA - x 8 ; the normal coordinates are rotated 45° from the old, as 
shown in Fig. 4.2. Thus, the transformation from (xA, x8 ), the coordinates of 
the individual pendulum, to (q1 , q2 ), the normal coordinates, can be found 
geometrically. In mode 1, the system oscillates along the coordinate q1 with 
amplitude Q 1 and angular frequency w 1 , and in mode 2 it oscillates along q2 

with amplitude Q2 and angular frequency w 2 • [The actual frequencies are 
given by Eq. (4.1).] Thus, xA and x 8 can be written as 

Ql Q2 
xA = J2cosw 1 t + J2cosw2 t, (4.5a) 

and 
Ql Q2 

x8 = J2cosw 1t- J2cosw2 t. (4.5b) 

Q1 and Q2 are determined by the initial displacements. 
If the system is given an initial displacement xA(O) = A 0 , x8 (0) = 0, then 

Ql = A 0 /j2, Q2 = A 0 /j2, and Eqs. (4.5) become 

(4.6a) 

and 

(4.6b) 

These equations can be rewritten: 

(4.7a) 
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Fig. 4.3. Motion of two coupled pendulums with flashlight bulbs attached to the bobs. 
Pendulum B had an initial displacement; pendulum A had none. Note the exchange 
of kinetic energy at a rate wm fn, and also note the effect of damping (from French, 1971). 

and 

x8 = A0 sin(w2 ; w1 t)sin(w2 ; w1 t). (4.7b) 

These can be interpreted as oscillations at a frequency w = (w2 + w1 )/2 with 
the amplitude modulated at a frequency wm = (w2 - wd/2. Note that the 
oscillations of the two pendulums at frequency w are 90° different in phase, 
and so are the oscillations in the amplitude at frequency wm. The photograph 
of two coupled pendulums in Fig. 4.3 illustrates this. 

4.3. Weak and Strong Coupling 

In the case we have been discussing, the average frequency and modulation 
frequency are 

- Wz + W1 1 .J 2 2 f = 4n = 4n ( Wo + 2wc + Wo), 

and 
(4.8) 

In the weak coupling case, we « w0 , so we can write 

_ 1 [ ( 2w2 )112 J w ( w2 ) 
f = 4n Wo 1 + w~c + Wo ~ 2: 1 + 2~~ ' (4.9a) 

and 

fm = 4~ [ Wo ( 1 + 2~; Y12 
- Wo] ~ 4:lo · (4.9b) 

When the coupling is weak, we can neglect the energy stored in the coupling 
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Fig. 4.4. Motion of two strongly coupled pendulums with W 0 = 2w0 • 

spring and characterize the motion as an interchange of energy between 
pendulum A and pendulum B at a rate given by fm· The pendulum whose 
amplitude is increasing is the one that is lagging in phase by 90°, as expected 
for a vibrator absorbing power from a driving force at resonance. The two 
pendulums alternate as the driver and the driven. When it comes to rest, 
the driver suddenly changes phase by 180° so that it can become the driven 
vibrator. 

In the case where co. = 2w0 (a strong coupling), J = 2f0 and fm = fo· 
The modulation frequency is half the average frequency, so the excursions are 
alternately large and small. The kinetic energy is exchanged rapidly between 
the two bobs, as shown in Fig. 4.4. The normal mode frequencies in this case 
are in a 3: 1 ratio: f 1 = fo and f 2 = 3f0 • The initial conditions that give 
the motion in Fig. 4.4 are xA(O) = A0 and x8 (0) = 0; that is, bob B is held at 
its rest point while bob A is displaced and both are released together. 

Note that the motions shown in Fig. 4.4 are described by Eqs. (4.6a) and 
(4.6b), but they could also be obtained graphically from Fig. 4.2 by marking 
off appropriate time intervals between A0 /2 and - A0 /2 along both the q 1 and 
q2 axes. The displacements xA and x8 at each time are found by projecting 
q1(t) and q2 (t) on the appropriate axis and adding them. 

In the case oftwo coupled pendulums, the lower frequency co1 is independent 
of the coupling strength; this is not true of all coupled oscillations. What is 
generally true, however, is that the separation between co 1 and co2 increases 
with the coupling strength, as shown in Fig. 4.5. 

OJ 

Fig. 4.5. Dependence of the mode frequencies on the coupling strength for two coupled 
pendulums. 
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4.4. Forced Vibrations 

We have seen how in a two-mass vibrating system, the motion of each mass 
can be described as a superposition of two normal modes. For free vibrations, 
the amplitudes and phases are determined by the initial conditions. In a system 
driven in steady state, on the other hand, the amplitudes and phases depend 
upon the driving frequency. Our intuition tells us that large amplitudes 
will occur when the driving frequency is close to one of the normal mode 
frequencies. 

Consider the two-mass system in Fig. 4.6. The normal mode an ular fre
quencies are w 1 = ~ = w0 and w2 = j(K/m) + (2Kc/m) = w6 + 2w;. 
Suppose that a driving force F0 cos wt is applied to mass A. The equations 
of motion are 

(4.10a) 

and 
(4.10b) 

Again, we introduce normal coordinates q1 = xA + x 8 and q2 = xA- x 8 ; 

we add and subtract Eqs. (4.10a) and (4.10b) to obtain 

(4.11a) 

and 

(4.11b) 

where wi = w6 and w~ = w6 + 2w;. Note that the same driving force appears 
in both normal mode equations. 

These are the equations of two harmonic oscillators with natural frequencies 
w1 and w2 and with no damping. The steady-state solutions are [see Eq. (1.39)] 

F0 /m 
q1 = 2 2 coswt, 

0)1- 0) 
(4.12a) 

and 
F0 /m 

q2 = 2 2 coswt. 
w2- w 

(4.12b) 

Fig. 4.6. Two-mass oscillator (compare Fig. 4.1.). 
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The displacements of the masses A and B are 

(4.13a) 

and 

(4.13b) 

The steady-state displacement amplitudes as functions of w, from Eq. (4.13), 
are shown in Fig. 4.7(a). Below the first resonance OJ 1, the displacements xA 

and Xs are in the same direction, whereas above the second resonance OJ2 , 

they are in opposite directions. With no damping, the amplitudes approach 
infinity at the resonance and the phase jumps abruptly. If damping were 
included, the phase would vary smoothly as one goes through the resonances. 

Note that at a frequency OJA lying between OJ 1 and OJ2 , xA goes to zero. 
This is called an antiresonance, and it occurs at the natural frequency at which 
mass B would oscillate if mass A were fixed. We can easily calculate this 
frequency using Eq. (4.13a). xA goes to zero when 

(4.14) 

At this frequency, OJi- OJ 2 = -OJ~ and OJ~- OJ 2 =OJ~, so Eq. (4.13b) gives 
the result 

Xs I 
cosOJt "'A 

Fo OJ~ 
--;:;:; ( -OJ~)(OJ~) 

This result appears somewhat paradoxical, for it says that at OJ= OJA the 
driven mass does not move but the other mass does. There are several ways 
to deal with this paradox (for example, any real driving force cannot have 
a single frequency OJ, because this would imply that it has existed since 
t = -oo ), but it is perhaps best to note that the paradox does not exist in 
a real system with damping, however small. In such a system, xA and Xs both 
have minimum values at OJA, but neither one is zero. 

The response of a similar system with damping is shown in Fig. 4.8. If OJ 1 

and OJ 2 are separated by an amount that is several times greater than their 
line widths, then the two normal modes are excited independently at these 
frequencies. Below OJ1 , both masses move in phase with the driving force. 
At OJ 1 , they lag the driving force by 90° (see Fig. 1.8), and above OJ 1 , the phase 
difference is 180°. Between OJA and OJ2 , mass A again moves in phase with 
the driving force, while above OJ2 mass B does so. 
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XA 

coswt 

I XA I log--
coswt 

(a) 

~----~w~,--~w~A~w~2----~w 

(b) 

(c) 

XB 

coswt 

log~~~ coswt 

-180° 

~u~ I I 
I I 
I I 
I I 
I I 
I I 
I I 
I 
I 
I 
I 
I 
I 
I 
I 

"------7,;1,.-----;'-:-----:~w w 1 w2 

I 
I 
I r-------
1 
I 
I 
I 
I 

Fig. 4.7. Frequency response of the two-mass coupled system in Fig. 4.6 to a driving 
force applied to mass A. (a) Amplitudes of xA and x8 • (b) Absolute values of r.mplitude 
on a logarithmic scale. (c) Phases of masses A and B with respect to the driving force. 
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(b) rPA• rPo 
01----:...: 

-180° rPA 
I I 

-360° ---- -- -l -- - - -- J. - - ---- -1- rPo 
I I I 
I I 
I I 
I I 
I 

(c) rPA - rPo I I 

180° ------;----y 
0"-------

Fig. 4.8. (a) Amplitude of mass A or mass B as functions of driving frequency when a 
force is applied to mass A. (b) Phases of masses A and B with respect to the driving 
force. (c) Phase difference between xA and x8 . 

4.5. Coupled Electrical Circuits 

We have already seen in Chapter 1 the usefulness of equivalent electrical 
circuits in understanding mechanical oscillatory systems. We will now con
sider some examples of coupled electrical circuits that are the bases of useful 
equivalent circuits. 

The electrical circuit shown in Fig. 4.9 consists of two RLC circuits having 
natural frequencies wa and wb when there is no coupling: 

1 1 
w = ----;== and wb = . 
a~ ~ 

Fig. 4.9. Two RLC circuits coupled by mutual inductance M. 
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We consider the effect of coupling through the mutual inductance M exist
ing between the two inductors. The voltage equations in the two loops 
are 

and (4.15) 
dib dia . 1 f. 

Lb(it + M dt + Rbzb + Cb zbdt = 0. 

Differentiating and dividing by La and Lb gives 

·: M.: Ra: 1 . 
la + Llb + Lla + L C la = 0, 

a a a a 

and 
·: M ~· Rb: 1 . 
zb + Lb la + Lb zb + LbCb zb = 0. 

Assuming harmonic solutions ia = Iaeiwt and ib = Ibeiwt, replacing 1/LaCa and 
1/LbCb by w; and ro~, and assuming Ra and Rb to be small, we obtain 

and 

M 
(ro2- ro2)J = -w2-J 

a a L b• 
a 

M 
(ro2 - ro~)/b = -ro2 Lb Ia. 

Multiplying these two equations together gives 

M2 
(ro2 - ro;)(ro2 - ro~) = ro4 LaLb = k2w4, 

(4.16) 

(4.17) 

where k2 = M2/LaLb is the coupling coefficient. Solving for ro gives the 
resonance frequencies. 

A particularly simple case occurs when ro; = ro~. Then, 

and 

(ro2 - ro;)2 = Pro\ 

ro2 - w; = ± kw2, 

ro = ± .jl±k' 

The two positive frequencies are 

and (4.18) 
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I 

w. w 

Fig. 4.10. Behavior of the circuit of Fig. 4.9 for three values of the coupling constant k. 

The current amplitudes for three different values of coupling are shown in 
Fig. 4.10. With tight coupling, a pronounced dip occurs between the peaks 
at w1 and w 2 • 

If the two circuits are identical (La = Lb = L and Ca = Cb = C), 
1 1 

m1 = and w 2 = . (4.19) 
jC(L + M) jC(L- M) 

These values are shown in Fig. 4.11. 
Next, we consider the circuit shown in Fig. 4.12, which consists of two LC 

circuits plus a coupling capacitor Cc. The differential equations are 

.. 1 1 
Laia +Cia+ C(ia- ib) = 0, 

a c 

w 

I 
2w0 ----------- ____ I 

I 
I 
I 
I 
I 
I 

Wo I 

----- =--=-:-:_::-_::-::_:-::_::-:_::c_::::-=_=-:_~w~ 
I 
I 
I 
I 

~----------------~~~~M 
L L/2 

Fig. 4.11. Variation of modal frequencies with mutual inductance M of identical 
coupled circits. 
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Fig. 4.12. Two LC circuits coupled by a coupling capacitor Cc. 

and 

(4.20) 

Again, assuming harmonic solutions, i8 = 11 eimt and ib = 12 eimt, leads to 

2 1 (1 1) 1 
-(J) la + L C + C fa- L C Jb = 0, 

a a c a c 

and 

from which 

and (4.21) 
(w2 - w~)Jb = - w~Ja, 

where w; = (1/LaCa) + (1/LaCJ, w~ = (1/LbCb) + (1/LbCc), w;c = 1/LaCc, 
and w~c = 1/LbCc. Multiplying the above equations together gives 

(w2 - w;)(w2 - w~) = LaLc~ = w;cw~c· 
In the case W8 = rob, we obtain 

(w2 - w;) = ± WacWbc = ± W~, 
from which w = J w; ± w~, and we obtain the two frequencies 

W1 = Jw;- W~ = W 8 jf=k, 
and 

w2 = J w; + w~ = wa.Jl+k· 

(4.22) 

(4.23) 

In the special case where La = Lb = L and Ca = Cb = C, we can designate 

as 

so (4.24) 
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--------/----
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0 "------------'(1)-.------... (J)b 

Fig. 4.13. Normal mode frequencies of the circuit in Fig. 4.12. The dashed lines indicate 
the uncoupled case (k--+ 0 or Cc --+ oo ). 

as in the mechanical systems shown in Figs. 4.1 and 4.6. Thus, the circuit in 
Fig. 4.12 is the electrical analogue for both these systems, where the coupling 
capacitor Cc takes the place of the spring Kc. 

It is instructive to plot was a function of rob from Eq. (4.22). When we= 0 
(no coupling), we obtain two straight lines (the dashed lines in Fig. 4.13). For 
we > 0, we obtain two curves that approach the dashed lines asymptotically. 
At rob = Wa, w = J w; ± w; as in Eq. (4.23). Note that in both limits rob« Wa 
and rob » wa the normal mode frequencies w1 and w2 approach those of 
the uncoupled modes wa and rob, and the normal modes resemble those of the 
uncoupled LC circuits. 

4.6. Forced Vibration of a Two-Mass System 

A coupled system with wide application is the two-mass system in which a 
sinusoidal driving force is applied to mass m1 , as shown in Fig. 4.14. This 
system is the prototype, for example, of a bass reflex loudspeaker system, 
a guitar with the ribs fixed, and the dynamic absorber used to damp machine 
vibrations. The equivalent electrical circuit is also shown in Fig. 4.14. 

The equations of motion for the two-mass system in Fig. 4.14 are 

and 
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__...... :Xl 

+i2 

m2 

x2 
(a) (b) 

Fig. 4.14. Two-mass vibrator (a) and its equivalent electrical circuit (b). 

Solutions of these equations lead to expressions for the displacement 
amplitudes: 

(K2 - w2m2)F0 
X 1 = (K1 + K 2 - w2md(K2 - ro2m2)- K~ 

F0(w~- ro2 ) 
(4.25a) 

and 
X - k2Fo 

2 - (K 1 + K 2 - w2md(K2 - ro2m2)- K~ 

_ F0w~ 
- m1 [ro~(l + K 2/K1)- w2](w~- ro2)- K2w~ · 

(4.25b) 

Like the two-mass system discussed in Section 4.4, this system has two reso
nances and one antiresonance. X 1 goes to zero at the antiresonance frequency 
(.() = w2, and both x1 and x2 approach infinity when the denominator goes 
to zero. 

A dynamic absorber consists of a small mass m2 and spring K 2 attached 
to the primary vibrating system and selected so that w 1 = w2 • Then, the 
amplitude of mass m1 goes to zero at the original resonance frequency ro 1 . 

Similarly, a bass reflex speaker is often designed so that the resonance frequency 
w2 of the enclosure is the same as that ofthe loudspeaker cone ro 1 • Then, the 
cone is restrained from moving at its resonance frequency. 

In a guitar or violin, m1 and K1 represent the mass and spring constant 
of the top plate, m2 is the effective mass of the air in the sound hole, and 
K2 is the spring constant of the enclosed air. In most instruments, w2 is 
substantially less than w1, however. 
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4.7. Systems with Many Masses 

Consider the system in Fig. 4.15 with four masses and five springs. External 
forces !; may act on any or all of the masses, so we have four equations of 
motion: 

and 

m1 x1 + K 1 x 1 - K 2 (x2 - xd = F1 , 

m2 x2 + K 2 (x 2 - x 1)- K 3 (x3 - x 2 ) = F2 , 

m3x3 + K 3(x3 - x 2) - K4(x4 - x3) = F3, 

Adding the four equations gives 

4 4 
L m;X; = L F;- K 1 x 1 - K 5 x 4 • 
i=l i=l 

(4.26) 

(4.27) 

Assuming harmonic solutions, X; = X; sin wt leads to four algebraic equations, 
in which the coefficients of X 1 to X4 form the determinant: 

dl -Kz 0 0 

Ll= 
-Kz dz -K3 0 

0 0 d3 -K4 ' 

0 0 -K4 d4 

where d 1 = K 1 + K 2 - m1 w 2 , d2 = K 2 + K 3 - m2 w2 , d3 = K 3 + K4 -
m3 w 2 , and d4 = K 4 + K 5 - m4 w2 • The amplitude X1 is given by 

Fl -K2 0 0 

1 F2 dz· -K3 0 
xl =-

F3 -K3 d3 -K4 ' Ll 

F4 0 -K4 d4 

and the other three amplitudes are given by analogous expressions (Jacobson 
and Ayre, 1958). 

Fig. 4.15. Four-mass vibrating system. 
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4.8. Graphical Representation of Frequency Response Functions 

There are several ways to represent the frequency response function of a 
vibrating system (see the appendix to this chapter). One useful representation 
is a mobility plot illustrated in Fig. 4.16 for a lightly damped system with two 
degrees of freedom [a linear two-mass system as in Fig. 1.20(a), for example]. 
If a force F is applied to mass m1 , the driving-point mobility is :icdF and 
the transfer mobility is :ic 2 /F. 

Note that individual mode curves in Fig. 4.16 have slopes of± 6 dB/octave 
above and below resonance, as discussed in Appendix A.l. Their phases 
relative to the driving force are not indicated, however. In Fig. 4.16(a), both 
curves have the same phase (and thus are additive) below the first resonance 

0~----------------------------------~ 

Frequency (Hz) 

0.----------------------------------, 

200 
Frequency (Hz) 

500 

Fig. 4.16. Mobility plot for a lightly damped system with two degrees of freedom: (a) 
driving-point mobility and (b) transfer mobility. The lighter curves indicate the contri
butions from the two normal modes of the system (after Ewins, 1984). 
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and above the second one. Between the two resonances, they are subtractive, 
however, which leads to an antiresonance where they cross. The opposite 
situation occurs in the transfer mobility curves in Fig. 4.16(b), where the curves 
are additive between the resonances but subtractive elsewhere. [This same 
behavior is noted in Fig. 4.7(b).] 

There is a general rule that if two consecutive modes have modal constants 
with the same sign, then there will be an antiresonance at some frequency 
between the natural frequencies ofthe two modes. If they have opposite signs, 
there will not be an antiresonance, but just a minimum, as in Fig. 4.16(b). 
The modal constant is the product of two eigenvector elements, one at the 
drive point and one at the response point. In the case of driving-point mobility, 
the two points are the same, so the modal constant must be positive. This 
leads to alternating resonances and antiresonances, as appear in the driving
point admittance (mobility) curves in Fig. 3.22 and also in the driving-point 
impedance (reciprocal of mobility) curve in Fig. 3.21. 

Figure 4.17 shows an example of a transfer mobility curve of a system with 
four degrees offreedom (four normal modes). The compliance of this structure 
is positive over part of the frequency range and negative over part of it. The 
modal constant in this example changes sign from the first to the second mode 
(resulting in an antiresonance) but not from the second to the third mode for 
the driving and the observation points selected. 

~ 
"j' 

"' 6 
~ 
~ 

~ 
0 ::g 

40 

20 

0 

5 10 

Frequency (Hz) 

50 100 

Fig. 4.17. Example of a transfer mobility curve for a lightly damped structure with four 
degrees of freedom. The lighter curves indicate the contributions from the four normal 
modes, which contribute to the frequency response function (after Ewins, 1984). 
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4.9. Vibrating String Coupled to a Soundboard 

In Section 2.12, we considered a string terminated by a nonrigid end support 
(such as the bridge of a string instrument). If the support is masslike, the 
resonance frequencies will be raised slightly (as if the string were shortened). 
On the other hand, if the support is springlike, the resonance frequencies will 
be lowered (as if the string were lengthened). 

When the string is terminated at a structure that has resonances of its own 
(such as the soundboard of a piano or the top plate of a guitar), the situation 
becomes a little more complicated. Below each resonance of the structure, 
the termination appears springlike, while above each resonance it appears 
masslike. Thus, the structural resonances tend to push the string resonances 
away from the structural resonance frequency, or to split each string resonance 
into two resonances, one above and one below the soundboard resonance. 
More correctly described, two new modes of vibration have been created, 
both of which are combinations of a string mode and a structural mode. This 
is similar to the behavior of the coupled mechanical and electrical vibrating 
systems we have considered (see Fig. 4.10 and 4.11). 

I 

Cl 
I S 
+ 

Cl 

Fig. 4.18. Normal mode splitting as a function of the ratio of string mass m to 
soundboard mass M times the mode number n on the string when the resonance 
frequencies of the string and soundboard mode are the same. 0+ and 0_ are the mode 
angular frequencies in the coupled system, and Q-values for the soundboard appear 
on each curve (Gough, 1981). 
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Gough (1981) discusses systems both with weak coupling and strong cou
pling when w. = w8 (string and structural resonances at the same frequency). 
Weak coupling occurs when mjn2 M < n2 j4Q~, where m/ M is the ratio of 
the string mass to the effective mass of the structural resonance, n is the 
number of the resonant mode excited on the string, and Q8 is the Q value 
of the structural resonance. 

In the weak coupling limit, the coupling does not perturb the frequencies 
of the two normal modes (when the unperturbed frequencies ofthe string and 
soundboard coincide). However, the damping of the two modes is modified 
by the coupling. 

In the strong coupling limit mln2M > ~/4~, however, the coupling splits 
the resonance frequencies of the normal modes symmetrically about the 
unperturbed frequencies and both modes now have the same Q value of 2Q8 • 

At the lower frequency, the string and soundboard move in phase, whereas at 
the higher frequency, they move in opposite phase. 

Figure 4.18 shows the frequency splitting as a function of m/n2M when 
the string and soundboard mode frequencies coincide (w,. = w8 ). n+ and n_ 
are the mode frequencies in the coupled system, and n is the number of the 
string mode. 

The frequencies of the normal modes, when the resonance frequencies of 
the string and soundboard are different, are shown in Fig. 4.19 for the weak 
and strong coupling cases. The mode frequencies are given by the solid curves 
and the half-widths of the resonances by the dashed curves (Gough, 1981). 

4.10. Two Strings Coupled by a Bridge 

In most string instruments, several strings (from 4 in a violin to more than 
200 in a piano) are supported by the same bridge. This leads to coupling 
between the strings, which may be strong or weak, depending upon the relative 
impedances of the bridge and strings. The discussion of coupled piano strings 
by Weinreich (1977) and the discussion of violin strings by Gough (1981) are 
especially recommended. 

Although an exact description of the interaction of two strings coupled to 
a common bridge would require the solution of three simultaneous equations 
describing the three normal modes of the system in the coupling direction, 
the problem can be simplified by recognizing that the string resonances are 
generally much sharper than those of the bridge and sound board. Thus, close 
to a string resonance, the impedance of the bridge can be considered to be 
a slowly varying function of frequency. 

We consider first the case of two identical strings. When the impedance of 
the bridge is mainly reactiv_e, the coupling produces a repulsion between the 
frequencies of the normal modes, as shown in Fig. 4.20(a). [This is quite 
similar to the behavior of the string-soundboard coupling in Fig. 4.19(b).] 
When the impedance ofthe bridge is mainly resistive, however (as it will be at 
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Fig. 4.21. The normal modes of two nonidentical strings with resistive coupling. Solid 
curves give the frequencies and dashed curves the line widths (Gough, 1981). 

a resonance of the soundboard), the frequencies of the normal modes coalesce 
over a region close to the crossover frequency, as shown in Fig. 4.20(b). 
Outside this region, the modes are equally damped by the bridge impedance, 
but inside this region, the damping of the normal modes approaches maximum 
and minimum values at coincidence (Gough, 1981). 

Additional cases are of interest. Figure 4.21 represents the case in which 
the admittance of the coupling bridge is complex. Frequencies of the two 
normal modes are given for several different phases of the coupling admittance. 
Figure 4.22 represents the coupling of two nonidentical strings with resistive 
coupling. The coupling still tends to pull the frequencies of the normal modes 
together [as in Fig. 4.20(b)], but they coincide only when the unperturbed 
frequencies are equal (ro1 = ro2 ). As w2 - ro1 ~ 0, the damping of one mode 
approaches zero, while the damping of the other mode increases toward 
a maximum value. 

Several interesting effects of strings coupled by a bridge are observed in 
musical instruments. The compound decay curve for piano sound is a direct 
result of coupling between unison strings. The initial decay is fast while the 
strings vibrate in phase, but as they fall out of phase, a slower decay rate 
characterizes the aftersound (Weinreich, 1977). A violin player can simulate 
the effect of a vibrato on the lowest open string by placing a finger on the next 
string at the position corresponding to an octave above the bowed string and 
rocking the finger back and forth to vary the intensity of the octave harmonic 
(Gough, 1981). 
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Fig. 4.22. The normal modes of a two-string system coupled by a bridge with a complex 
impedance. The dotted curve represents the greatest reactance, the solid curve the least 
(after Weinreich, 1977). 

APPENDIX 

A.l. Structural Dynamics and Frequency Response Functions 

To determine the dynamical behavior of a structure in the laboratory, we 
frequently apply a force F at some point (x, y, z) and determine the response 
of the structure at the same point or some other point (x', y', z'). To describe 
the response, we may measure displacement r, velocity v, or acceleration a. In 
the simplest case, F, r, v, and a are in the same direction, so we speak of 
F, x, v, and a. Some examples of methods used to measure these variables are 
as follows: 

F can be measured with a load cell or force transducer; 
a can be measured with an accelerometer; 
v can be measured with a phonograph cartridge and stylus or it can be 

determined by integrating a; probing the near-field sound with a micro
phone provides a pretty good estimate of v at a point on a surface nearby; 
and 

x can be determined by holographic interferometry or by integrating v 
or a. 

From these measured variables, we can construct one or more frequency 
response functions of interest. These include mobility (v/F), accelerance (a/F), 
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Frequency (Hz) 
(a) 

Frequency (Hz) 
(c) 

10 
Frequency (Hz) 

(b) 

100 

Fig. A4.2. Three examples of frequency response functions of a lightly damped oscilla
tor with a single degree of freedom (after Ewins, 1984). 

compliance (x/F), impedance (Fjv), dynamic mass (F/a), and stiffness (Fjx). 
The logarithmic minigraphs in Fig. A.4.1 illustrate how these relate to the 
static parameters stiffness K, mass m, and resistance R. If (x, y, z) = (x', y', z'), 
we use the prefix driving point (e.g., driving-point mobility); otherwise, we use 
the prefix transfer. 

Combining all three elements (mass, stiffness, and resistance) into an oscil
lator having a single degree of freedom with light damping leads to the 
frequency response functions in Fig. A.4.2 (only three of the six functions 
are shown). Note the ± 6 dB/octave slopes at high and low frequency in 
the mobility plot, the -12 dB/octave slope in the compliance plot, and the 
+ 12 dB/octave slope in the accelerance plot, consistent with Fig. A.4.1. 

Figures A.4.1 and A.4.2 show logarithms of absolute values of the parameters 
of interest and therefore are devoid of information about phase. To represent 
the phase as well as magnitude of the frequency response function of interest, 
a second graph is often added, as in Fig. A.4.3. At a resonance, the phase 
changes by 180° (0 to 180° in the compliance plot, 90° to 270° in the mobility 
plot, or 180° to 360° in the accelerance plot), as indicated in Figs. 1.12 or 4.8. 

Two other ways of indicating phase are shown in Figs. A.4.4 and A.4.5. In 
Fig. A.4.4, the real and imaginary parts of the frequency response functions 
are separately plotted as functions of frequency. In Fig. A.4.5, the imaginary 
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Fig. A4.3. Plots of frequency response functions showing both magnitude and phase. 
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Im Im lm 

(a) (b) (c) 

Fig. A4.5. Nyquist plots show real and imaginary parts of(a) compliance, (b) mobility, 
and (c) accelerance. 

part is plotted as a function of the real part, with frequency shown as a 
parameter on the curve (Nyquist plots). 

A.2. Modal Analysis 

Modal analysis may be defined as the process of describing the dynamic 
properties of an elastic structure in terms of its normal modes of vibration. 
Many papers have appeared recently describing the application of modal 
analysis to a wide range of structures from fresh apples to large aircraft. Papers 
on modal analysis generally deal with either mathematical modal analysis or 
modal testing. 

In mathematical modal analysis, one attempts to uncouple the structural 
equations of motion by means of some suitable transformation, so that the 
uncoupled equations can be solved. The frequency response of the structure 
can then be found by summing the respective modal responses in accordance 
with their degree of participation in the structural motion. 

In experimental modal testing, one excites the structure at one or more 
points and determines the response at one or more points. From these sets of 
data, the natural frequencies (eigenfrequencies), mode shapes (eigenfunctions), 
and damping parameters are determined, often by the use of multidimensional 
curve-fitting routines on a digital computer. In fact it is the availability of 
digital computers and sophisticated software that accounts for the growing 
popularity of modal analysis. 

Modal testing may be done with sinusoidal, random, pseudorandom, or 
impulsive excitation. In the case of sinusoidal excitation, the force may be 
applied at a single point or at several locations. The response may be measured 
mechanically (with accelerometers or velocity sensors), optically, or indirectly 
by observing the radiated sound field. Several good reviews of modal testing 
with impact excitation have appeared in the literature (Ewins, 1984; Allemang 
and Brown, 1987; Ramsey., 1975/1976; Marshall, 1986; Halvorsen and Brown, 
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1977), and this technique has been applied to violins (Marshall, 1985; Jansson 
et al., 1986), pianos (Suzuki, 1986; Kindel and Wang, 1987), guitars (Poppet 
al., 1985), handbells (Hansen and Rossing, 1986), steel drums (Hansen and 
Rossing, 1987), and other musical instruments. 

In modal testing with impact excitation, an accelerometer is typically 
attached to the structure at some key point and the structure is tapped at 
a number of points on a grid with a hammer having a force transducer or 
load cell. Each force and acceleration waveform is Fourier transformed, and 
a transfer function H ( w) is calculated. If a force is applied at i and the response 
is measured at j, the transfer function Hii(w) gives the best estimate of the 
frequency response function 

( ) _ S;*(w)Sj(w) _ G;i 

Hii w - S;*(w)S;(w) - G;;' 

where S;*(w) is the complex conjugate of the force spectrum S;(w), G;; is the 
power spectrum of the exciting force, and Gii is the cross spectrum of the force 
and response. 

Several different algorithms may be used to extract the modal parameters 
from the measured frequency response functions. Single-degree-of-freedom 
methods include a "peak picking" method, which uses the imaginary (quadra
ture) component of the response function as the modal coordinate, and a 
"circle fit" method, which fits the best circle to the data in the Argand plane 
[whose coordinates are the real and imaginary parts ofthe response function, 
as in the Nyquist plot in Fig. A.4.5(a)J. Multidegree-of-freedom methods 
generally use a least-squares method to select the modal parameters that 
minimize the differences between the measured frequency response function 
and the function found by summing the contribution from the individual 
modes. Still other methods, such as the complex exponential method and the 
Ibrahim method, do the curve fitting in the time domain (Ewins, 1984). 

A.3. Finite Element Analysis 

The finite element method is a powerful numerical analysis method that can 
be used to calculate the vibrational modes of elastic structures. The method 
assumes that a structure or system can be modeled by an assemblage of 
building blocks (called elements) connected only at discrete points (called 
nodes). A complex structure is often divided into a number of familiar sub
structures, such as plates, beams, shells, and lumped masses. 

This concept of modeling a system as a collection of discrete points was 
introduced by Courant (1943). His suggestion, that the Rayleigh-Ritz approach 
using an assumed response function for the system could be applied to tri
angular elements, became the mathematical basis for finite element analysis. 
The actual finite element terminology was later introduced by Clough (1960) 
and others. Clough's method became widely adopted because digital com
puters were available to perform the complex numerical calculations. 
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Finite element analysis is essentially an extension of matrix structural 
analysis methods that have been applied to beams and trusses for some time. 
This analysis is based on a set of equations of the form 

(u)(K) = (F), 

Where (u) is a displacement vector, (F) is a force vector, and (K) is the stiffness 
matrix in which a typical element Kii gives the force F; at the ith node due 
to a unit displacement ui at the jth node. 

General purpose finite element codes, such as NASTRAN, ANSYS, SAP, 
and ADINA, include routines for solving the equations of motion in matrix 
form. 

(M)(ii) + (R)(il) + (K)(u) = (F) cos(wt + ')'), 
where (M), (R), and (K) are the mass, damping and stiffness matrices. Smaller 
programs adapted from these large, general purpose systems have made it 
possible to apply finite element methods to structures of modest size using 
microcomputers. 

To improve the efficiency of finite element calculations, so-called "eigen
value economizer" routines are often used. These routines reduce the size of 
the dynamical matrix by condensing it around master nodes (Rieger, 1986). 
Guidance in the selection of such nodes can often be obtained from the results 
of modal testing. In this and others ways, modal analysis and finite element 
analysis have become complementary methods for studying the dynamical 
behavior of large and small structures, including musical instruments. 
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CHAPTER 5 

Nonlinear Systems 

Many of the mechanical elements comprising a musical instrument behave 
approximately as linear systems. By this we mean that the acoustic output is 
a linear function of the mechanical input, so that the output obtained from 
two inputs applied simultaneously is just the sum of the outputs that would 
be obtained if they were applied separately. For this statement to be true for 
the instrument as a whole, it must also be true for all its parts, so that 
deflections must be proportional to applied forces, flows to applied pressures, 
and so on. Mathematically, this property is reflected in the requirement that 
the differential equations describing the behavior of the system are also linear, 
in the sense that the dependent variable occurs only to the first power. An 
example is the equation for the displacement y of a simple harmonic oscillator 
under the action of an applied force F(t): 

d 2 y dy 
m dt2 + R dt + Ky = F(t), (5.1) 

where m, R, and K are respectively the mass, damping coefficient, and spring 
coefficient, all of which are taken to be constants. Then, if y1 (t) is the solution 
for F(t) = F1(t), and y2 (t) that for F(t) = F2 (t), the solution for F = F1 + F2 

will beY= Y1 + Yz· 
A little consideration shows, of course, that this description must be an over

simplification (Beyer, 1974). Mass is indeed conserved (apart from relativistic 
effects), but spring coefficients cannot remain constant when displacements 
approach the original dimensions of the system, nor can we expect damping 
behavior to remain unchanged when turbulence or other complicated effects 
intervene. It is therefore important to know how to treat such nonlinearities 
mathematically so that we can make use of these techniques when we come 
to examine the behavior of real musical instruments. Mathematically, the 
problem is one of solving equations like Eq. (5.1) when at least one of the 
coefficients m, R, or K depends on the dependent variable y. In interesting 
practical cases, we will nearly always be concerned with small deviations from 
linearity, so that these coefficients can be expanded as rapidly convergent 

T. D. Rossing et al., Principles of Vibration and Sound
© Springer Science+Business Media New York 2004
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power series in y or dyjdt, provided y is small compared with the dimensions 
of the system. 

One sort of problem exemplified by Eq. (5.1) is a percussion instrument or 
a plucked string instrument in which the forcing function F(t) is external, of 
limited duration, and given quite explicitly. The behavior of such impulsively 
excited oscillators or resonators is relatively simple, as we shall see presently. 

More complex, more interesting, and inherently more nonlinear is the 
situation encountered in steady-tone instruments, such as bowed strings or 
windblown pipes. Here, the forcing function F(t) consists of a steady external 
part (the bow velocity or the blowing pressure) whose effect on the system is 
somehow determined by the existing amplitude of the oscillation. Thus, for 
example, the force between a bow and a string depends upon their relative 
velocities, while the flow through a reed valve depends upon the pressure 
difference across it. In this case, Eq. (5.1) is generalized to 

d2 y dy ( dy ) 
m dtz + R dt + Ky = F y, dt 't ' (5.2) 

where again m, R, and K may be weak functions of y. For such a system, as 
we shall see presently, the whole behavior depends quite crucially upon the 
various nonlinearities present in the coefficients and in the function F. 

5.1. A General Method of Solution 

The systems we shall meet in musical instruments will ultimately prove to be 
much more complex than described by an equation like Eq. (5.2) since musical 
oscillators such as strings, plates or air columns generally have infinitely many 
possible vibrational modes rather than just a single one, but we can learn 
a great deal as a necessary preliminary by studying the nonlinear oscillator 
described by Eq. (5.2). In fact, musical instruments generally consist of a nearly 
linear resonator, the string, plate, or air column, described by the left-hand 
side ofEq. (5.2), excited by a generator F, which has quite nonlinear behavior. 
The nonlinearity in F is crucial to the description of the system. 

For convenience of notation, we rewrite Eq. (5.2) in the form 

y + w~y = g(y,y,t), (5.3) 

where a dot signifies djdt, w0 is the resonant frequency, 

_ (K)112 
Wo- - ' m 

(5.4) 

and 
F-Ry 

g = = f- 2ay, (5.5) 
m 

where we have written f = F jm and 2a = Rjm. 
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If the damping, nonlinearity, and driving force on the system are all small, 
so that g-.. 0 in Eq. (5.3), then the solution has the sinusoidal form 

y(t) = asin(w0 t + t/J), (5.6) 

where a is the amplitude and tjJ is the phase of the oscillation. If g is not 
identically zero but is small compared with the terms on the left side of 
Eq. (5.3), then it is reasonable to suppose that the true solution may have 
a form like 

y(t) = a(t) sin[w0 t + t/J(t)], (5.7) 

where a and t/J are both slowly varying functions oftime. Now from Eq. (5.7), 
it is clear that 

y = asin(wot + t/J) + a(wo + ~)cos(wot + t/J). (5.8) 

This is a rather complicated expression, and it is clear that a given behavior 
of y and y as functions of time could be described in several ways depending 
on how this functional dependence was partitioned between a and ~- There is 
a great simplification if we can arrange matters so that 

(5.9) 

which requires that 

asin(wot + t/J) + a~cos(wot + t/J) = 0. (5.10) 

If we assume Eq. (5.10) to have been satisfied and substitute Eqs. (5.7) and (5.9) 
into Eq. (5.3), then we find 

(5.11) 

Since Eqs. (5.10) and (5.11) must be satisfied simultaneously, we can solve for 
a and~ to obtain 

and 

a= _!_cos(wot + t/J), 
Wo 

. g 
tjJ = --sin(w0 t + t/J), 

aw0 

where g is written in terms of y andy given by Eqs. (5.7) and (5.9). 

(5.12) 

(5.13) 

The essence of the approximation is now to neglect all terms in Eqs. (5.12) 
and (5.13) except those that vary slowly in comparison with w0 . The resulting 
trends are then denoted by (a) and (~), respectively. When Eqs. (5.12) and 
(5.13) are substituted back into Eq. (5.7), we find that the effective frequency 
at a given time tis w0 + (~), and the amplitude is 

a(t) = a(t0 ) + It (a) dt. 
to 

(5.14) 

Within this approximation, it is thus possible to calculate the entire behavior 
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of the system once its initial state is known. We shall use this formalism quite 
extensively in our later discussion. 

5.2. Illustrative Examples 

If this approach is to be convincing, then it is necessary, of course, that it 
reproduce, with adequate accuracy, the standard results for simple cases. To 
see that this does happen without undue labor, let us examine a few typical 
examples. 

First, consider the simple damped system with no external forcing. For this 
case, in Eq. (5.5), f = 0 and g = -2ay. Thus, from Eq. (5.12), (a)= -aa, 
while from Eq. (5.13), <h = 0. The solution is therefore 

(5.15) 

which is in adequate agreement with the exact solution, provided a;« w0 • 

Next, take the case of a damped harmonic oscillator driven at some 
frequency co that is close to its resonance. Here, 

g = fsinrot- 2ay, 

so that, from Eqs. (5.12) and (5.13), 

and 

(a) = 21 sin[(ro - w0 )t - ¢] - aa, 
Wo 

. f 
(¢) = --2 -cos[(ro- w 0 )t- ¢]. 

aw0 

(5.16) 

(5.17) 

(5.18) 

The actual motion of the system clearly depends upon the amplitude and 
phase of its initial state, but the important thing to check is the final steady 
state as t-+ oo. If(~) is to be constant, then from Eq. (5.18), we must have 

so that 
. f 

(¢) = --2 -cos¢0 • 
aw0 

The requirement that Eqs. (5.19) and (5.20) be consistent gives 

2aw0(w- ro0 ) 

f 
cos¢0 = 

(5.19) 

(5.20) 

(5.21) 

so that the oscillator vibrates with frequency ro0 + (~) = co, in synchronism 
with the external force. The steady amplitude for which (a)= 0 is given by 
Eq. (5.17) as 

f . "" a= --2 -stn'f'o• 
a: roo 

(5.22) 
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or, using Eq. (5.21), -_j_[ -4a2w~(w- Wo)2]1/2 
lal- 2 1 / 2 

CWJ0 

':::! _j_[1 _ (w- w0)2], 
2aw0 2a2 

(5.23) 

which is the response near the top of a normal resonance curve. The phase 
difference t/J0 between the force and the resulting displacement is also correctly 
given, being -90° at resonance (as shown in Fig. 1.12). 

The method set out in Section 5.1 is called, for obvious reasons, the method 
of slowly varying parameters (Vander Pol, 1934; Bogoliubov and Mitropolsky, 
1961; and Morse and Ingard, 1968). In nearly all cases, it allows us to calculate 
the entire time evolution of the system from a given initial state simply by 
integrating Eqs. (5.17) and (5.18), a procedure that must generally be carried 
out numerically. The results again agree quite closely with the exact solutions, 
where these can be obtained, subject only to the restrictions that w is close to 
w0 and that small terms of higher frequency are neglected in the solution. 

The method can also be used in an obvious way to follow the behavior 
of nonlinear oscillators. A simple example is the case in which the spring 
parameter K of the oscillator gets progressively stiffer or weaker as the 
displacement y increases, for example, asK--+ K + pmy2 • This example was 
treated by a different method in Chapter 1. Referring now to Eqs. (5.3)-(5.5), 
we find that 

g = f(t) - 2ay - Py2 . (5.24) 

The resulting form of Eq. (5.3) is known as Duffing's equation. Some of its 
more interesting properties have been discussed by Prosperetti (1976) and by 
Ueda (1979). This expression [Eq. (5.24)] can be simply inserted in the < · · ·) 
forms of Eqs. (5.12) and (5.13), and these equations integrated to give the 
behavior. 

If/(t) is a sinusoidal excitation of frequency w, then we can readily calculate 
the steady response curve ofthe oscillator. Two cases were shown in Fig. 1.22, 
that for p = b/m > 0, which corresponds to a spring that hardens with increas
ing amplitude, and that for p = b/m < 0, which corresponds to a softening 
spring. The overhanging part of the curve represents an unstable situation and 
the oscillator exhibits amplitude transitions with hysteresis, as shown by the 
broken lines in Fig. 5.1. These transitions are given by integration of Eqs. ( 5.17) 
and (5.18). 

It is useful at this stage to recall the treatment of Duffing's equation given 
in Chapter 1. The solution given by Eqs. (1.79) and (1.80) similarly describes 
the steady-state resonance curve of Fig. 5.1, or the earlier Fig. 1.22, and indeed 
gives information about the third harmonic as well. Our present method, 
however, allows us, in addition, to calculate the approach to the steady state 
or to follow other time-varying phenomena. If f(t) is zero after an initial 
impulsive supply of energy, for example, then the equations show that, as the 
amplitude decays toward zero in a more or less exponential manner, the 
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Fig. 5.1. The steady frequency response of a nonlinear oscillator of the Duffing type 
excited by an external sinusoidal force. The dotted curves show the response for a 
smaller exciting force, while the vertical broken lines show transitions as the frequency 
is swept with a constant exciting force. 

frequency glides from its large-amplitude value toward its limiting small
amplitude value along the spine of the curve. 

5.3. The Self-Excited Oscillator 

Of particular interest in musical instruments, and indeed in many fields of 
electronic technology as well, is an oscillator that is arranged so as to modulate 
some external steady flow of air, electricity, or some other quantity, with 
a part of the resulting modulated flow then being fed back in an appropriate 
phase to excite the oscillator. The system equation has the general form 

ji + w~y = g(y, y), (5.25) 

where the form of g depends on the arrangement of the system, and the 
magnitude of g is related to the magnitude of the external force, which provides 
energy to drive the oscillator. 
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The best known case is the Vander Pol (1934) oscillator, for which 

g = ya(l - y). (5.26) 

Inserting this into Eq. (5.3}, we see that the damping of the oscillator is nega
tive for y < 1 and positive for y > 1. Oscillations of small amplitude thus 
tend to grow, while oscillations of large amplitude are damped. There is a stable 
oscillation regime or "limit cycle" of amplitude a = 2 for which the energy 
losses when y > 1 just balance the energy gains when y < 1. The oscillations 
are fairly closely sinusoidal, provided a is not very much greater than unity 
but, of course, there is some admixture of higher odd harmonics. 

The behavior of a Vander Pol oscillator and indeed of other similar self
excited systems is well encompassed by our formalism, and simple insertion 
of the appropriate form of g(y, y) into the ( · · ·) forms of Eqs. (5.12) and (5.13) 
provides a prescription from which the development of the system can be 
calculated. Discussion of specific cases will be left until the underlying physical 
systems have been introduced, but a few general comments are in order. The 
most important are the observations that the quiescent state y = 0 is always 
a possible solution, but that this state is unstable to small fluctuations <5y, <5y, 
if the part of g(<5y, <5y) in phase with <5y is positive. If this is true, then such 
fluctuations will lead to growth of the displacement y. The second important 
set of generalizations inquires whether or not the oscillation settles into 
a stable limit cycle. This depends on the detail of the nonlinearity and thus 
upon the physics of the system. Clearly, all musically useful systems do settle 
to a stable cycle of nonzero amplitude. 

5.4. Multimode Systems 

All real systems of finite extent have an infinite number of possible vibration 
modes and, in musically useful resonators, these modes are generally nearly 
linear in behavior and have well-separated characteristic frequencies, often in 
nearly harmonic relationship. This does not mean that musical oscillating 
systems are nearly linear, but rather that such systems usually consist of 
a nearly linear multimode resonator excited by some nonlinear feedback 
mechanism. 

Suppose that the equation describing wavelike propagation in the oscillator 
has the form 

021/1 !l'·l, __ = 0 
'I' ot2 ' 

(5.27) 

where !l' is some linear differential operator typically involving V2 or V4 • 

If we separate variables by writing solutions to this equation as products 
of spatial functions and a time variation like sin wt, then the eigenvalue 
equation is 

(5.28) 

where the eigenfrequencies ron are determined from the requirement that the 
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eigenfunctions r/Jn should satisfy appropriate boundary conditions, usually 
r/Jn = 0 or Vr/Jn = 0, at the surfaces of the resonator. 

If we extend Eq. (5.27) to include on the right side a force of unit magnitude 
(in appropriate units) and frequency w applied at the point r0 then this 
equation becomes 

(5.29) 

where o(r- ro) is the Dirac delta function, and we have Wl"itten rjJ as 
G"'(r, r0 ), which is the Green function for the system at frequency w, taken to 
obey the same boundary conditions as do the r/Jn· If we assume that G"' can be 
expanded as 

Gro(r, r0 ) = L anr/Jn(r), 
n 

and substitute this into Eq. (5.29), then, using Eq. (5.28), 

:L a"(w; - w2 )r/J"(r) = o(r- ro). 
n 

(5.30) 

(5.31) 

If we multiply both sides by r/Jn(r) and integrate over the whole volume of the 
resonator using the usual orthonormality condition 

I r/Jn(r)r/Jm(r) dr = Dnm' (5.32) 

then we find an expression for an that, substituted back into Eq. (5.30), gives 

G (r ) = " r/Jn(ro)r/Jn(r) 
w 'ro L... 2 2 · n wn -w 

(5.33) 

Clearly, this Green function has simple poles at w = ± wn, where the wn are 
the resonance frequencies of the system. 

Since the resonator system is assumed to be linear, and since G(r,r0 ) is the 
response caused by a force of unit magnitude and frequency w applied at r, 
we can write the general response 'I' to a set of forces of different frequencies 
w and phases () and distributed over the resonator like the functions Fro(r) 
as the simple sum 

'P(r, t) = ~ [J Gw(r, r0 )Fro(r0 ) dr0 J sin(wt + ()). (5.34) 

This formulation does not include damping. It could be included as an 
extension to the linear theory and has the effect of moving the poles of G"' 
slightly off the real axis, but it is more conveniently incorporated along with 
nonlinear effects at a later stage. 

The essential feature of Eq. (5.34) for our present purpose is expressed 
by Eq. (5.33), which shows that the mode r/Jn with frequency wn is excited 
principally by force components with frequency w lying close to wn. Indeed, 
if we write the excitation of this nth mode in the form 

(5.35) 
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when it is being driven at frequency w by a force Fro(r0 ) applied at the point 
r0 , then Eqs. (5.33) and (5.34) are equivalent to the sum of the results from 
the set of differential equations: 

Yn + w;yn = L Fwsin(wt +Ow)· (5.36) 
ro 

If we retain in Eq. (5.36) only those force components Fro with frequencies 
near w", then we can apply the method of slowly varying parameters as 
developed previously for a simple oscillator. The forcing term on the right side 
can be written to include the damping term - 2anYn and, in a general situation, 
it will contain driving forces with frequencies near wn derived from nonlinear 
terms involving many of the other modes of the system. In general, therefore, 
Eq. (5.36) has the form 

(5.37) 

and we omit from gn, as explicitly evaluated, all terms except those for which 
the frequency is close town. 

Equation (5.37) is a shorthand way of writing an infinite set of coupled 
differential equations, one for each of the modes w". In practice, however, the 
very high frequency modes will have small excitation amplitudes, so that the 
system can be reduced to a finite and indeed relatively small set of N coupled 
equations describing those modes that are appreciably excited. Each of these 
equations can be manipulated to give <an) and <~"), and the resulting 2N 
equations can be easily integrated numerically to define the behavior of the 
system. 

Clearly, the linear physics of a musical system resides in the study of the 
modes 1/Jn and their characteristic frequencies wn, while the nonlinear physics 
involves elucidation of the coupling functions g". Both these matters are quite 
specific to individual systems, so we will not consider particular examples at 
this stage of our discussion. 

As with simple oscillators, so multimode systems can be divided into those 
that are purely dissipative and can be excited only by an impulsive or time
varying external force, and those that are self-exciting with only a steady 
external supply of energy. Gongs are typical examples of the former class and 
can exhibit many interesting phenomena as energy is passed back and forth 
between the modes by the agency of the nonlinear coupling terms g"" Musical 
instruments producing steady tones, such as winds or bowed strings, belong 
to the second class. 

5.5. Mode Locking in Self-Excited Systems 

For many musical resonators, such as stretched strings or air columns in pipes, 
the normal mode frequencies are very nearly, but not quite, in integral ratio. 
Precisely harmonic systems do not exist. Now, if the coupling function gn in 
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Eq. (5.37) is linear or has no nonlinear terms involving combinations of 
different modes, then the system becomes essentially uncoupled and each 
mode takes on an excitation frequency close to its natural frequency wn. These 
frequencies are never precisely in integer ratios, so the resulting total excitation 
has a nonrepeating waveform. 

Sustained tones from real musical instruments do, however, have precisely 
repeating waveforms, apart from deliberate vibrato effects, and so their in
dividual modes must be somehow locked into precise frequency and phase 
relationships despite the inharmonicities of the natural resonances. It is 
important to see how this is accomplished (Fletcher, 1978). 

Consider a system for which just two modes are appreciably excited by the 
feedback mechanism and suppose that their natural frequencies wn and rom are 
related approximately, but not exactly, as the ratio of the two small integers 
nand m: 

(5.38) 

Now, from Eq. (5.38), the leading nonlinear term by which modem can provide 
a driving force at nearly the frequency of mode n involves the amplitudes 
an and am in the form a::,a:;'-1• Similarly, mode n can influence mode m in 
proportion to a:;'a::,-1. The coefficients of these terms depend upon the Taylor 
expansion of the nonlinear driving functions gn and gm, respectively, and 
generally decrease sharply as n and m increase. These two functions will be of 
the same general form but may differ in detail. The directions in which the 
frequencies of modes m and n are pushed by their <h terms in Eq. (5.13) will 
depend upon the combinations of phase angles rPn and rPm involved, and these 
will vary rapidly if the two modes are not locked together. Once locking 
occurs, however, this represents a stable situation. This argument can be 
generalized to the case of more than two interacting modes. 

The conditions favoring mode locking are thus that the inharmonicity of 
the modes not be too great, that the integers n and m linking the modes be as 
small as possible, that the mode amplitudes be large, and that the nonlinearity 
of the coupling function be as large as possible. When these conditions are 
fulfilled, then all modes contributing to an instrumental sound will rapidly 
settle down to give a phase and frequency· locked repetitive waveform. This 
situation is specially favored when one of the dominant modes excited by 
the feedback mechanism is the fundamental, for then m = 1 and the integer 
combination is as simple as possible. 

Conversely, the conditions favoring nonlocking of modes and thus the 
production of complex multiphonic effects are great mode inharmonicity 
(often produced by peculiar venting arrangements in wind instruments), a 
low excitation level, and preferential excitation of modes other than the 
fundamental. The complexity of the possible variations on this theme makes 
it desirable to consider it in the context of particular instruments. 
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Part II 
Sound Waves 



CHAPTER 6 

Sound Waves in Air 

The sensation we call sound is produced primarily by variations in air pressure 
that are detected by their mechanical effect on the tympana (ear drums) of our 
auditory system. Motion of each tympanum is communicated through a 
linked triplet of small bones to the fluid inside a spiral cavity, the cochlea, 
where it induces nerve impulses from sensory hair cells in contact with a thin 
membrane (the basilar membrane). Any discussion of details of the physiology 
and psychophysics of the hearing process (Stevens and Davis, 1938; Gulick, 
1971) would take us too far afield here. The important point is the dominance 
of air pressure variation in the mechanism of the hearing process. Direct 
communication of vibration through the bones of the head to the cochlea is 
possible, if the vibrating object is in direct contact with the head, and intense 
vibrations at low frequencies can be felt by nerve transducers in other parts 
of the body, for example in the case oflow organ notes, but this is not part of 
the primary sense of hearing. 

The human sense of hearing extends from about 20 Hz to about 20 kHz, 
though the sensitivity drops substantially for frequencies below about 100Hz 
or above 10kHz. This frequency response is understandably well matched to 
human speech, most of the energy of which lies between 100Hz and 10kHz, 
with the information content of vowel sounds concentrated in the range of 
300Hz-3 kHz and the information content of consonants mostly lying above 
about 1 kHz. Musical sounds have been evolved to stimulate the sense of 
hearing over its entire range, but again most of the interesting information lies 
in the range of 100Hz-3kHz. 

Since the ears respond to pressure only in their immediate vicinity, we 
devote this and the following chapter to a discussion of the way in which 
pressure variations-sound waves-propagate through the air and to the. 
way in which vibrating objects couple to the air and excite sound waves. 

6.1. Plane Waves 

Waves will propagate in any medium that has mass and elasticity, or their 
equivalents in nonmechanical systems. Solid materials, which have both shear 
and compressive elasticity, allow the propagation of both shear (transverse) 

T. D. Rossing et al., Principles of Vibration and Sound
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and compressive (longitudinal) waves so that their behavior can be very com
plicated (Morse and Feshbach, 1953, pp. 142-151). Fluids, and in particular 
gases such as air, have no elastic resistance to shear, though they do have 
a viscous resistance, and the only waves that can propagate in them are 
therefore longitudinal, with the local motion of the air being in the same 
direction as the propagation direction of the wave itself. 

When sound waves are generated by a small source, they spread out in all 
directions in a nearly spherical fashion. We shall look at spherical waves in 
detail a little later. It is simplest in the first place to look at a small section of 
wave at a very large distance from the source where the wave fronts can be 
treated as planes normal to the direction of propagation. In the obvious 
mathematical idealization, we take these planes to extend to infinity so that 
the whole problem has only one space coordinate x measuring distance in 
the direction of propagation. 

Referring to Fig. 6.1, suppose that e measures the displacement of the air 
during passage of a sound wave, so that the element ABCD of thickness dx 
moves to A'B'C'D'. Taking S to be the area normal to x, the volume of this 
element then becomes 

V+dV=Sdx(1 + :~). (6.1) 

Now suppose that Pa is the total pressure of the air. Then the bulk modulus 
K is defined quite generally by the relation 

(6.2) 

We can call the small, varying part dpa of Pa the sound pressure or acoustic 
pressure and write it simply asp. Comparison ofEq. (6.2) with Eq. (6.1), noting 
that V is just S dx, then gives 

ae 
P = -Kax· (6.3) 

Finally, we note that the motion of the element ABCD must be described by 

Area 
s 

B B' 

dx 

dx(l + ae;ox) 

C C' 

e + (oefox)dx 

D D' 

~ 
Wave 
direction 

Fig. 6.1. In passage of a plane wave of displacement e, the fluid on plane AB is displaced 
to A'B' and that on CD to C'D'. 
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Newton's equations so that, setting the pressure gradient force in the x 
direction equal to mass times acceleration, 

( op ) iP~ 
-S ox dx = pSdx ot2 , 

or 

(6.4) 

Then, from Eqs. (6.3) and (6.4), 

o2~ K iJ2~ 
otz p iJx2' (6.5) 

or, differentiating Eq. (6.5) again with respect to x and Eq. (6.3) twice with 
respect to t, 

0zp K 0zp 
otz p oxz· (6.6) 

Equations (6.5) and (6.6) are two different versions of the one-dimensional 
wave equation, one referring to the acoustic displacement~ and the other to 
the acoustic pressure p. They apply equally well to any fluid if appropriate 
values are used for the bulk modulus K and density p. For the case of 
wave propagation in air, we need to decide whether the elastic behavior is 
isothermal, and thus described by the equation 

Pa V = constant = nkT, (6.7) 

where T is the absolute temperature, or whether it is adiabatic, and so 
described by 

Pa V 1 = constant, (6.8) 

where y = CP/Cv = 1.4 is the ratio of the specific heats of air at constant 
pressure and at constant volume, respectively, and Pa• as before, is the average 
atmospheric pressure. 

Clearly, the temperature tends to rise in those parts of the wave where the 
air is compressed and to fall where it is expanded. The question is, therefore, 
whether appreciable thermal conduction can take place between these two sets 
of regions in the short time available as the peaks and troughs of the wave 
sweep by. It turns out (Fletcher, 1974) that at ordinary acoustic wavelengths 
the pressure maxima and minima are so far apart that no appreciable conduc
tion takes place, and the behavior is therefore adiabatic. Only at immensely 
high frequencies does the free-air propagation tend to become isothermal. For 
sound waves in pipes or close to solid objects, on the other hand, the behavior 
also becomes isothermal at very low frequencies-below about 0.1 Hz for 
a 20 mm tube. Neither of these cases need concern us here. 

Taking logarithms of Eq. (6.8) and differentiating, we find, using Eq. (6.2), 

K = YPa• (6.9) 
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so that Eq. (6.6) becomes 

(6.10) 

where 

c2 = K YPa (6.11) 
p p 

and similarly for~ from Eq. (6.5). As we shall see in a moment, the quantity c 
is the propagation speed of the sound wave. 

It is easy to verify, by differentiation, that possible solutions of the wave 
equation [Eq. (6.10)] have the form 

p(x,t) = / 1(x- ct) + / 2 (x + ct), (6.12) 

where / 1 and / 2 are completely general continuous functions of their arguments. 
We can also see that f 1(x- ct) represents a wave of arbitrary spatial shape 
/ 1 (x - x0 ) or of arbitrary time behavior / 1 (ct0 - ct) propagating in the + x 
direction with speed c. Similarly, f 2 (x + ct) represents a different wave 
propagating in the - x direction, also with speed c. In the case of air, or any 
other nearly ideal gas, Eqs. (6.7) and (6.11) show that 

( T)t/2 
c(T) = To c(T0 ), (6.13) 

where c(T) is the speed of sound at absolute temperature T. There is, however, 
no variation of c with atmospheric pressure. For air at temperature AT degrees 
Celsius and 50% relative humidity, 

c ~ 332(1 + 0.00166AT) m s-1, (6.14) 

giving c ~ 343 m s-1 at room temperature. 
The wave equation [Eq. (6.10)] was discussed in detail in Chapter 2 

in relation to waves on a string, and its two-dimensional counterpart in 
Chapter 3. There is no need to repeat this discussion here except to remind 
ourselves that it is usual to treat Eq. (6.10) in the frequency domain where the 
solutions have the form 

(6.15) 

where k = wfc and the A and B terms represent waves traveling to the right 
and the left, respectively. [If we adopt the conventions of quantum mechanics 
and write time dependence as exp(- iwt), as for example in Morse (1948), 
thenj should be replaced by -i.] 

If we consider a wave of angular frequency w traveling in the + x direction, 
then we can set B = 0 and A= 1 in Eq. (6.15) and write 

p = e-ikxeirot -+ cos(- kx + rot), (6.16) 

where the second form of writing is just the real part of the first. From Eq. ( 6.5), 
~ has a similar form, though with a different amplitude and perhaps a phase 
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factor. We can connect p and~ through Eq. (6.4), from which 

'k . 0~ 
1 P =Jpw ot' (6.17) 

or, if we write u for the acoustic fluid velocity ae;at and remember that 
k = wfc, then 

p = pcu. (6.18) 

The acoustic pressure and acoustic fluid velocity (or particle velocity) in the 
propagation direction are therefore in phase in a plane wave. 

This circumstance makes it useful to define a quantity z called the wave 
impedance (or sometimes the specific acoustic impedance): 

z = !!_ = pc. 
u 

(6.19) 

It is clearly a property ofthe medium and its units are Pam - 1 s or kg m - 2 s-1, 
sometimes given the name rayls (after Lord Rayleigh). For air at temperature 
.::\roc and standard pressure, 

pc ~ 428(1- 0.0017 L\T) kg m-2 s-1• (6.20) 

In much of our discussion, we will need to treat waves in 3 space dimensions. 
The generalization of Eq. (6.10) to this case is 

(J2p 
ot2 = c2'fif2p. (6.21) 

This differential equation can be separated in several coordinate systems 
to give simple treatments of wave behavior (Morse and Feshbach, 1953, 
pp. 499-518, 655-666). Among these are rectangular coordinates, leading 
simply to three equations for plane waves of the form of Eq. (6.10), and 
spherical polar coordinates, which we consider later in this chapter. 

Before leaving this section, however, we should emphasize that we have 
consistently neglected second-order terms by assuming p « Pa• so that the 
resulting wave equation [Eq. (6.10) or Eq. (6.21)] is linear. This is of great 
assistance in development of the theory and turns out to be an adequate 
approximation even in very intense sound fields such as exist, for example, 
inside a trumpet. At even higher intensities, however, and well below the 
shock-wave limit, nonlinear terms begin to have a detectable effect (Beyer, 
1974). It will not be necessary for us to use such extensions of the theory in 
this book. 

6.2. Spherical Waves 

When we assume a time dependence expjrot, the wave equation, Eq. (6.21), 
takes the form 

(6.22) 
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where k = wjc. This is known as the Helmholtz equation and is separable, 
and therefore relatively easily treated, in rectangular, spherical polar, and 
cylindrical polar coordinates. In spherical coordinates, 

2 1 o ( 2 op) 1 o ( . op) 1 o2p 
V P = r2 or r or + r 2 sin0 oO smO oO + r 2 sin2 0 ot/J2 ' (6·23) 

and the solution to Eq. (6.22) is the sum of a series of products of radial 
functions multiplied by spherical harmonics. The intensity pattern in the wave 
can therefore be very complicated. Of particular interest, however, is the 
simplest case in which p has no dependence on 0 or t/J but spreads uniformly 
from a single point at the origin. 

For such a simple spherical wave, Eq. (6.23) becomes 

2 1 o ( 2 op) v p=r2 or r or' (6.24) 

and we can simplify matters even further by writing p = 1/J jr, giving for 
Eq. (6.22) 

(6.25) 

which is just the one-dimensional wave equation. The general solution for p 
is therefore a superposition of an outgoing and an incoming wave given by 

(6.26) 

To find the acoustic particle velocity u we use the equivalent of Eq. (6.4) 
in the form 

(6.27) 

where the second form of writing is possible since p depends only on r and t. 
Explicitly then, from Eq. (6.27) for the case of an outgoing wave (B = 0), 

u =- 1 + -.- e-1 'e1w1• A( 1) .k. 

rpc Jkr 
(6.28) 

In the far field, when r is much greater than one wavelength (kr » 1), u is 
simply pj pc as in the plane wave case, as we clearly expect. Within about one 
sixth of a wavelength of the origin, however, kr become less than unity. The 
velocity u then becomes large and shifted in phase relative to p. 

The wave impedance for a spherical wave depends on distance from the 
origin, measured in wavelengths (i.e., on the parameter kr), and has the value 

z = ~ = pc(1 ~~kr). (6.29) 

Near the origin, lzl « pc, while lzl- pc for kr » 1. 
The behavior of spherical waves with angular dependence involves more 
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complex mathematics for its solution (Morse, 1948, pp. 314-321), and we will 
not take it up in detail here, though we will meet the topic again in the next 
chapter. 

6.3. Sound Pressure Level and Intensity 

Because there is a factor of about 106 between the acoustic pressure at the 
threshold of audibility and the liinit of intolerable overload for the human ear, 
and because within that range subjective response is more nearly logarithmic 
than linear (actually, it is more complicated than this-see Gulick, 1971, 
pp. 108-134; Rossing, 1982, Chapter 6), it is convenient to do something 
similar for acoustic pressures. We therefore define the sound pressure level 
(SPL or Lp) for an acoustic pressure p to be 

LP = 20log10 (;J. (6.30) 

measured in decibels (dB) above the reference pressure p0 . By convention both 
p and Po are rms values and p0 is taken to be 20 ,uPa, which is approximately 
the threshold of human hearing in its most sensitive range from 1 to 3 kHz. 
On this SPL scale, 1 Pa is approximately 94 dB and the threshold of pain is 
about 120 dB. The normal range for music listening is about 40 to 100 dB. It 
is usual, however, to specify sound pressure levels in the environment after 
applying a filter (Type-A weighting) to allow for the decreased sensitivity of 
human hearing at low and high frequencies. The SPL is then given in dB(A). 

The sensitivity of normal human hearing is shown in Fig. 6.2, as originally 

Frequency (Hz) 

Fig. 6.2. Equal-loudness curves for human hearing. The broken curve is the approxi
mate threshold of hearing for pure tones, and the 120-phon curve is the threshold of 
discomfort. 
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determined by Fletcher and Munson (1933). Each contour passes through 
points of subjectively equal loudness and is labeled with a loudness level in 
phons, taken by definition to be the SPL associated with that contour at a 
frequency of 1 kHz. The normal threshold of hearing for pure tones is a few 
decibels above the 0 phon contour, and the threshold of pain, or at least 
discomfort, is at about 120 phon. The A-weighting curve used in specifying 
environmental (or. musical) noise (or sound) levels is approximately the inverse 
of the 40 phon contour. 

Because human hearing responds to acoustic pressure at a point, or rather 
at two points corresponding to two ears that have little acoustic coupling, 
the sound pressure level is usually the relevant quantity to specify. The SPL, 
however, depends on the environment and in particular on the reverberant 
quality of the space in which the sound source and listener are situated. In 
many cases, it is more useful physically to know the acoustic energy carried 
through a surface by sound waves. This quantity is called the acoustic intensity 
I and is measured in watts per square meter. Again, a logarithmic scale is 
convenient, and we define the intensity level (IL or L1) to be 

L1 = 10log10 (~) (6.31) 

in decibels. [The factor is 10 rather than 20 as in Eq. ( 6.30) since I is proportional 
to p2.] The reference intensity I 0 is taken as 10-12 W m- 2 , which makes the 
SPL and the IL very nearly equal for a plane wave. For a standing wave, of 
course, the sound pressure level may be large, but the intensity will be small 
since the intensities in the two waves tend to cancel because of their opposite 
propagation directions. 

To evaluate the intensity of a plane wave, we first. calculate the energy 
density as a sum of kinetic and potential energy contributions and then 
average over space and time. This energy is transported with the wave speed c, 
so we just multiply by c to get the results. Without going into details (Kinsler 
et al., 1982, p. 110), we find the result 

p2 
I = pcu2 = - = pu, 

pc 
(6.32) 

where p and u are taken as rms quantities (otherwise, a factor oft should be 
inserted into each result). 

Analysis for a spherical wave is more complex (Kinsler et al., 1982, p. 112) 
because much of the kinetic energy in the velocity field near the origin
specifically the part associated with the term 1/jkr in Eq. (6.28)-is not 
radiated because of its 90° phase shift relative to the acoustic pressure. The 
radiated intensity is given as in Eq. (6.32) by 

p2 
I=-, 

pc 
(6.33) 
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where an rms value of p is implied, but the other forms of the result in 
Eq. (6.32) do not apply. 

The total power P radiated in a spherical wave can be calculated by 
integrating I (r) over a spherical surface of radius r, giving 

4nr2p(r)2 
P=--

pc 
(6.34) 

From Eq. (6.26), Pis independent of r, as is obviously required. To get some 
feeling for magnitudes, a source radiating a power of 1 m W as a spherical 
wave produces an intensity level, or equivalently a sound pressure level, of 
approximately 79 dB at a distance of 1 m. At a distance of 10m, assuming 
no reflections from surrounding walls or other objects, the SPL is 59 dB. 
These figures correspond to radiation from a typical musical instrument, 
though clearly a great range is possible. The disparity between this figure and 
the powers of order 100 W associated with amplifiers and loudspeakers is 
explained by the facts that the amplifier requires adequate power to avoid 
overload during transients and the normal operating level is only a few watts, 
while the loudspeaker itself has an efficiency of only about 1% in converting 
electrical power to radiated sound. 

6.4. Reflection and Transmission 

When a wave encounters any variation in the properties of the medium in 
which it is propagating, its behavior is disturbed. Gradual changes in the 
medium extending over many wavelengths lead mostly to a change in the wave 
speed and propagation direction-the phenomenon of refraction. When the 
change is more abrupt, as when a sound wave in air strikes a solid object, 
such as a person or a wall, then the incident wave is generally mostly reflected 
or scattered and only a small part is transmitted into or through the object. 
That part of the wave energy transmitted into the object will generally be 
dissipated by internal losses and multiple reflections unless the object is very 
thin, like a lightweight wall partition, when it may be reradiated from the 
opposite surface. 

It is worthwhile to examine the behavior of a plane pressure wave 
A exp(-jkx) moving from a medium of wave impedance z 1 to one of imped
ance z2 • In general, we expect there to be a reflected wave Bexp(jkx) and a 
transmitted wave C exp(-jkx). The acoustic pressures on either side of the 
interface must be equal, so that, taking the interface to be at x = 0, 

A+B=C. (6.35) 

Similarly, the displacement velocities must be the same on either side of the 
interface, so that, using Eq. (6.19) and noting the sign of k for the various 
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waves, 
A-B C 

(6.36) 

We can now solve Eqs. (6.35) and (6.36) to find the reflection coefficient: 

B z2 - z1 
-= ' A z2 + z1 

(6.37) 

and the transmission coefficient: 

C 2z2 
A z2 + z1 

(6.38) 

These coefficients refer to pressure amplitudes. If z2 = z1 , then B = 0 and 
C =A as we should expect. If z2 > z1, then, from Eq. (6.37), the reflected wave 
is in phase with the incident wave and a pressure maximum is reflected as 
a maximum. If z2 < z1 , then there is a phase change of 180° between the 
reflected wave and the incident wave and a pressure maximum is reflected as 
a minimum. If z2 » z1 or z2 « z1 , then reflection is nearly total. The fact that, 
from Eq. (6.38), the transmitted wave will have a pressure amplitude nearly 
twice that of the incident wave if z2 » z1 is not a paradox, as we see below, 
since this wave carries a very small energy. 

Perhaps even more illuminating than Eqs. (6.37) and (6.38) are the corre
sponding coefficients expressed in terms of intensities, using Eq. (6.32). If the 
incident intensity is I 0 = A2/z1 , then the reflected intensity Iris given by 

(6.39) 

and the transmitted intensity It by 

It 4z2 z1 

10 (z2 + zt)2 ' 
(6.40) 

Clearly, the transmitted intensity is nearly zero if there is a large acoustic 
mismatch between the two media and either z2 » z1 or z2 « z1 • 

We can use the same approach to calculate the reflection and transmission 
coefficients when a sound wave is incident obliquely on the plane interface 
between two fluid media. We then have an incident wave Aexp(-k;.r), a 
specularly reflected wave B exp(-k,. r), and a transmitted wave C exp(-k,. r) 
and we must use the matching conditions on pressure and vector displacement 
at the interface to determine not only the ratio of the coefficients A, B, and C, 
but also the directions of the propagation vectors k, and k, relative to the 
incident vector k;. The algebra is complicated, without being difficult, so we 
simply quote the results. 

Suppose that 0;, 0, and 01 are the angles between the normal to the interface 
and the directions of k;, k, and k, respectively, just as in geometrical optics. 
Then we find that 0, = 0; as for specular reflection, while 
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sin Or k1 c2 

sin01 = k2 = c1 
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(6.41) 

where k1 , c1 refer to the first medium and k2 , c2 to the second. Equation (6.41) 
is familiar as Snell's Law in geometrical optics. The reflection coefficient is 
given by 

I, (z 2 cos 01 - z 1 cos Ot)2 

I;= z2 COS 01 + z1 COS Ot 

and the transmission coefficient by 

Ir _ 4z1z2 cos2 01 

I0 - (z2 cos 01 + z1 cos Ot)2 

(6.42) 

(6.43) 

where Eq. ( 6.41) must be used to express cos Or in terms of 01• Clearly Eqs. ( 6.42) 
and (6.43) reduce to the normal-incidence formulae (6.39) and (6.40) when 
01 = 0. The results (6.41)-(6.43) contain all the familiar phenomena of geomet
rical optics, such as refraction and total reflection. We should note in passing 
that if the incident beam is localized, then the width of the transmitted beam 
differs from that of the incident beam by a factor cos Or/cos 01• We must 
therefore multiply the intensity transmission coefficient, given by Eq. (6.43), 
by this factor to obtain the total power transmission coefficient for such a 
localized beam. 

We should also note that the expressions are also formally correct if the 
wave impedances z1 are complex quantities r1 + jx;, allowing the possibility 
of wave absorption in the two fluids. 

The results (6.41)-(6.43) cannot be applied to solids, because the existence 
of a shear modulus means that longitudinal sound waves are partially con
verted to transverse waves at the boundary, so that the whole analysis becomes 
much more complex. If the solid is isotropic and incidence on the interface is 
normal, however, the analysis leading to Eqs. (6.39) and (6.40), as well as the 
results themselves, remain valid, since propagation remains longitudinal in 
the solid. This allows us to work out a number of useful practical results for 
transmission of sound through solid panels, by neglecting the shear stiffness 
of the solid. Suppose we have a solid panel ofthe solid medium, characterized 
by a wave impedance z2 , separating two semi-infinite regions of fluid with 
wave impedances z1 and z3 • The algebra is a little complicated because we 
have an incident and a reflected wave in region 1, waves travelling in both 
directions in region 2, and a single transmitted wave in region 3, making five 
unknown complex amplitudes A1 in expressions such as A1 exp( ± jk1x) for the 
pressure waves, even for normal incidence. We require that the pressures and 
particle velocities match over the two surfaces of the panel, which gives four 
complex equations and enables us to determine all the wave amplitudes in 
terms of the incident amplitude and the properties of the three media. From 
these amplitudes we can calculate the intensities in each wave from the relation 
I 1 = p1u1 =p~/z1, where z1 is the wave impedance in the medium concerned and 
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we assume the amplitudes to be rms values. The calculated transmission 
coefficient is then 

I1 4z 1 z~z3 
I0 = z~(z 1 + z3 f cos2 k2 l + (z~ + z1z2 ) 2 sin2 k2 l 

(6.44) 

where I is the thickness of the panel. 
One of the most important practical applications of this result is to the case 

in which we have a solid panel with air on both sides. Here z3 = z1 « z2 and 
Eq. (6.44) simplifies to 

It ( 2z1 )
2 

I 0 ~ z2 sink2 l 
(6.45) 

If the panel is thin compared with the sound wavelength, then sin k2 l ~ k2 l 
and we can further replace c 2 k2 by w to give 

It ~ (2z1 )
2 

I0 plw 
(6.46) 

This is just the result we would arrive at if we assumed the panel to behave 
as a simple mass load pl per unit area, driven by the difference in sound 
pressure between its faces. 

All this discussion about panels assumes, however, that their extent is 
infinite, whereas this can never be the case in practice-the panel must be 
somehow supported on a rigid frame. Once we recognize a structure of this 
sort, we realize that individual segments of the panel can resonate-a situation 
that was not possible in the truly infinite case. A detailed consideration of 
transmission through such a resonant panel would take us too far afield, but 
it is easy to see the general effect on the basis of the comment following Eq. 
(6.46). All we need to do to reach at least a semiquantitative result is to replace 
the mass load pfw per unit area at the resonance frequency w* by the resonant 
load plw* /Q, where Q is the quality factor of the resonance. This artifice will 
work, however, only for the fundamental resonance of the panel, at which 
frequency it all moves in-phase, and even then it is only approximate because 
of the effect of mode shape. For higher resonances the result is more complex. 
It is clear that such resonances can greatly increase sound transmission 
through panels, since Q may well be as large as 10 for a simple undamped 
panel. 

All this discussion applies only to cases where the extended surface between 
two media is flat and very large, both compared with the sound wavelength 
involved. If the surfaces of concern are all flat and of large extent in this sense, 
then the familiar rules of geometrical optics are an adequate approximation 
for the treatment of reflections. It is only for large areas, such as the walls or 
ceilings of concert halls, that this is of more than qualitative use in under
standing behavior (Beranek, 1962; Rossing, 1982; Meyer, 1978). 
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At the other extreme, an object that is small compared with the wavelength 
of the sound wave involved will scatter the wave almost equally in all direc
tions, the fractional intensity scattered being proportional to the sixth power 
of the size of the object. When the size of the object ranges from, for example, 
one-tenth of a wavelength up to 10 wavelengths, then scattering behavior is 
very complex, even for simply shaped objects (Morse, 1948, pp. 346-356; 
Morse and lngard, 1968, pp. 400-449). 

There is similar complexity in the "sound shadows" cast by objects. Objects 
that are very large compared with the sound wavelength create well-defined 
shadows, but this situation is rarely encountered in other than architectural 
acoustics. More usually, objects will be comparable in size to the wavelength 
involved, and diffraction around the edges into the shadow zone will blur its 
edges or even eliminate the shadow entirely at distances a few times the 
diameter of the object. Again, the discussion is complex even for a simple plane 
edge (Morse and lngard, 1968, pp. 449-458). For the purposes of this book, 
a qualitative appreciation of the behavior will be adequate. 

6.5. Absorption 

Even in an unbounded uniform medium such as air, a plane sound wave is 
attenuated as it propagates because of losses of various kinds (Kinsler et al., 
1982, Chapter 7). This occurs for two different reasons. The first is that, when 
a small element of the air is compressed in the wave, its shape changes since 
the compression is only along the direction of propagation. Any shape change 
is resisted by viscous forces and, though these are small in gases, they still 
dissipate some of the energy. The second reason has to do with thermal effects. 
When the gas is compressed in the wave, its temperature and density both rise 
to follow the compression. The process is complicated, however, by the fact 
that heat can be conducted from the warmer compressed parts of the gas to 
the cooler expanded parts only half a wavelength away. A further complica
tion arises from the fact that molecules of oxygen and nitrogen are able to 
rotate and vibrate, and the compressional heat energy, initially confined to 
the translation velocity of these molecules, gradually becomes shared with the 
internal modes as well, reducing the temperature and increasing the density. 

We can express all these processes formally by making the propagation 
constant k a complex quantity and writing 

OJ • 
k~--Jrx. 

c 
(6.47) 

so that the wave amplitude decays as exp(- rx.x) for a plane wave and 
(1/r)exp( -rx.r) for a spherical wave. The intensity in the two cases decays as 
exp( -2rx.x) and (1/r2 )exp( -2rx.r), respectively. The quantity rx. is called the 
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attenuation coefficient, and its value, or more usually the value of 86861X, 
corresponding to the attenuation in decibels per kilometer, is available in 
standard tables (Evans and Bass, 1986). 

If we consider just viscous and thermal-conduction relaxation, we can 
deduce the frequency dependence of the attenuation coefficient IX by a simple 
argument. Consider first the viscous losses. For a given pressure amplitude, 
the energy loss per cycle is proportional to the magnitude of the shear shape 
change, which is inversely proportional to wavelength, so that the total energy 
loss per second is proportional to w2 • In the case of thermal losses, the diffusion 
of heat energy is proportional to the second derivative of the temperature 
profile, and thus also to w 2• These two mechanisms therefore give a simple w 2 

variation for the attenuations coefficient IX, both contributing by comparable 
amounts. 

For absolutely dry air, the relaxation time for transfer of energy to the 
molecular rotation modes is very short compared with the period of a sound 
wave, so that these modes stay close to equilibrium excitation and do not 
contribute to the attenuation. The relaxation time for the vibrational modes, 
in contrast, is very long, so that again they do not contribute to the attenua
tion. The behavior of such dry air is therefore fairly well described by the 
simple theory outlined above. Normal air, however, contains traces of other 
gases, particularly of water vapor, and these, through their collisions with 
oxygen and nitrogen molecules, effectively catalyze the transfer of energy to 
the vibration modes of these molecules and so greatly reduce the relaxation 
time so that it comes into the sonic or even ultrasonic range. This molecular 
relaxation greatly increases the attenuation of sound over a wide range of 
frequencies centered on that for which cor ~ 1. In air of very low relative 
humidity, IX is increased over the classical value by as much as a factor 100 near 
the attenuation peak, whereas an increase of a factor 10 over the high
frequency part of the audible range is more typical of normal humidities. 
Because of this wide variation with relative humidity, it is not possible to give 
a simple formula for the attenuation of sound in air. A reasonable fit to the 
values in the tables for air at 50% relative humidity is, however, provided by 
the equations 

IX~ 4 X 10-7j, 

IX ~ 1 X 10-10j2, 

100 Hz < f < 1 kHz 

2kHz < f < 100kHz 
(6.48) 

where f is the frequency in hertz. To an adequate approximation one can 
simply multiply these values by 104 to find the attenuation in dB/km. 

For propagation of sound over large distances outdoors, attenuation of the 
higher frequencies by atmospheric absorption is very significant, and may be 
made even more so by the added effects of wind turbulence. For indoor 
applications in small rooms one can often ignore the propagation attenuation, 
though in large halls the high frequencies may be significantly attenuated by 
atmospheric absorption, which amounts to about 0.1 dB/mat 10kHz. 
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More important, in most halls, is the absorption of sound upon reflection 
from the walls, ceilings, furnishings, and audience. If an impulsive sound 
is made in a hall, then the sound pressure level decays nearly linearly, corre
sponding to an exponential decay in sound pressure. The time T60 for the level 
to decay by 60 dB is known as the reverberation time. Details of the behavior 
are complicated, but to a first approximation T60 is given by the Sabine 
equation: 

0.161 v 
T6o=~s' 

f... IX; i 
i 

(6.49) 

where V is the hall volume (in cubic meters) and the S; are areas (in square 
meters) of surface with absorption coefficients IX;. Satisfactory reverberation 
time is important for good music listening but depends on building size and 
musical style. For a small hall for chamber music, T60 may be as small as 0.7 s, 
for a large concert hall, it may be 1.7 to 2 s, and for a large cathedral suitable 
for nineteenth century organ music, as long as 10 s (Meyer, 1978; Beranek, 
1962, pp. 555-569). 

In musical instruments, we will often be concerned with sound waves 
confined in tubes or boxes or moving close to other surfaces. In such cases, 
there is attenuation caused by viscous forces in the shearing motion near 
the surface and by heat conduction from the wave to the solid. Both these 
effects are confined to a thin boundary layer next to the surface, the thickness 
of which decreases as the frequency increases. The viscous and thermal 
boundary layers have slightly different thicknesses, bv and b1, given by (Benade, 
1968) 

and (6.50) 

b = -- ~-1/2 "' 1 9 X 1Q-3j-1/2 ( 
" )1/2 

1 2npCP "' . ' 

where pis the density,, the viscosity," the thermal conductivity, and cp the 
specific heat of air (per unit volume). For sound waves in musical instruments, 
these boundary layers are thus about 0.1 mm thick. We shall return to consider 
these surface losses in more detail in Chapter 8. 

6.6. Normal Modes in Cavities 

While many problems involve the propagation of acoustic waves in nearly 
unconfined space, many other practical problems involve the acoustics of 
enclosed spaces such as rooms, tanks, and other cavities. We defer discussion 
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of wave propagation in pipes and horns-which generally have at least one 
open end-to Chapter 8, and consider here only completely enclosed volumes. 

The mathematical principles involved are straightforward-we simply 
need to solve the three-dimensional version of the wave propagation equation 
(6.6) with appropriate boundary conditions on the walls of the enclosure. To 
be more explicit, the three-dimensional wave equation can be written in vector 
notation in the form 

o2p 
-= c2V2p 
ot2 

(6.51) 

and we need simply to express the vector differential operator V2 in coordi
nates related to the geometry of the enclosure so that the boundary conditions 
are simple. If the enclosure is rectangular, for example, then the wave equation 
( 6.51) becomes 

02p = c2 ( 02p + 02p + 02p) 
ot2 ox2 oy2 oz2 (6.52) 

and we can write p(x,y,z) = Px(x)py(y)pz(z). We return to this case in a 
moment. 

The boundary conditions at the boundaries of the enclosure depend upon 
the physical nature of the walls. Suppose that the walls present an acoustic 
wave impedance zw, then at the walls we must have 

jzwop 
p=ZwU=--

pW on 
(6.53) 

where the second form of writing comes from Eq. (6.4) and n is a coordinate 
normal to the surface of the wall. It is easy enough to deal with this general 
boundary condition if zw is imaginary, so that the walls are either simply 
springy or simply slack and heavy. More generally the walls will have resistive 
losses so that zw will contain a real part. The simplest case is that in which 
the walls are completely rigid, for then zw = oo and Eq. (6.53) reduces to 

op = o 
on . (6.54) 

It is usually an adequate approximation for real enclosures to adopt Eq. (6.54) 
as a boundary condition when determining the mode frequencies and to make 
allowance for any real part on zw by adding damping to the modes. 

To illustrate some aspects of the mode problem, suppose that we have a 
rectangular enclosure with sides of lengths a, b, and c. Solutions of Eq. (6.52) 
that satisfy the boundary condition (6.54) on all the walls have the form 

p(x,y,z,t) = AcosC:X)cos(m:y)cos(n;z)sinwt (6.55) 

where l, m, n are integers (including the possibility of zero) and the frequency 
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Fig. 6.3. Distribution of mode frequencies for two rectangular rooms of equal volume 
anddimensionratios(a)2: 2: 2and(b) 1:2:3. Wheremodefrequenciesarecoincident, 
the relevant line has been lengthened proportionally. 

w satisfies 

(6.56) 

The frequencies given by this equation are the mode frequencies for the 
enclosure. Clearly their distribution depends upon the relative values of 
a, b, and c, and thus on the shape of the enclosure. Figure 6.3 shows such 
mode distributions for two representative rooms with equal volume but with 
dimensions in the ratio 2 : 2 : 2 and 1 : 2 : 3, respectively. It is one of the 
important parameters of good architectural acoustics to arrange the room 
shape so that the frequencies of the lower modes of the space are reasonably 
evenly distributed-any concentration of modes near some particular fre
quency can give a tonal character to the reverberation that is generally detri
mental to music listening. Clearly the 2:2: 2 room has a "peaky" response 
with many coincident resonances, whereas the 1 : 2 : 3 room has a much more 
even spread and is likely to be more satisfactory musically. 

We can adopt the same approach to calculate the mode frequencies for 
other enclosures with simple geometry, in particular for a spherical cavity and 
for a cavity in the form of a circular cylinder. For the spherical case the wave 
equation can be separated in spherical polar coordinates (r, (), t/J) and the mode 
functions for the pressure can be written in terms of spherical Bessel functions 
and spherical harmonics. The cylindrical case can be separated in cylindrical 
polar coordinates (r, t/J, z) and the pressure can be expressed in terms of 
ordinary Bessel functions and trigonometric (circular) functions. We shall 
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not go through the detailed mathematics here, but simply remark that the 
resulting mode-frequency distribution appears irregular, as for a rectangular 
enclosure, but can be calculated in a straightforward way once we are familiar 
with the properties of Bessel functions. 
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CHAPTER 7 

Sound Radiation 

In Chapter 6, we discussed some of the basic properties of sound waves and 
made a brief examination of the way sound waves are influenced by simple 
structures, such as tubes and cavities. In the present chapter, we take up 
the inverse problem and look at the way in which vibrating structures can 
generate sound waves. This is one of the most basic aspects of the acoustics 
of musical instruments-it is all very well to understand the way in which 
a solid body vibrates, but unless that vibration leads to a radiated sound wave, 
we do not have a musical instrument. We might, of course, simply take the 
fact of sound radiation for granted, and this is often done. This neglects, 
however, a great deal of interesting and important physics and keeps us from 
understanding much of the subtlety of musical instrument behavior. 

Our plan, therefore, will be to look briefly at the properties of some of the 
simplest types of sources-monopoles, dipoles, and higher multipoles-to see 
the behavior we might expect. We then look at radiation from vibrating 
cylinders, since vibrating strings are so common in musical instruments, and 
then go on to the much more complicated problem of radiation from the 
motion of reasonably large and more-or-less flat bodies. These are, of course, 
the essential sound-radiating elements of all stringed and percussion in
struments. The radiation of sound from the vibrating air columns of wind 
instruments presents a related but rather different set of problems that we defer 
for discussion in Chapter 8. 

7.1. Simple Multipole Sources 

The simplest possible source is the point source, which is the limit of a 
pulsating sphere as its radius tends to zero. Suppose the sphere has a small 
radius a and that the pulsating flow has a frequency w and amplitude 

Q = 4na2u(a), (7.1) 

where v(a) is the radial velocity amplitude at the surface. This object clearly 
generates a spherical wave, and, from our discussion in Chapter 6 and specifi-
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cally from Eqs. (6.26) and (6.28), the pressure and velocity amplitudes in such 
a wave at radius rare given by 

p(r) = (Ajr)e-jkr, (7.2) 

and 

u(r) = __i_ (1- j_)e-jkr. 
per kr 

(7.3) 

Matching Eq. (7.3) to Eq. (7.1) on the surface of the sphere and assuming 
ka « 1, we find a value for A from which Eq. (7.2) gives 

() _jwp Q -jkr pr--4 e. 
nr 

(7.4) 

This result does not depend on the sphere radius a, provided ka « 1, and so 
it is the pressure wave generated by a point source of strength Q. Such a source 
is also called a monopole source. Its radiated power P is simply tP2 I pc 
integrated over a spherical surface, whence 

w2pQ2 
P=--

8nc · 
(7.5) 

Note that for a given source strength Q the radiated power increases as the 
square of the frequency. 

The next type of source to be considered is the dipole, which consists of 
two simple monopole sources of strengths ± Q separated by a distance dz, in 
the limit dz -+ 0. A physical example of such a source is the limit of a small 
sphere oscillating to and fro. Referring to Fig. 7.1, ifr+ and r_ are, respectively, 
the distances from the positive and negative sources in the dipole to the 
observation point (r, 8), then the acoustic pressure at this point is, from 
Eq. (7.4), 

_ (jwp) (e-jkr+ e-jkr_) 
p-- --- Q. 

4n r+ r_ 
(7.6) 

+Q 

i 
dz 

1 
-Q 

Fig. 7.1. A dipole source. In the limit dz-+ 0, Q --> ex:>, the dipole moment is J-l = Q dz. 
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As dz - 0, this difference can be replaced by a differential, so that 

jwp a (e-jkr) 
p=--- Qdz 

4n az r 

= -- 1 + -.- e-1k'J.l.COS (}, w 2 p ( 1 ) . 
4ncr Jkr 

(7.7) 

where we have let Q - oo as dz - 0, so that the dipole moment J.l. = Q dz 
remains finite. The velocity field can be found by taking the gradient of p as 
usual. In the far field, where kr » 1, Eq. (7.7) can clearly be simplified by 
neglecting 1/jkr relative to 1. The radiated power P is simply 

1 ff p2 . w4pp.2 
p = 2 pc r2 sm (} d(} d,P = 24nc3 . (7.8) 

The power radiated by a dipole is thus a very strong function of frequency, 
and dipole sources are very inefficient radiators at low frequencies. From 
Eq. (7.7), the radiation is concentrated along the axis of the dipole. 

The process of differentiating the field of a monopole to obtain that of 
a dipole, as expressed in Eq. (7. 7), can be thought of as equivalent to reflecting 
the monopole source, and its radiation field, in a pseudomirror, which changes 
the sign ofthe source. The limit operation as we go from Eq. (7.6) to Eq. (7.7) 
is equivalent to moving the source closer and closer to the mirror plane. 

The next step in complication is to reflect the dipole in another mirror 
plane, as shown in Fig. 7.2, to produce a quadrupole. This can be done in two 
ways to produce either an axial (longitudinal) quadrupole, in which the four 
simple poles lie. on a straight line, or a plane (lateral) quadrupole, in which 
they lie at the corners of a square. The sign of the reflection is always chosen 
so that the quadrupole has no dipole moment. A physical example of a 
quadrupole source is a sphere, vibrating so that it becomes alternately a 
prolate and an oblate spheroid. 

The pressure field for a quadrupole can be found by differentiating that for 
a dipole, Eq. (7.7), either with respect to z for an axial quadrupole or x for a 
plane quadrupole. To find the far-field radiation terms, the differentiation can 
be confined to the exponential factor. If the monopole source strength is Q, 

• • 0 

(a) (b) 

• 
0 

0 

• 
(c) 

• 0 

0 • 

(d) 

Fig. 7.2. Generation of two possible configurations of a quadrupole by successive 
reflection of a monopole, with a sign change on each reflection: (a) monopole, (b) dipole, 
(c) axial quadrupole, and (d) planar quadrupole. 
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then we clearly have the following sequence of results for the far-field pressure 
generated by monopole, dipole, and quadrupole sources, respectively: 

Pm = jk (~:~) e-ikr, (7.9) 

Pd = - k2 (p~~:z) cos(r, z)e-ikr, (7.10) 

and 

Pq = -jk3 (pc~~:dx)cos(r,z)cos(r,x)e-ik•. (7.11) 

The notation is obvious and, for an axial quadrupole, x is replaced by z in 
Eq. (7.11). The important points to note are the increasingly complex angular 
behavior and more steeply decreasing radiation efficiency at low frequencies 
as we proceed through the series. 

7.2. Pairs of Point Sources 

To guide our later discussion, it is now helpful to examine briefly the radiation 
behavior of combinations of several point sources whose separation is not 
necessarily small compared with the sound wavelength. First, let us treat the 
case of two monopoles of strength Q separated by a distance d as shown in 
Fig. 7.3. The sources can be of either the same or opposite sign, and we seek 
the pressure pat a large distance r »din direction 0. For r "' d, the expression 
is complicated, as in Eq. (7.6), but for r » d, we have 

p ~ e~:;)e-jkr(elf2jkdcos8 ± e-lj2jkdcos8), (7.12) 

where the plus sign goes with like sources and the minus sign with sources of 

Q 

i 
d 

! 
±Q 

Fig. 7.3. Radiation from a pair of separated monopoles. 
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opposite phases. The absolute value of the square of pis 

jp2 j = (~;y[cos2 Gkdcose} sin2 Gkdcose)J (7.13) 

where cos2 goes with the plus and sin2 with the minus sign. The total radiated 
power is then 

P = ~ ff(!Id) r2 sin 8 dO d,P = w 2 pQ2 [1 ± sin kd]. (7.14) 
2 pc 4:n:c kd 

The results in Eqs. (7.13) and (7.14) contain a great deal of information. 
From Eq. (7.13), the angular variation of the acoustic intensity p2/pc is very 
complex if kd is not small relative to unity, and there are many values of 8 for 
which the intensity vanishes, whether the two sources are in phase or out of 
phase. From Eq. (7.14), however, the behavior of the total radiated power is 
much simpler. Comparing Eq. (7.14) with the result in Eq. (7.5) for a monopole 
source of strength Q, we see that if kd ~ 1 then the radiated power is either 
zero or four times that for a single source, corresponding to coherent superposition 
of the radiation from the two monopoles. On the other hand, if kd ~ 1, then 
P is just twice the value for a single source, irrespective of the phases of the 
two sources, corresponding to incoherent superposition of the individual 
radiations. The transition between these two forms of behavior is shown in 
Fig. 7.4. This important general result is true of the radiation from any two 
sources, irrespective of exact similarity. If the separation between the sources 
is greater than about half a wavelength (kd > 3), then the total radiated power 
is very nearly equal to the sum of the powers radiated by the two sources 

0 10 
kd 

Fig. 7.4. Total power P radiated from a pair of monopoles of the same ( + +) or 
opposite ( + -) phase and separation d, as functions of the frequency parameter kd. 
The power radiated from an isolated monopole is P0 • 
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treated independently. A more detailed treatment along the same lines as that 
given above (Junger and Feit, 1986, Chapter 2) gives information about the 
angular variation of acoustic intensity and of the acoustic pressure in the 
near-field region where r "' d, this pressure generally being higher than given 
by the far-field approximation [Eq. (7.12)] if used for the near field. These 
details need not concern us here. 

7.3. Arrays of Point Sources 

In some fields of acoustics, for example in sonar, we need to be concerned with 
arrays of point sources all related in phase. Something rather similar may 
apply to radiation from the open finger holes of a woodwind instrument. More 
usually, we will be concerned with radiation from an extended vibrating 
source, such as a drumhead or a piano soundboard, which is divided by nodal 
lines into areas vibrating in antiphase with their neighbors. It is instructive to 
look at the point-source approximations to these systems. 

Suppose we have a line of 2N sources of strength Q, each separated from 
its neighbors by a distance d. If we choose the origin to be at the midpoint of 
the line of sources, then, by analogy with Eq. (7.12), the acoustic pressure pat 
a distance r »2Nd is 

P+ ~ (jwpQ)e-ikr f (± 1)"[e<n-1/2likdcose ± e-<n-1/2likdcose], (7.15) 
- 4nr n=l 

where the plus sign applies to a line of sources all with the same phase and the 
minus sign to a line in which the phase alternates between 0 and n. We rewrite 
Eq. (7.15) as 

P± ~ e::;) e-jkr n~l (± 1)" { 2 cos[ ( n-D kd cos 0 l 
2jsin[ ( n-D kdcosO ]}• (7.16) 

where the cosine form refers toP+ and the sine form top_. These series are 
readily summed from Eq. (7.15) to give 

"'(jwpQ) -jkr[sin(NkdcosO)J 
P+ "' e · 1 ' 4nr smb;kd cos 0) 

(7.17) 

and 

_ ~ (jwpQ)e-ik•[( -1)N sin(NkdcosO)J· 
P 4nr cos(!kd cos 0) 

(7.18) 

These results indicate a rather complex radiation pattern in the 0 coordinate, 
but the important features are immediately clear. Let us look first at the case 
where the sources are all in phase, giving radiated acoustic pressure P+· The 
term in square brackets in Eq. (7.17) is always large when 0 == 90°, the zero in 
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the numerator being balanced by one in the denominator, and has at that 
angle the value 2N. The radiation intensity at () = 90° is thus equivalent to 
that from a source of strength 2NQ, and, from the form of the bracket, the 
width of this radiation lobe in radians is approximately 2n/Nkd = A./Nd, 
where ). is the acoustic wavelength. If kd < 2n or ). > d, then this is the only 
large maximum of the term in square brackets, which is of order unity at all 
other angles. The radiation pattern of the array at low frequencies is thus as 
shown in Fig. 7.5(a). 

If the frequency is higher, so that ). < d or kd > 2n, then the denominator 
in the square brackets of Eq. (7.17) can vanish at other angles ()*for which 

()* = cos-1 -( 2nn) 
kd ' 

(7.19) 

and this will have solutions for one or more values of the integer n. Each zero 
in the denominator is again balanced by a zero in the numerator, and the 
bracket again has the value 2N. The radiation pattern now has the form shown 
in Fig. 7.5(b), with more lobes added at higher frequencies. 

The total power radiated by the in-phase array can be found by integrating 
the intensity Pi I pc over the surface of a large sphere surrounding the source. 
The behavior is broadly similar to that shown for the in-phase source pair 
in Fig. 7.4, except that the high-frequency power approaches NP0 and the 

(a) (b) (c) 

Fig. 7.5. Radiation intensity patterns for (a) a linear co-phase array of sources of 
separation d for kd < 2n or A. > d; (b) a co-phase array for kd > 2n, A. < d; and (c) an 
antiphase array for kd > n, A. < 2d. There is very little radiation from an antiphase 
array with kd < n, A. > 2d. 
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low-frequency power approaches N 2 P0 when the wavelength is greater than 
the length of the entire array, P0 being the power radiated by a simple source 
of strength Q. 

The antiphase array, with radiated pressure p_, behaves rather differently. 
If A. > 2d so that kd < n, then there are no zeros in the denominator and the 
term in square brackets is of order unity at all angles 8. The radiated pressure 
is thus only comparable with that from a single source of strength Q and the 
radiation process is very inefficient. Most of the flow of the medium is simply 
a set of closed loops from one source to its antiphase neighbors and, though 
the acoustic pressure is actually large at distances less than about d from the 
source line, very little of this escapes as radiation. 

At frequencies sufficiently high that A.< 2d or kd > n, a frequency that is 
half that for an in-phase source, zeros occur in the denominator ofEq. (7.18) 
for angles ()* given by 

()* _ _1 [(2n- l)n] 
-cos kd (7.20) 

for one or more. positive integers n. The radiation pattern then has the form 
shown in Fig. 7.5(c), and the total radiated power becomes approximately 
NP0 • 

We can extend these methods to the practically important case of a square
grid array of antiphase sources as a prototype for the radiation to be expected 
from the complex vibrations of plates or diaphragms. It is not necessary to go 
through this analysis in detail, however, since the important results can be 
appreciated from the linear case treated above. If' the centers of the antiphase 
regions, represented in the model by point sources, are less than about half of 
the free-air acoustic wavelength apart, then the radiation efficiency is low 
(assuming the numbers of co-phase and antiphase sources to be equal) and 
about equivalent to that of a single simple source. Except in the case of bells, 
this is nearly always the situation for the free vibrational modes of plates, 
shells, and diaphragms in musical instruments, because the speed of transverse 
mechanical waves in the plate is generally much less than the speed of sound 
in air. However, these modes can be driven at higher frequencies by externally 
applied periodic forces, and the radiation condition can then be satisfied, as 
we discuss further in Section 7.6. 

7.4. Radiation from a Spherical Source 

Although a spherical source pulsating in radius would not at first sight seem 
to be a good model for any musical instrument, it turns out that the radiation 
from a source with a pulsating volume, such as a closed drum, is very little 
dependent on its shape provided its linear dimensions are small in comparison 
to the relevant sound wavelength in· air. We will, however, look at radiation 
from a pulsating sphere rather more generally than this. 
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Suppose that the sphere has radius a and pulsates with surface velocity 
u exp(jrot). If we set this equal to the radial velocity at distance a from a simple 
source, as given by Eq. (7.3), then from Eq. (7.2) the acoustic pressure at 
distance r becomes 

( ) = jpcka2u ( 1 - jka) -jk(r-a) 
p r r 1 + k2a2 e . (7.21) 

There are obvious simplifications if ka « 1. The radiated power P is then 

(7.22) 

if ka » 1 (7.23) 

if ka « 1, (7.24) 

where Q is the volume flow amplitude of the source. For a given surface 
velocity u, the radiated power per unit area increases as (ka)2 while ka « 1 but 
then saturates for ka » 1. Most musical instruments in this approximation 
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Fig. 7.6. Real and imaginary parts of the mechanical load Rm + jXm on the surface of 
a sphere of radius a pulsating with frequency w and velocity amplitude u. Rm and Xm 
are given in units of peS, where S = 4na2• R and X are corresponding acoustic 
quantities in units of pcfS (after Beranek, 1954). 
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operate in the region ka < 1, so that, other things being equal, there is usually 
an advantage in increasing the size of the flexible radiating enclosure. 

It is also useful to know the mechanical load on the spherical surface. From 
Eq. (7.21), this is simply 

( k2a2 + jka) 
F = 4na2p(a) =peS 1 + k2a2 u = (Rm + jXm)u, (7.25) 

where S = 4na2 is the area ofthe sphere. The real part Rmu of this force, which 
increases as (ka)2 until it saturates at pcSu, represents the dissipative load of 
the radiation. The imaginary part Xmu, which increases as ka for ka < 1 and 
decreases as (kaf1 above ka = 1, represents the mass load of the co-moving 
air. Equation (7.25) is plotted in Fig. 7.6. The load on pulsating volume sources 
of all shapes behaves very similarly. Also shown in Fig. 7.6 are the acoustic 
quantities R and X; these are just I j S2 times their mechanical counter
parts. 

7 .5. Line Sources 

The only common line sources in musical acoustics are transversely vibrating 
strings. As a first approach, it is convenient to idealize such a string as 
a cylinder of infinite length and radius a, vibrating with angular frequency 
w. Such a source has a dipole character, so that, from the discussion of 
Section 7.1, we expect it to be an inefficient radiator at low frequencies. 

A detailed discussion ofthis problem is given by Morse (1948, pp. 299-300). 
All that we need here are the final results for intensity I and total radiated 
power P for ka « 1. These are 

(7.26) 

and 

(7.27) 

where u exp jwt is the vibration velocity of the string. The waves are, of course, 
cylindrical. Clearly, there is a very strong dependence on both wand a and, 
in fact, the directly radiated acoustic power is almost negligibly small for the 
string diameters and frequencies commonly met in musical instruments. 

For the vibration of a string in its fundamental mode, the infinite cylinder 
approximation is reasonable, but for higher modes we must recognize that 
adjoining sections of string vibrate in antiphase relation. Since the transverse 
wave velocity on the string is significantly less than c, these string sections are 
separated by less than half the sound wavelength in air, so there is an addi
tional cause for cancellation of the radiated sound intensity, as discussed in 
Section 7.3. 
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It is therefore reasonable to neglect the contribution of direct radiation 
from vibrating strings to the sound of musical instruments. It is only when 
a vibrating cylinder has a quite large radius, as in the cylinders of tubular bells, 
that direct radiation becomes significant. 

7.6. Radiation from a Plane Source in a Baffle 

Few, if any, musical radiators consist of some sort of moving part set in 
an infinite plane baffie, but we examine the behavior of this system because 
it is the only case for which a simple general result emerges. Fortunately, it 
also happens that replacement of the plane baffie by an enclosure of finite size 
does not have a really major effect on the results, though the changes are 
significant. 

Referring to Fig. 7.7, suppose that the areaS on an otherwise rigid plane 
baffie is vibrating with a velocity distribution u(r') and frequency w normal to 
the plane, all points being either in phase or in antiphase. The small element 
of area dS at r' then constitutes a simple source of volume strength u(r') dS, 
which is doubled to twice this value by the presence of the plane which restricts 
its radiation to the half-space of solid angle 2n. The pressure dp produced by 
this element at a large distance r is 

dp(r) =jwp e-iklr-r'lu(r')dS. 
2nr 

(7.28) 

If we take r to be in the direction (0, fjJ) and r' in the direction (n/2, rfi'), then we 

r(O, r/J) 

Fig. 7.7. A vibrating plane source set in an infinite plane baffie. Radiation pressure is 
evaluated at a point at a large distance r in the direction shown. 
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can integrate Eq. (7.28) over the whole surface of the plane, remembering that 
u = 0 outside S, to give 

p(r,8,¢>) =j2o;:: e-jkr L f eikr'sin8cos((b-<b'>u(r')r' d¢>' dr'. (7.29) 

The integral in Eq. (7.29) has the form of a spatial Fourier transform of the 
velocity distribution u(r'). This is our general result, due in the first place to 
Lord Rayleigh. 

It is now simply a matter of algebra to apply Eq. (7.29) to situations of 
interest. These include a rigid circular piston and a flexible circular piston 
(Morse, 1948, pp. 326-335) and both square and circular vibrators excited in 
patterns with nodal lines (Skudrzyk, 1968, pp. 373-429; Junger and Feit, 1986, 
Chapter 5). There is not space here to review this work in detail, but we shall 
select particular examples and relate the conclusion to the simplified treat
ments given in the earlier sections of this chapter. 

The integral in Eq. (7.29) can be performed quite straightforwardly for 
the case of a circular piston of radius a with u constant across its surface. The 
result for the far field (Morse, 1948, pp. 327-328) is 

1 . 2 (e-ikr) [211 (ka sin 8)] 
p::::; 2]Wpua -- k . 8 , 

r asm 
(7.30) 

where 11 is a Bessel function of order one. The factor in square brackets is 
nearly unity for all 8 if ka « 1, so the radiation pattern in the half-space 
0 ~ 8 < n/2 is isotropic at low frequencies. For higher frequencies, the bracket 
is unity for 8 = 0 and falls to zero when the argument of the Bessel function 
is about 3.83, that is for 

8* - 0 -1 (3.83) - sm ka . (7.31) 

The angular width 28* of the primary radiated beam thus decreases nearly 
linearly with frequency once ka > 4. There are some side lobes, but the first 
of these is already at -18 dB relative to the response for 8 = 0, so they are 
relatively minor. 

The force F acting on the piston (Morse, 1948, pp. 332-333; Olson, 1957, 
pp. 92-93) is 

F = (Rm + jXm)u = pcSu(A + jB), (7.32) 

where 
11 (2ka) (ka)2 (ka)4 (ka)6 

A = 1 - _k_a_ = -2- - -22_·_3 + -22=-.-3--=2-· -4 

for ka « 1 

--d for ka » 1, (7.33) 



and 

-+ 8ka/3n 

-+ 2/nka 

7.6. Radiation from a Plane Source in a Baffie 169 

for 

for 

ka « 1 

ka » 1. (7.34) 

These functions, which also apply to a pipe with an infinite baffie, are shown 
in Fig. 8.7. For the moment, we simply note the close agreement between 
their asymptotic forms and the same quantities for a pulsating sphere of 
radius a as given in Eq. (7.25) and Fig. 7.6. 

When we consider the radiation from a vibrating circular membrane or 
plate of the type discussed in Chapter 3, we realize that a rigid piston is not 
a good model for the motion. Indeed, for a membrane, the first mode has 
the form of a Bessel function J0 (a0 r), and higher modes are of the form 
Jn(amr) cos nrP, with the tXm determined by the condition that the functions 
vanish at the clamped edge. All except the fundamental J0 mode have either 
nodal lines or nodal circles or both, and there is a good deal of cross flow and 
hence low radiation efficiency. All the axisymmetric modes J0 (amr), however, 
have a nonzero volume displacement and hence some monopole radiation 
component. The Jn modes with n #- 0 have no monopole component, and 
their radiation is therefore much less efficient. No explicit tabulation of this 
behavior is readily available, but Morse (1948, pp. 329-332) details a related 
case for free-edge modes for which the radial slope of the displacement is 
required to vanish at the boundary-a condition appropriate to a flexible 
piston closing a flanged circular pipe. 

Detailed discussion of radiation from flexible plane vibrators with nodal 
lines is algebraically complex but reflects the behavior we found for antiphase 
arrays of point sources, provided that allowance is made for the fact that 
a finite vibrator may have a net volume flow and hence a monopole radiation 
contribution. As has already been remarked, antiphase point-source arrays 
with spacing less than half a wavelength of sound in air are inefficient radiators, 
and their source strength is of the order of that of a single one of their 
component sources. Exactly the same result is found for continuous vibrators, 
with the effective source arising from noncancelling elements at the center and 
around the edges of the vibrator (Skudrzyk, 1968, pp. 419-429). 

Only for the free vibrations of thick metal plates do we reach a situation in 
which the transverse wave speed in the plate exceeds the sound speed in air, 
so that high intensity radiated beams can be produced, as shown in Fig. 7.5(c). 
At 1kHz, this requires a steel plate about 10 mm in thickness (Skudrzyk, 
1968, p. 378)-a situation, often encountered in heavy machinery but scarcely 
applicable to musical instruments. 

There is an interesting and important consequence of these conclusions that 
is investigated in some detail by Skudrzyk (1968, pp. 390-398). If a localized 



170 7. Sound Radiation 

force drives an elastic plate, such as a piano soundboard, then it excites 
all vibrational modes to amplitudes that are dependent on the frequency 
separation between the exciting force frequency w and the resonance frequency 
wn of the mode in question. If w » w"' then the amplitude of mode n will be 
small, but, because its nodal lines are far apart, it will radiate efficiently at 
frequency w. Conversely, a mode with wn ~ w may be strongly excited, but, 
because of the small distance between its nodal lines, it may radiate very 
poorly. The total power radiated by the forced plate must be found by 
summing the contributions from all the efficiently radiating modes as well as 
the smaller contributions from higher modes. This effect acts to smooth the 
frequency response of a large planar forced vibrator. 

7.7. Unbaffied Radiators 

Few if any musical instruments involve a large plane baffie, even one that 
extends for about a wavelength around the vibrating plate or membrane. In 
instruments like the timpani, the baffie is folded around so that it encloses one 
side of the membrane and converts it to a one-sided resonator; the body of 
the violin serves a somewhat similar function, though there is considerable 
vibration of the back as well. In instruments like the piano, both sides of the 
sound board are able to radiate, but the case provides a measure of separation 
between them. Only in the case of cymbals, gongs, and bells is there no baffie 
at all. 

For a half-enclosed radiator, like the membrane of the timpani, the enclosed 
air does, of course, have an effect on the vibration ofthe membrane. From the 
point of view of radiation, however, the source is still one-sided, and the major 
difference from the baffied case arises from the fact that radiation is into 
a whole space of solid angle 4n rather than into a half-space of solid angle 2n. 
For high frequencies, such that ka > 4, this effect is not large, for the energy 
of the radiation is concentrated into a broad beam along the direction of the 
axis (8 = 0), and little of it passes into the halfplane 8 > n/2 anyway. For low 
frequencies, ka < 1, however, the radiation tends to become isotropic and to 
fill nearly uniformly the whole 4n solid angle. The vibrating membrane thus 
experiences a radiation resistance at low frequencies that is only half that for 
the baffied case, so that the power radiated is reduced by a factor 2, or 3 dB, 
for a given membrane velocity amplitude. More than this, since the radiation 
is into 4n rather than 2n, the intensity in any given direction is reduced by 
a further factor of 2, or 3 dB. Thus, for a given radiator velocity amplitude, 
the absence of a large baffie leaves the radiated intensity and power unchanged 
at high frequencies (ka > 4) but reduces the radiated intensity in the forward 
half-space by 6 dB and the total radiated power by 3 dB at low frequencies 
(ka < 1). 

These phenomena can have a significant effect on the fullness of tone 
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quality of an instrument in its low-frequency range, and it is usual to increase 
the bass intensity by providing a reflecting wall close behind the player. This 
recovers 3 dB of intensity in the bass, and a further 3 dB, relative to anechoic 
conditions, can be recovered from close floor reflections. Of course, these 
effects are subjectively assumed when listening to normal playing-it is only 
in anechoic conditions that the loss of intensity at low frequencies becomes 
noticeable. 

Instruments such as the piano have a case structure that goes some way 
toward separating the two sides of the soundboard acoustically. This is, of 
course, desirable since they vibrate in antiphase. We have seen, however, that 
antiphase source distributions cancel each other only if their separation is less 
than about half a wavelength. A semiquantitative application of this principle 
gives a distance of about 2 m between the top and bottom of the sound board 
of a piano and hence suggests that such cancellations should not occur above 
about 70Hz. The different geometries of the lid and the floor in any case ensure 
that cancellation is only partial. Cancellations do, of course, occur between 
neighboring antiphase regions on the same side of the sound board. 

Finally, let us look briefly at radiation from cymbals and bells. For a nearly 
planar radiator, such as a cymbal or tam-tam, cancellation of radiation from 
opposite surfaces may clearly be very significant. An unbaflled plane piston 
radiator with both sides exposed acts as a dipole source at low frequencies 
and, to a good approximation, the mechanical radiation resistance presented 
to each side is (Olson, 1957, pp. 98-99) 

ka < 2, 

~peS, ka > 3. 
(7.35) 

Much of the low-frequency radiation is therefore suppressed. The initial 
amplitude of the lower modes is, however, usually high, so that some of their 
sound is heard. Much of the effect of such a gong depends on the shimmer of 
high frequency modes, which have comparable radiation efficiency despite 
near cancellation of radiation from neighboring antiphase areas. Details of the 
residual radiation from noncancelling areas around the edge of such a gong 
are discussed by Skudrzyk (1968, pp. 419-429). This overall cancellation has 
another effect, of course, and that is to reduce the radiation damping of the 
oscillation and prolong the decay of the sound. 

Radiation from curved shells, such as found in bells, is a very complex 
subject (Junger and Feit, 1986, Chapter 7). There is significant cancellation of 
radiation from neighboring antiphase regions, but their different geometrical 
environments inhibit cancellation between the interior and the exterior of the 
shell. Indeed, modes that would seem at first to be of high order, such as the 
quadrupole mode associated with the circular to elliptical distortion of a bell, 
can lead to a change in interior volume and therefore an inside-to-outside 
dipole source. 
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7.8. Radiation from Large Plates 

It is often important in practical situations to have some appreciation of the 
radiation properties of extended vibrating objects. The general subject is very 
difficult, but we can attain some insights by considering very simple situations. 
Suppose, for example, that we have an infinite plane plate upon which is 
propagating a plane transverse wave of angular frequency ro. The speed Vp(ro) 
of this wave is determined by the thickness and elastic properties of the plate, 
and also by the frequency ro, since a stiff plate is a dispersive medium for 
transverse waves, as described by Eq. (3.13). If we suppose the plate to lie in 
the plane z = 0 and the plate wave to propagate in the x direction, then we 
can represent the displacement velocity of the plate surface by the equation 

u(x,O) = Upe-jkpXejmt 

where the wave number on the surface of the plate is given by 

kp = rojvp. 

(7.36) 

(7.37) 

In the air above the plate there is no variation of physical quantities in the 
y direction, and the acoustic pressure p(x, z) and acoustic particle velocity 
u(x, z) both satisfy the wave equation in the form 

o2p o2p 1 o2p 
ox2 + oz2 = c2 ot2 

which has solutions of the form 

p(x,z) = pcu(x,z) = Ae-i<kxx+k.z) 

(7.38) 

(7.39) 

where kx and kz are the components of the wave vector k in directions 
respectively parallel to and normal to the plane of the plate and there is a time 
variation eimt implied. Because the acoustic particle velocity in the air must 
match the normal velocity of the plate in the plane z = 0, we must have 

A= Up (7.40) 

so that, if we substitute this into Eq. (7.38), we find that 

(7.41) 

Equation (7.41) has very important implications. If the velocity vp of the 
wave on the plate is less than the velocity c of sound in air, or equivalently if 
the wavelength of the wave on the plate is smaller than the wavelength in air, 
then k"' is imaginary. The acoustic disturbance is then exponentially attenu
ated in the z direction rather than propagating as a wave. The whole motion 
of the air is thus confined to the immediate vicinity of the plate surface and 
there is no acoustic radiation. If, however, vp > c, then an acoustic wave is 
radiated in a direction making an angle(} with the surface of the plate, given by 
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Fig. 7.8. Relation between a plate wave with propagation number kp_and the acoustic 
wave with propagation vector k that it radiates, for the case Ap > Jc. 

tan()= kz = (v~ - 1)1/2 
kx c2 

(7.42) 

The physical reason for this behavior is clear from Fig. 7.8, which illustrates 
the relation between the plate and air waves. If Vp > c, the wavelength Ap of 
the plate wave is greater than the wavelength Jc of the air wave, and the 
diagram fits together with the propagation direction 8 given by Eq. (7.42). If 
vp < c, however, then Ap < 2 and there is no way that the acoustic wave can 
be matched to the plate wave. 

Since the wave speed Vp on the plate increases with increasing frequency, 
there is a particular critical frequency for any plate above which radiation can 
occur. If we have a complex wave propagating on a plate, this means that only 
the high-frequency components of the wave will be radiated, and their radia
tion directions will be spread out in angle rather like white light passing 
through a prism or reflected from a diffraction grating. It is clear that there is 
a close analogy between this behavior and that already noted for two simple 
anti-phase sources in Section 7.2 and for linear arrays of antiphase sources as 
discussed in Section 7.3. 

If, instead of a propagating wave on the plate, we have a standing wave, 
then the situation is rather similar. The standing wave has a spatial variation 
in the x direction given by 

(7.43) 

which is just two similar waves propagating in opposite directions. Each 
behaves as described above, and the resulting radiation pattern, if Vp > c, is a 
superposition of two plane waves at angles ±()to the plane. These interfere 
to give a plane wave propagating in the z direction but with an amplitude 
variation cos kpx in the x direction. 
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We can extend this superposition principle to the case in which we have 
several waves propagating in different directions on the plate. As a special 
case, we might consider standing waves in the x and y directions, dividing the 
whole plane into vibrating squares with adjacent squares being in antiphase 
relation. Once again there is no radiation below the critical frequency, whereas 
above that frequency the angular radiation pattern is very complex. 

An infinite plane vibrating surface is, of course, something that is not met 
in practice-all real plates have boundaries, and these modify the idealized 
behavior discussed above. In an infinite plate, each vibrating region is sur
rounded by regions of opposite phase, but this arrangement terminates when 
we reach a boundary. For a plate that is several times larger in all its dimensions 
than the critical wavelength, there is a transition from good radiation effi
ciency above the calculated critical frequency to poor radiation efficiency 
below, but this transition is not completely sharp and there is still some 
radiation at lower frequencies. As the frequency is decreased below the critical 
frequency, lower and lower normal modes are progressively excited until the 
plate is vibrating essentially in its fundamental mode, giving approximately a 
finite-dipole source, the radiated intensity from which varies as ro4 for constant 
panel velocity amplitude, compared with the frequency-independent radiation 
characteristic above the critical frequency. 
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CHAPTER 8 

Pipes and Horns 

The wave propagation phenomena in fluids that we have examined in previous 
chapters have referred to waves in infinite or semi-infinite spaces generated by 
the vibrational motion of some small object or surface in that space. We now 
tum to the very different problem of studying the sound field inside the tube 
of a wind instrument. Ultimately, we shall join together the two discussions 
by considering the sound radiated from the open end or finger holes of the 
instrument, but for the moment our concern is with the internal field. We 
begin with the very simplest cases and then add complications until we have 
a reasonably complete representation of an actual instrument. At this stage, 
we will find it necessary to make a digression, for a wind instrument is not 
excited by a simple source, such as a loudspeaker, but is coupled to a complex 
pressure-controlled or velocity-controlled generator-the reed or air jet-and 
we must understand the functioning of this before we can proceed. Finally, 
we go on to treat the strongly coupled pipe and generator system that makes 
up the instrument as played. 

8.1. Infinite Cylindrical Pipes 

The simplest possible system of enclosure is an infmite cylindrical pipe or tube 
with its axis parallel to the direction of propagation of a plane wave in the 
medium (Morse and lngard, 1968). If the walls of the pipe are rigid, perfectly 
smooth, and thermally insulating, then the presence of the tube wall has no 
effect on wave propagation. A pressure wave propagating in the x direction 
has the form 

p(x,t) = pexp[j(-kx +rot)], (8.1) 

and the resultant acoustic volume flow is, as we saw in Chapter 6, 

U(x,t) = e~)exp[j( -kx +rot)], (8.2) 

where ro is the angular frequency, k is the angular wave number k = 2n/), = ro/c, 
and S is the cross-sectional area of the pipe. As usual, p is the density of and 

T. D. Rossing et al., Principles of Vibration and Sound
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c the velocity of sound in air. The acoustic impedance of the pipe at any 
point xis 

Z ( ) = p(x, t) = pc 
oX U(x,t) s· (8.3) 

To treat this problem in more detail, we must solve the wave equation 
directly in cylindrical polar coordinates (r, ¢1, x). If a is the radius of the 
pipe and its surface is again taken to be perfectly rigid, then the boundary 
condition is 

ap =O 
ar 

at r= a, (8.4) 

which implies that there is no net force and therefore no flow normal to the 
wall. The wave equation in cylindrical coordinates is 

1 a ( ap) 1 a2p a2p 1 a2p 
;: ar r ar + r2 8¢12 + ax2 = c2 Bt2 ' 

(8.5) 

and this has solutions of the form 

Pm.(r, ¢1, x) = P~i:(mifi)Jm ( nq:r) exp[j(- km.x + cot)], (8.6) 

where Jm is a Bessel function and qmn is defined by the boundary condition 
[Eq. (8.4)], so that the derivative J:,.(nqm.) is zero. The (m, n) mode thus has 
an (r, ¢1) pattern for the acoustic pressure p with n nodal circles and m nodal 
diameters, both m and n running through the integers from zero. In the full 
three-dimensional picture, these become nodal cylinders parallel to the axis 
and nodal planes through the axis, respectively. 

In Fig. 8.1, the pressure and flow velocity patterns for the lowest three 
modes of the pipe, omitting the simple plane-wave mode, are shown. The 

(1,0) (2,0) (0, 1) 

Fig. 8.1. Pressure and transverse flow patterns for the lowest three transverse modes 
of a cylindrical pipe. The plane-wave mode is not shown. 
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pressure patterns have nodal lines as already observed, and there are similar 
nodal diameters in the transverse flow patterns. Nodal circles for pressure 
occur for modes of the type (0, n), which have n such nodal circles within 
the boundary. A general mode (m, n) has both nodal lines and circles in the 
pressure. 

The propagation wave vector kmn for mode (m, n) is obtained by substituting 
Eq. (8.6) into Eq. (8.5), whence 

k!n = (~Y- ct~ y. (8.7) 

Thus, while the plane-wave mode with m = n = 0 will always propagate with 
k = k00 = wjc, this is not necessarily true for higher modes. In order for 
a higher mode (m, n) to propagate, the frequency must exceed the cutoff value; 

(8.8) 

For frequencies less than We, kmn is imaginary and Eq. (8.6) shows that the 
mode is attenuated exponentially with distance. The attenuation is quite rapid 
for modes well below cutoff, and the amplitude falls by a factor e, or about 
10 dB, within a distance less than the pipe radius. 

The first higher mode to propagate is the antisymmetric (1, 0) mode, which 
has a single nodal plane, above a cutoff frequency we = 1.84 cja. Next is the 
(2, 0) mode, with two nodal planes, for w > 3.05 cja, and then the lowest 
nonplanar axial mode (0, 1), for w > 3.80 cfa. Propagating higher modes are 
thus possible only when the pipe is greater in diameter than about two-thirds 
of the free-space acoustic wavelength. The non propagating higher modes are 
necessary to explain certain features of the acoustic flow near wall irregularities, 
such as finger holes or mouthpieces. Indeed, it is possible to match any 
disturbance distributed over an opening or a vibrating surface in a duct with 
an appropriate linear combination of duct modes. The plane wave component 
of this combination will always propagate along the duct away from the 
disturbance, but this will not be true for modes with qmn values that are too 
large. The propagating wave will thus be a low-pass filtered version of the 
disturbance while the nonpropagating modes will simply modify the flow in 
the near neighborhood of the source. 

It is helpful to sketch the three-dimensional acoustic flow strt(amlines 
associated with a few of these modes for both propagating and nonpropagating 
cases. This can be done from the form of the pressure pattern given by Eq. (8.6) 
together with the relation 

j 
U=-Vp 

pw 
(8.9) 

for the flow velocity u in a mode excited at frequency w. Figure 8.2 shows this 
for the (1,0) and (0, 1) modes. In the case of the propagating modes, the flow 
pattern itself moves down the pipe with the characteristic phase velocity of 
the mode-nearly the normal sound velocity c, except very close to cutoff 
when the phase velocity is higher than c. 
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(0,0) (]-~ _____,9""---- e 

(a) 

(c) 

(1.0) E:~~~~: (0,1) ~~~~~~ 
(d) (e) 

Fig. 8.2. Acoustic flow patterns and pressure maxima and minima for higher modes in 
a cylindrical duct. (a)-(c) are modes propagating to the right at a frequency a little 
above cut-off; (d) and (e) are evanescent modes below cutoff. 

It is not important to go into detail about the impedance behavior of these 
higher modes, since this depends greatly upon the geometry with which they 
are driven, the net acoustic flow along the pipe axis being zero except for the 
plane (0, 0) mode. The impedance is always a real function multiplied by w/kmn• 
so it is real for w above cutoff, becomes infinite at cutoff, and is imaginary 
below cutoff. 

8.2. Wall Losses 

So far in our discussion, we have assumed a rigid wall without introducing 
any other disturbance. In a practical case this can never be achieved, though 
in musical instruments the walls are at least rigid enough that their mechanical 
vibrations can be neglected-we return to the subtleties of this statement 
later. More important, however, are viscous and thermal effects from which 
no real walls or real fluids are immune. 

Detailed consideration of these effects is complicated (Benade, 1968), but 
the basic phenomena and final results are easily discussed. The walls con
tribute a viscous drag to the otherwise masslike impedance associated with 
acceleration of the air in the pipe. The relative magnitude of the drag depends 
upon the thickness of the viscous boundary layer, itself proportional to the 
square root of the viscosity 17 divided by the angular frequency w, in relation 
to the pipe radius a. A convenient parameter to use is the ratio of pipe radius 
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to the boundary layer thickness: 

_ (wp)112 
rv- a. 

11 
(8.10) 

Similarly, thermal exchange between the air and the walls adds a lossy re
sistance to the otherwise compliant compressibility of the air, and the relative 
magnitude of this loss depends on the ratio of the pipe radius a to the thermal 
boundary layer thickness, as expressed by the parameter 

(wpC )112 rt= __ P a, 
K 

(8.11) 

where CP is the specific heat of air at constant pressure and K is its thermal 
conductivity. Near 300 K (27°C), we can insert numerical values to give 
(Benade, 1968) 

rv ~ 632.8af 112(1- 0.0029AT), (8.12) 

and 
r 1 ~ 532.2aj112(1 - 0.0031 AT), (8.13) 

where a is the tube radius in meters, f is the frequency in hertz, and AT is 
the temperature deviation from 300 K. 

It is clear that the effect of these loss terms will be to change the characteristic 
impedance Z0 of the pipe from its ideal real value pcjS to a complex quantity. 
This, in turn, will make the wave number k complex and lead to attenuation 
of the propagating wave as it passes along the pipe. 

The real and imaginary parts of the characteristic impedance Z0 , as frac
tions of its ideal value pc/S, are shown in Figs. 8.3 and 8.4, both as functions 
ofrv. The correction to Z0 begins to be appreciable for rv < 10, while for rv < 1 
the real and imaginary parts of Z 0 are nearly equal and vary as rv-1. 

It is convenient to rewrite the wave vector k as the complex number 
wjv - jrx., where rx. is now the attenuation coefficient per unit length of path 

10 
['-.,. 

0.1 
0.1 

"" ""'-....... 

1'-

10 100 

Fig. 8.3. Real part of the characteristic impedance Z0 , in units of pc/S, as a function of 
the parameter rv (after Benade, 1968). 



180 8. Pipes and Horns 

,......, 

~ 
>::::: 
N' 0.1 
I 

L...J 

.E 
0.01 

0.1 

'\ 

\ 
\ 

\ 

' '\ 
10 100 

Fig. 8.4. Imaginary part of the characteristic impedance Z0 , in units of pcjS, as a 
function of the parameter rv (after Benade, 1968). 

and vis the phase velocity. We can then most usefully plot the phase velocity 
v, measured in units of the free-air sound velocity c, and the attenuation 
coefficient oc, divided by f, both as functions of rv. This is done in Figs. 8.5 
and 8.6. The phase velocity v is significantly less than c for pipes so narrow 
that rv < 10, while the attenuation coefficient exceeds A.-1 if rv < 6. Since 
the phase velocity and attenuation coefficient for relatively wide tubes are 
both of fundamental significance for the physics of musical instruments, it is 
useful to restate Benade's (1968) versions of Rayleigh's (1894) approximate 
formulas, which are good for rv > 10 and useful down to about rv = 3. They 
are 

and 

vfc 

1 

0. 
1v 

1 0.0 
0.1 

(8.15) 

v -
v 

i 

10 100 

Fig. 8.5. The phase velocity v, relative to the free-air sound velocity c, as a function of 
the parameter r. (after Benade, 1968). 
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""' 0.1 10 100 
r, 

Fig. 8.6. The attenuation coefficient rx in (metersr1 at frequency f, plotted as rxjf, as a 
function of the parameter rv (after Benade, 1968). 

where a is given in (meters)-1 if a is in meters. Here, y is the ratio of specific 
heats Cp/Cv, which for air is approximately 1.40. 

In most of the more practical discussions that follow, we will find it 
adequate simply to use a complex form for k, with real and imaginary parts 
derived from Eqs. (8.14) and (8.15). The fact that Z0 has a small imaginary part 
is not generally significant for the main pipes of musical instruments. For 
a few discussions, such as those related to the smaller tubes of finger holes, the 
more general results shown in the figures may be necessary. 

8.3. Finite Cylindrical Pipes 

All of the pipes with which we deal in musical instruments are obviously of 
finite length, so we must allow for the reflection of a wave from the remote 
end, whether it is open or closed. Because we are concerned with pipes as 
closely coupled driven systems, rather than as passive resonators, we shall 
proceed by calculating the input impedance for a finite length of pipe terminated 
by a finite load impedance ZL, rather than examining doubly open or closed 
pipes in isolation. The terminating impedance ZL will generally represent 
an open or a closed end, but it is not restricted to these cases. The development 
here is essentially the same as that set out in Chapter 2 for a string stretched 
between nonrigid bridges but, since the results are central to our discussion 
of pipes and horns, we start again from the beginning. 

Suppose the pipe extends from x = 0 to x = L, and that it is terminated at 
x = L by the impedance ZL. The pressure in the pipe is a superposition of two 
waves, moving to the right and left, respectively, with amplitudes A and B, 
taken as complex quantities so that they can include a phase factor. Thus, at 
the point x, 

(8.16) 
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The acoustic particle velocity is similarly a superposition of the particle 
velocities associated with these two waves and, multiplying by pipe cross 
section S, the acoustic flow becomes, from Eq. (8.3), 

U(x, t) = (:c) [Ae-jkx - Beikx]eiwt. (8.17) 

At the remote end x = L, pressure and flow are related as required by the 
terminating impedance ZL, so that 

p(L,t) _ z 
U(L,t)- L' 

(8.18) 

and this equation is enough to determine the complex ratio B/A. If we write 
for the characteristic impedance of the pipe 

Z0 = pc/S (8.19) 

as in Eq. (8.3), then 

-- e J B -2 "kL [(ZL - Zo)J 
A- (ZL + Z 0 ) ' 

(8.20) 

and the power reflected from ZL has a ratio to incident power of 

(8.21) 

Clearly, there is no reflection if ZL = Z 0 and complete reflection if ZL = 0 
or oo. Since Z 0 is real for a lossless tube, there is also perfect reflection if ZL is 
purely imaginary; however, if ZL has a real part that is nonzero, then there 
will always be some reflection loss. 

The quantity in which we are interested now is the input impedance Z1N at 
the point x = 0. From Eqs. (8.16)-(8.19), this is 

[A+BJ ZIN=Zo A-B ' (8.22) 

or from Eq. (8.20), 

_ [ZL cos kL + jZ0 sin kL J 
ZIN- Zo . · 

jZL sm kL + Z0 cos kL 
(8.23) 

Two important idealized cases are readily derived. The first corresponds 
to a pipe rigidly stopped at x = L so that ZL = oo. For such a pipe, 

Zl~TJ = - jZ0 cot kL. (8.24) 

For the converse case of an ideally open pipe with ZL = 0, which is not 
physically realizable exactly, as we see below, 

Zl~PJ = jZ0 tan kL. (8.25) 
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The familiar resonance frequencies for open and stopped pipes arise from 
applying the idealized condition that the input end at x = 0 is also open, so 
that resonances occur if Z 1N = 0. For a stopped pipe, this requires that 
cot kL = 0, giving 

w<STJ = (2n- 1)nc 
2L ' 

(8.26) 

corresponding to an odd number of quarter wavelengths in the pipe length, 
while for an ideally open pipe, tan kL = 0, giving 

w<OPJ =nne 
L' 

(8.27) 

corresponding to an even number of quarter wavelengths, or any number of 
half wavelengths, in the pipe length. 

While Eq. (8.24) applies quite correctly to a physically stopped pipe, the 
treatment of a physically open pipe is more difficult since, while ZL « Z 0 , it is 
not a sufficient approximation to set it to zero. It is relatively straightforward 
to calculate the radiation load ZL on a pipe that terminates in a plane flange 
of size much larger than a wavelength (and therefore effectively infinite). The 
formal treatment of Rayleigh (1894) (Olson, 1957) makes the assumption that 
the wavefront exactly at the open end of the pipe is quite planar, normally 
a very good approximation, and gives the result 

z<FJ = R + jX, 

where, as discussed for Eqs. (7.32)-(7.34), 

R = Z [(ka)2 _ (ka)4 (ka)6 _ ••• J 
0 2 22 . 3 + 22 • 32 • 4 ' 

X _ ~ [(2ka)3 _ (2ka)5 + (2kaf _ ... J 
- nk2a2 3 32 ·5 32 ·52 ·7 ' 

and a is the radius of the pipe. 

(8.28) 

(8.29) 

(8.30) 

The behavior of R and X as functions of frequency, or more usefully as 
functions of the dimensionless quantity ka, is shown in Fig. 8. 7. If ka « 1, then 
IZ(Fll « Z 0 and most of the wave energy is reflected from the open end. If 
ka > 2, however, then z<FJ ~ Z0 and most of the wave energy is transmitted 
out of the end of the pipe into the surrounding air. 

In musical instruments, the fundamental, at least, has ka « 1, though this 
is not necessarily true for all the prominent partials in the sound. It is therefore 
useful to examine the behavior of the pipe in this low-frequency limit. From 
Eqs. (8.29) and (8.30), X » R if ka « 1, so that 

z<F> ~jz0kG:). (8.31) 

By comparison with Eq. (8.25), since ka « 1, this is just the impedance of 
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Fig. 8.7. The acoustic resistance Rand the acoustic reactance X, both in units of pcfna2 , 

for a circular piston (or open pipe) of radius a set in an infinite plane baffie, as functions 
of the frequency parameter ka (after Beranek, 1954). 

an ideally open short pipe oflength 

Sa 
A<Fl = 3n ~ 0.85a. (8.32) 

It is thus a good approximation in this frequency range to replace the real 
flanged pipe by an ideally open pipe of length L + A<Fl, and to neglect the 
radiation loss. From Fig. 8.7, it is clear that the end correction A<Fl, which is 
proportional to Xfka, decreases slightly as ka--+ 1 and continues to decrease 
more rapidly as ka increases past this value. 

A real pipe, of course, is not generally flanged, and we need to know the 
behavior of ZL in this case. The calculation (Levine and Schwinger, 1948) 
is very difficult, but the result, as shown in Fig. 8.8, is very similar to that 
for a flanged pipe. The main difference is that for ka « 1 R is reduced by 
about a factor 0.5 and X by a factor 0.7 because the wave outside the pipe 
has freedom to expand into a solid angle of nearly 4n rather than just 2n. 
The calculated end correction at low frequencies is now 

A<0 l ~ 0.61a. (8.33) 

The calculated variation of this end correction with the frequency parameter 
ka is shown in Fig. 8.9. 
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Fig. 8.8. The acoustic resistance R and the acoustic reactance X, both in units of pcfna2 , 

for the open end of a circular cylindrical pipe of radius a, as functions of the frequency 
parameter ka (after Beranek, 1954). 
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Fig. 8.9. The calculated end correction ~ for a cylindrical pipe of radius a, plotted as 
Aja, as a function of the frequency parameter ka, (after Levine and Schwinger, 1948). 
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8.4. Radiation from a Pipe 

One of our later interests, of course, will be to calculate the sound radiation 
from musical wind instruments and, as part of this task, it is helpful to know 
the transformation function between the spectrum of sound energy within the 
pipe and the total radiated sound energy. This transformation is simply 
proportional to the behavior of Rasa function offrequency, so that, to a good 
approximation, it rises as (frequency)2 , that is 6 dB per octave, below the 
reflection cutoff frequency, defined so that ka = 2. Above this frequency, the 
transformation is independent of frequency. This remark refers, of course, 
to the total radiated power and neglects directional effects that tend to 
concentrate the higher frequencies at angles close to the pipe axis. 

It is useful to summarize these directional effects here, since they are derived 
in the course of calculation of the radiation impedance Zv The flanged case 
is simplest (Rayleigh, 1894; Morse, 1948) and gives a radiated intensity at 
angle (} to the pipe axis proportional to 

[ 2J1 (ka sin 9)]2 

ka sin(} · (8.34) 

The result for an unflanged pipe (Levine and Schwinger, 1948) is qualitatively 
similar except, of course, that(} can extend from 0 to 180° instead of just to 
90°. The angular intensity distribution for this case is shown in Fig. 8.10 for 
several values of ka, the results being normalized to the power radiated along 
the axis (Beranek, 1954). The directional index (DI) is the intensity level on the 
axis compared to the intensity level produced by an isotropic source with the 
same total radiated power. The trend toward a narrower primary beam angle 
along the pipe axis continues for values of ka larger than those shown. 

8.5. Impedance Curves 

Finally, in this discussion, we should consider the behavior of pipes with 
physically realistic wall losses. Provided the pipe is not unreasonably narrow, 
say rv > 10, then Figs. 8.3 and 8.4 show that we can neglect the small change 
in the characteristic impedance Z0 and simply allow the possibility that k is 
complex for propagation in the pipe. This new k is written (ro/v- jrx) with 
v given by Eq. (8.14) and rx given q"y Eq. (8.15). This can be simply inserted 
into Eq. (8.23), along with the appf6priate expression for ZL, to deduce the 
behavior of the input impedance of a real pipe. The result for an ideally open 
pipe (ZL = 0) of length L is 

[ tanhrxL + jtan(roL/v) J 
ZIN = Zo . 

1 + j tanh rxL tan(roL/v) 
(8.35) 

This expression has maxima and minima at the maxima and minima, respec-
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Fig. 8.10. The directional patterns calculated by Levine and Schwinger for radiation 
from an unbaffied circular pipe of radius a. The radial scale is in each case 40 dB and 
the directional index has the calculated value shown (after Beranek, 1954). 
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tively, of tan(wL/v). The value of Z1N at the maxima is Z0 coth rxL, and at 
the minima it is Z0 tanhrxL. By Eq. (8.15), rx increases with frequency as w1'2 , 

so these extrema decrease in prominence at higher frequencies, and ZIN 
converges toward Z0 • For a pipe stopped at the far end, the factor in square 
brackets in Eq. (8.35) should simply be inverted. 

For narrow pipes the lower resonances are dominated by this wall-loss 
mechanism, but for wider open pipes radiation losses from the end become 
more important, particularly at high frequencies. To illustrate some features 
of the behavior, we show in Fig. 8.11 calculated impedance curves for two 
pipes each 1m long and with diameters respectively 2 em and 10 em. The low 
frequency resonances are sharper for the wide pipe than for the narrow pipe 
because of the reduced relative effect of wall damping, but the high frequency 

100 

O.Ql (a) 

100 

0.01 (b) 

Fig. 8.11. Magnitude of the acoustic input impedance ZIN, in terms ofthe characteristic 
impedance Z0 , for open cylindrical pipes of length 1 m and diameters of (a) 2 em and 
(b) 10 em. 
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resonances of the wide pipe are washed out by the effects of radiation damping. 
We can see that all the impedance maxima and minima have frequencies that 
are nearly harmonically related, that is as the ratio of two small integers. 
In fact, because the end correction decreases with increasing frequency, the 
frequencies of these extrema are all slightly stretched, and this effect is more 
pronounced for the wide than for the narrow pipe. 

It is worthwhile to note incidentally that, because these input impedance 
curves have been plotted on a logarithmic scale, the corresponding admittance 
curves can be obtained simply by turning the impedance curve upside down. 
We will see later that sometimes we will be required to think of admittance 
maxima and sometimes of impedance maxima, depending upon the way in 
which the pipe is used. 

When we consider musical instruments in detail, we find that sev
eral of them rely upon cylindrical pipes as their sound generators. The most 
obvious of these is the pipe organ, in which most of the pipes are cylindrical 
(a few are conical). Tone quality of air jet driven pipes is varied by the use of 
closed and open tubes, by differences in relative diameters, and by differences 
in the sort oftermination at the open end-some are simple open ends, some 
have slots, some have bells, and some have narrow chimneys. These variations 
can all be treated on the basis of the above discussion supplemented by 
a separate consideration of the form of ZL produced by the termination. We 
will return to consider these matters later on. 

8.6. Horns 

Following this introductory discussion of cylindrical pipes, we are now ready 
to begin a treatment of sound propagation in horns, a horn being defined 
quite generally as a closed-sided conduit, the length of which is usually large 
compared with its lateral dimensions. In fact, we shall only treat explicitly 
horns that are straight and have circular cross section, but much of the 
discussion is really more general than this. 

Formulation of the wave propagation problem in an infinitely long horn 
simply requires solution of the wave equation 

2 _ 1 iPp 
v p- c2 ot2' (8.36) 

subject to the condition that n · Vp = 0 on the boundaries, n being a unit 
vector normal to the boundary at the point considered. More simply, we 
suppose the wave to have a frequency ro so that Eq. (8.36) reduces to the 
Helmholtz equation 

(8.37) 

where k = rojc. Solution of this equation is simple provided that we can choose 
a coordinate system in which one coordinate surface coincides with the walls 
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of the horn and in which Eq. (8.37) is separable. Unfortunately, the Helmholtz 
equation is separable only in coordinates that are confocal quadric surfaces 
or their degenerate forms (Morse and Feshbach, 1953). There are 11 varieties 
of these coordinate systems, but only a few of them are reasonable candidates 
for horns. These are rectangular coordinates (a pipe of rectangular cross 
section), circular cylinder coordinates, elliptic cylinder coordinates, spherical 
coordinates (a conical horn), parabolic coordinates, and oblate spheroidal 
coordinates, as shown in Fig. 8.12. Of these, we have already dealt with the 
circular cylinder case, and the rectangular and elliptic cylinder versions differ 
from it only in cross-sectional geometry and hence in their higher modes. The 
parabolic horn is not musically practical since it cannot be made to join 
smoothly onto a mouthpiece, so we are left with the conical horn and the horn 
derived from oblate spheroidal coordinates, which will prove to be of only 
passing interest. 

We deal with the oblate spheroidal case first, because it illustrates some of 
the difficulties we will have to face later. The hornlike family of surfaces 
consists of hyperboloids of revolution of one sheet, as shown in Fig. 8.12. 
At large distances, these approach conical shapes, but near the origin they 
become almost cylindrical. Indeed, one could join a simple cylinder parallel 
to the axis in the lower half plane to a hyperboloid horn in the upper half plane 
without any discontinuity in slope of the walls. The important thing to notice, 
however, is the shape of the wavefronts as shown by the orthogonal set of 
coordinate surfaces. These are clearly curved and indeed they are oblately 
spheroidal, being nearly plane near the origin and nearly spherical at large 

Fig. 8.12. The oblate spheroidal coordinate system in which the wave equation is 
separable. If the hyperboloid of revolution (shown in heavy outline) is taken as the 
horn, then the oblate spheroidal surfaces orthogonal to this and lying within it are the 
wave fronts. Note that such a hyperboloid horn can be smoothly joined to a cylindrical 
pipe of appropriate diameter, as shown. 
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distances. Waves can propagate in this way as a single mode, like the plane 
waves in a cylinder. Such behavior is possible only for separable coordinate 
systems. For nonseparable systems that we may try to separate approximately, 
there will always be an admixture of higher modes. Horn systems resembling 
a cylinder joined to a narrow-angle hyperboloid horn as described above are 
in fact used in many brass instruments, though not because of any considera
tion of separability of the wave equation. Indeed, once the length of the horn 
is made finite, we produce an unresolvable inseparability near the open 
end so that there is no real practical design assistance derived from near 
separability inside the horn. 

Rather than setting out the exact solution for a hyperboloid ·or a conical 
horn in detail, let us now go straight to the approximate solution for propaga
tion in an infinite horn of rather general shape. We assume that we have some 
good approximation to the shapes of the wavefronts-something more or less 
spherical and, since the wave fronts must be orthogonal to the horn walls, 
centered approximately at the apex of the cone that is locally tangent to the 
horn walls, as shown in Fig. 8.13. This description will be exact for a conical 
horn, but only an approximation for other shapes. If S(x) is the area of this 
wavefront in the horn at position x, defined by its intersection with the axis, 
then, during an acoustic displacement~. the fractional change in the volume 
of air in the horn at position xis (1/S) iJ(S~)/iJx. This contrasts with the simpler 
expression o~jox for a plane wave in unconfined space. Proceeding now as for 
the plane wave case, we find a wave equation of the form 

1 a ( op) 1 o2p 
S ox Sox = c2 ot2 ' 

(8.38) 

which is known as the Websterequation(Webster, 1919;Eisner, 1967),although 

Fig. 8.13. In a horn, the wavefront has approximately the form of a spherical cap of 
area S and effective radius r based upon the local tangent cone and cutting the axis at 
a point with coordinate x. 
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its origins date back to the time of Bernoulli. Actually, in Webster's case, 
the curvature of the wave fronts was neglected so that x was taken as the 
geometrical distance along the horn axis and S as the geometrical cross section 
at position x. This plane-wave approximation is good for horns that are not 
rapidly flaring, but breaks down for a horn with large flare, as we see later. 

We have assumed that pis constant across the wave front in the horn, which 
is equivalent to assuming separability. This is not a bad approximation for 
horns that do not flare too rapidly, but we must not expect too much of it in 
extreme cases. In this spirit, we now make the transformation 

p = tjJS-112 (8.39) 

in the reasonable expectation that, with the even spreading of wave energy 
across the wavefront, t/1 should be essentially constant in magnitude, inde
pendent of x. If we also assume that p varies with angular frequency w and 
write S in terms of a local equivalent radius a so that 

(8.40) 

then Eq. (8.38) becomes 

iJlljJ + (P -! iJ2a) 1/1 = 0, ox2 a ox2 
(8.41) 

where k = wfc. This form of the equation, attributable to Benade and Jansson 
(1974), serves as a good basis for discussion of the behavior of horns. 

The first thing to notice about Eq. (8.41) is that the wave function 1/J, 
and hence the original pressure wave p, is propagating or nonpropagating 
according as 

(8.42) 

The frequency w = w0 for which we have equality is called the cutoff frequency 
at this part of the horn, and the expression F on the right ofEq. (8.42) may be 
called the horn function. It clearly plays a very important part in the theory 
of horns. A visual estimate of the magnitude ofF at a given position x can be 
made, as illustrated in Fig. 8.14, by observing that a is essentially the transverse 
radius of curvature RT of the horn at point x while (d 2afdx2r 1 is close to the 
external longitudinal radius of curvature RL, provided that the wall slope 
da/dx is small. Thus, 

1 
F ~ RLRT. (8.43) 

Of course, this is no longer a good approximation when the wall slope, or 
local cone angle, is large, and we must then use the expression 

1 d2a 
F =adx2 ' 

(8.44) 
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Fig. 8.14. The geometry of a horn at any one place is characterized by the external 
longitudinal radius of curvature RL and the internal transverse radius of curvature RT. 

with a interpreted as the equivalent internal radius measured along the wave
front as discussed previously. 

Of particular theoretical simplicity is the class of horns called Salmon horns 
(Salmon, 1946a, b), for which the horn function F, and therefore the cutoff 
frequency w0 , is constant along the whole length of the horn (Morse, 1948). 
Clearly, from Eq. (8.44), this implies 

(8.45) 

where F = m2 and m is called the flare constant. It is more convenient to 
rewrite Eq. (8.45) as 

a= a0 [cosh(mx) + Tsinh(mx)], (8.46) 

where Tis an alternative parameter. The pressure wave in the horn then has 
the form 

p = (p:) eirote-iJk2-m2x (8.47) 

and is nonpropagating if k < m. These expressions should strictly all be 
interpreted in terms of curved wavefront coordinates, as in Fig. 8.13, but it is 
usual to neglect this refinement and simply use the plane wave approximation. 

The family of horns described by Eq. (8.46) has several important degenerate 
forms. If T = 1, then we have an exponential horn: 

a = a0 exp(mx). (8.48) 
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If T = 0, then we have a catenoidal horn: 

a = a0 cosh(mx), (8.49) 

which has the nice feature of joining smoothly to a cylindrical pipe extending 
along the negative x axis to the origin, as was the case for the hyperboloidal 
horn. If T = 1/mx0 and m-+ 0, then we have a conical horn: 

a= a0 (1 + :J. (8.50) 

with its vertex at - x0 and a semiangle of tan - 1 (a0 /x0 ). Consideration of the 
value of the horn function given by Eq. (8.44) shows that F = 0 for this case, 
so that the conical horn has no cutoff. 

8.7. Finite Conical and Exponential Horns 

Many of the uses of horns that are discussed in textbooks involve situation's 
in which the diameter of the open end of the horn is so large that there is 
no appreciable reflection. The horn then acts as an efficient impedance trans
former between a small diaphragm piston in the throat and a free spherical 
wave outside the mouth. Exponential and catenoidal horns have near-unity 
efficiency, as defined by Morse (1948), above their cutoff frequencies, while 
the efficiency of a conical horn never becomes zero but rises gradually with 
increasing frequency until it reaches unity. We shall not discuss these situations 
further-those interested should consult Morse (1948) or Olson (1957). It is, 
however, worthwhile to quote results analogous to Eq. (8.23) for the throat 
impedance of a truncated conical or exponential horn terminated by a given 
mouth impedance ZL, which is typically the radiation impedance, though this 
requires some modification in careful work because of the curvature of the 
wavefronts (Fletcher and Thwaites, 1988). 

For a conical horn with a throat of area S1 located at position x1, a mouth 
of area s2 at position x2 and length L = x2- x1, we find (Olson, 1957) 

pc{ jZL[sink(L-82 )/sink82] +(pc/S2)sinkL } 

ZIN = sl ZL[sink(L+8t-82)/sink81 sink82]-(jpc/S2)[sink(L+8d/sink81] ' 
(8.51) 

where k81 = tan-1 kx 1 and k82 = tan-1 kx 2 , both x 1 and x2 being measured 
along the axis from the position of the conical apex. Similarly, for an ex
ponential horn of the form of Eq. (8.48) and length L, 

_ pc [ ZL cos(bL + 8) + j(pc/S2 ) sin bLJ 
21N - S1 jZL sin bL + (pc/S2) cos(bL - 8) ' 

(8.52) 

where b2 = k2 - m2 and 8 = tan-1(m/b). It is not simple to allow for wall 
effects in these expressions, since the imaginary part of k varies with position 
in the horn. For a horn with a wide mouth and not too narrow a throat, 
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radiation effects may dominate so that k can be taken as real. This is, however, 
not a valid approximation in musical instruments, which use long horns 
of quite small diameter. We shall see that more complex calculations are 
necessary in such cases. 

The expression [Eq. (8.51)] for the input impedance of a conical horn, 
pteasured at the end that is at a distance x 1 from the apex, deserves some 
further discussion. In the first place, we should note that it is applicable for 
the impedance at either the wide or the narrow end of a conical pipe. For 
a flaring cone, x 2 > x1 and L > 0, while for a tapering cone, x2 < x1 and 
L<O. 

In the second place, we should examine several special cases of open 
and stopped cones, making the approximation that ZL = 0 at an open end 
and ZL = oo at a closed end. For a cone of length L with an ideally open 
end ZL = 0, Eq. (8.51) gives, for either the large or the small end of a cone, 
the formal result 

= . (pc) sin kL sin klJ1 

ZIN 1 s1 sin k(L + (}1). 
(8.53) 

This does not imply that the input impedance is the same from both ends, 
since, as noted above, the sign of L and the magnitude of 01 are different in 
the two cases. 

Zeros in Z1N occur at frequencies for which sin kL = 0, so that these 
frequencies are the same in each case and exactly the same as those for 
a cylindrical pipe with the same length L. To allow for the finite reactance 
associated with the radiation impedance ZL, it is approximately correct, for 
a narrow cone, to simply add an appropriate end correction equal to 0.6 times 
the open end radius to the geometrical length L, as discussed in relation to 
Eq. (8.33). 

The infinities in Z1N occur, however, at frequencies that differ between the 
two cases and are not simply midway between those of the zeros, as was 
the case with a cylindrical pipe. Rather, the condition for an infinity in Z1N is, 
from Eq. (8.53), 

sin k(L + lJd = 0, (8.54) 

or equivalently, 
(8.55) 

For a cylinder, x1 -+ oo so that tan-1 kx 1 = n/2, as we already know. For 
a cone measured at its narrow end, Lis positive and, since tan-1 kx 1 < n/2, 
the frequencies of the infinities in Z1N are higher than those for a cylinder 
of the same length. The converse is true for a tapering cone.lf the cone is nearly 
complete, so that kx 1 « 1, then tan-1 kx 1 ~ kx1 and, since L = x 2 - x1 , 

Eq. (8.55) becomes kx2 ~ nn, so that the frequencies of the infinities in 
impedance approach those of an open cylinder of length x2 /2. Figure 8.15 
shows an input impedance curve for an incomplete cone calculated for the 
narrow end. 
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100 

0.01 

Fig. 8.15. The input impedance Z1N of a conical horn of length 1 m, throat diameter 
1 em, and mouth diameter 10 em, relative to the impedance ZM = (pc/S1), as a function 
of frequency. 

Cones that are stopped at the remote end are of less musical interest. If 
ZL = oo, then, from Eq. (8.51), 

. (pc) sin k(L - (}2) sin k(}1 
ZIN =J - . . 

S1 SID k(L + (}1 - (}2) 
(8.56) 

The zeros are given by k(L- (}2 ) = nn, which, writing L = x2 - x 1 , becomes 

(kx2 - tan-1kx2)- kxt = nn. (8.57) 

Thus, if we are considering a tapering cone and the distance x2 from the 
stopped end to the imaginary apex is small enough that kx2 is rather less than 
unity, the bracketed terms nearly cancel and the cone behaves approximately 
as though it is of length x 1 and complete to its vertex. No such simplification 
occurs for a flaring cone or for the infinities in the impedance, for which the 
condition is that k(L + (}1 - (}2 ) = nn. 

An extensive discussion of the conical horn in musical acoustics has been 
given by Ayers et al. (1985). Using straightforward physics, this paper treats 
both conical frusta and complete cones and points out a number of miscon
ceptions, or at least erroneous expositions, in the standard physics literature. 

The particular theoretical attraction of the family of horns defined by 
Eq. (8.46) is that they have a constant cutoff frequency along their length. 
Unfortunately, it is only in the cases of cylindrical and conical horns that 
this property can be combined with the musical requirement that the modes 
for a finite horn, defined by the condition of minimum or maximum input 
impedance, should have harmonically related frequencies. For this reason, 
there is little to be gained here by a more detailed discussion of exponential 
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horns based upon Eq. (8.52). Instead, we shall go on to discuss more general 
types of horns. 

8.8. Bessel Horns 

One particular family of horns that is worthy of attention because of its formal 
simplicity and that provides a good approximation to musically useful horns 
(Benade, 1959; Benade and Jansson, 1974) is the Bessel horn family, defined by 

or (8.58) 

where x is the geometrical distance measured from a reference point x = 0. If 
e = 0, the horn is cylindrical, and if e = -1 it is conical, so that these two 
degenerate cases are included in the picture. More usefully for our present 
discussion, we suppose e to be positive, in which case the horn has a rapid 
flare at the origin x = 0, which thus represents the open mouth of the horn as 
shown in Fig. 8.16. The particular analytical simplicity of the Bessel horns 
arises from the fact that, in the plane-wave approximation, the wave equation, 
Eq. (8.38), in the form Eq. (8.41) has, for the case of an ideally open horn mouth 
at x = 0, the standing wave solution (Jahnke and Emde, 1938) 

(8.59) 

where J is a Bessel function, hence the name of the horn family. From 
Eq. (8.39), the pressure standing wave has the form 

p(x) = Ax"+112 J,+1;2 (kx). (8.60) 

The existence of this analytical solution is a great help for semiquantitative 
discussion of the behavior of this family of horns, whose shape can be made 
to vary very considerably by choice of the parameter e. If we are considering 

Fig. 8.16. The form of a Besssel horn with parameter e > 0. 
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a horn composed of segments of different Bessel horns joined end to end, then 
Eq. (8.60) must be supplemented in each segment by a similar term involving 
the Neumann function N.+112 (kx). We can then calculate the behavior, in the 
plane-wave approximation, of composite horns having sections of Bessel, 
exponential, conical, and cylindrical geometry joined end to end (Pyle, 1975). 
We will not follow such a course in detail but, instead, we will examine briefly 
the behavior of waves near the mouth of a Bessel horn to show some of the 
complications involved. 

As we saw in Eqs. (8.41)-(8.44), the propagation of a wave in a flaring horn 
is governed by the value of the horn function F at the point concerned. If 
F is greater than k2 , the wave is attenuated exponentially with distance and 
a reflection occurs rather than propagation. For a horn mouth of Bessel 
type, F is easily calculated in the plane-wave approximation, in which wave 
coordinate x is replaced by the axial geometrical coordinate, and has the form 
shown in Fig. 8.17(a). F goes to infinity at the mouth of the horn, so that 
waves of all frequencies are reflected, and the reflection point for waves of 
low frequency (small k) is further inside the mouth than for those of high 
frequency. 

Close to the open mouth, however, the plane-wave approximation is clearly 
inadequate, and the spherical approximation gives a much better picture 

(a) 

x=O 

Fig. 8.17. The horn function F for a Bessel horn calculated on the basis of(a) the plane 
wave approximation and (b) the spherical wave approximation. When k2 < F, the 
wave is attenuated instead of being propagated (after Benade and Jansson, 1974). 
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(Benade and Jansson, 1974). The function F in this approximation is shown 
in Fig. 8.17(b). Its form is similar to the plane-wave version, but F never 
becomes infinite, so that there is an upper cutoff frequency above which waves 
can propagate freely from the mouth without reflection. An infinite F, as in 
the plane-wave approximation, would in fact confine all sound energy within 
the horn because of the infinite barrier height; the more realistic curve given 
by the spherical approximation allows some wave energy to leak out at any 
frequency by tunneling through the barrier. 

When we consider the losses in a real horn in detail, not only must 
we supplement the standing wave solution [Eq. (8.60)] with extra terms in 
N.+112(kx), which combine to represent the small fraction of energy contained 
in propagating waves lost through the mouth of the horn, but we must also 
take account of wall losses by adding a small imaginary part - ja. to k. For 
a horn more complicated in profile than a simple cylinder, a. depends on the 
local horn radius and therefore varies from place to place along the horn. 
The calculations are then quite involved (Kergomard, 1981). Fortunately, we 
can ignore these complications in our present discussion though they must be 
taken into account in any really accurate computations. 

Because the horns of real musical instruments do not conform exactly to 
any of the standard types we have considered, we will not go into further 
detailed discussion of them at this stage, but defer this until we come to 
describe the instruments themselves in a later chapter. 

8.9. Compound Horns 

As we see in Chapter 14, most brass wind instruments actually have horn 
profiles that are nearly cylindrical for about half their length, starting from the 
mouthpiece, and then expand to an open flaring bell. In modern instruments, 
the profile of this flaring section is well approximated by a Bessel horn of the 
form of Eq. (8.58), while for older instruments and some of the more mellow 
modern instruments, much of the expanding section is nearly conical. 

It is not worthwhile to model such compound horns in detail, since real 
instruments do not conform precisely to any such oversimplified prescription. 
The complications of mode tuning are illustrated, however, by consideration 
of the frequencies of the input impedance maxima-which are the sounding 
modes-for a compound horn consisting of a cylindrical and a conical section 
smoothly joined together. Part of the complication is produced by the acoustical 
mismatch at the joint, but similar mode behavior would be found for other 
profiles. 

The input impedance Zc for a conical horn of length L1 is given by 
Eq. (8.51). We can simplify our discussion by taking the radiation impedance 
ZL at the open mouth to be zero, giving, as another form of Eq. (8.53), 

jpc( 1 )-1 
Zc = S: cotkL1 + kx

1 
, (8.61) 



200 8. Pipes and Horns 

I 

OOL-~---L--~--~--L-~~-~--~~ 
o~ 1n 

Cylinder Ltf(L 1 + L2 ) Cone 

Fig. 8.18. Frequencies of the input impedance maxima for a compound hom, of the 
shape shown, as a function of the fraction of horn length that is conical. 

where S1 is the throat area and x1 is the distance from the throat to the vertex 
of the cone, as shown in Fig. 8.18. We now take Zc as the terminating 
impedance for the cylindrical section of length L 2 and matching area S1 • 

From Eq. (8.23), the input impedance to the compound hom then becomes 
infinite if 

jZcsinkL2 + (~~)coskL2 = 0, (8.62) 

and, with Eq. (8.61), this immediately leads to the condition 

tan kL2 - cot kL1 - c:J = 0. (8.63) 

Solution of this equation for k = mfc then gives the frequencies of the im
pedance maxima. The same calculation for a cylinder joined to an exponential 
hom would have used Eq. (8.52) and led to the formally similar result 

tankL2 - (~)cotbL1 - (~) = 0, (8.64) 
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The behavior of the frequencies of the first few modes of a cylinder-cone 
compound horn of roughly trumpet dimensions is shown in Fig. 8.18. The 
total length L 1 + L 2 and the mouth and throat areas are all kept constant, 
while the fraction of the length that is conical is varied. Clearly, the frequency 
variation of individual modes is complicated, but note that the modes of a 
horn with half its length conical are nearly harmonic. Compound horns with 
other proflles show rather similar behavior. 

For a complete understanding of horn acoustics, we must, of course, include 
the effect of the nonzero radiation impedance at the open mouth, take account 
of wall losses if the horn is narrow, and calculate a complete impedance curve. 
The mathematical apparatus for all this is contained in our discussion. 

8.10. Perturbations 

As a final part of this chapter, let us consider the effect of a small perturbation 
in the shape of some idealized horn. This is important for several reasons. 
The first of these is that if the effect of such perturbations is understood 
then the instrument designer can use them to adjust the horn shape slightly 
in order to properly align or displace horn resonances in which he or she is 
interested. The second is that in instruments with finger holes in the side of 
the horn perturbations are unavoidable, and it is important to understand and 
control their effects. 

Suppose that we know a standing wave solution p0 (x, t) for a horn of profile 
S0 (x) that corresponds to a mode offrequency ro0 , as described by Eq. (8.38), 
with appropriate terminating impedances at each end of the horn. Now, let 
the bore of the horn be altered by a small amount so that the new cross section 
becomes 

S(x, t) = S0 (x, t) + c>S(x, t). (8.65) 

This perturbation will change the resonance frequency ro0 to a new value ro, 
which we write 

w = w0 + c>w, 

and the pressure distribution will become 

p(x, t) = PP0 (x, t) + P1 (x, t), 

(8.66) 

(8.67) 

where P ~ 1 and p1 is functionally orthogonal to p0 • If we substitute Eqs. 
(8.65), (8.66), and (8.67) into Eq. (8.38) and also use the unperturbed version of 
Eq. (8.38) with S0 , w0 , and p0 , then we can collect all the terms of first order 
in the perturbations to give 

1 dc>S dp0 c>S dS0 dpo 
S0 dx dx -S5 dx dx 

2ro0 c>w . 
2 Po+ terms m p1 • 

c 
(8.68) 

Now, we multiply by S0 p0 and integrate over the whole length of the horn. 
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The terms in p1 vanish since they are orthogonal to p0 , and we find 

c2 f d (~s) dp0 
~w = - 2w0 N So dx S0 Po dx dx, (8.69) 

where 

N = f S0 p5dx. (8.70) 

Clearly, these two equations allow us to calculate the shift ~w in the resonance 
frequency produced by the bore perturbation ~S(x). 

It is easiest to evaluate the effect of such perturbations by considering what 
happens when the bore is enlarged by a small amount A at a position x 0 . 

To do this, we write 
~S(y) = A ~(x - x 0 ), (8.71) 

where ~(x - x0 ) is a Dirac delta function. Substituting this into Eq. (8.69) we 
find, since d~(x - x0 )/dx under an integral yields the negative ofthe derivative 
of the integrand at x0 , that 

~w = c2 A [!:_(Po dpo)J (8.72) 
2w0 N dx dx x=xo · 

To see what this means, suppose that in some region of the horn the pres
sure pattern has a spatial variation like sin kx. Then the bracket in Eq. (8.72) 
behaves like cos2kx0 • Thus, when the perturbation is near a maximum in 
the pressure variation (sin kx0 ~ 1), cos 2kx0 ~ -1 and ~w has its maximum 
negative value. Conversely, if sin kx0 ~ 0, then cos 2kx0 ~ + 1, so that near 
a maximum in the velocity ~w has its maximum positive value. Both these 
remarks assume that A is positive, so that the bore is being enlarged by the 
perturbation. Opposite conclusions apply for a constriction in the bore. Since 
different modes have their pressure maxima at different places in the horn, it 
is possible to change the relative frequencies of selected modes and so effect 
musically desirable changes in the behavior of the horn. 

A few examples make this point clear. Suppose we consider the modes of 
a cylindrical pipe open at the end x = 0 and closed at the other end, x = L. 
The nth normal mode then has a pressure pattern like sin[(2n- 1)nx/2L]. 
If the pipe diameter is enlarged near the open end (x = 0) then, by Eq. (8. 72), 
~w is positive for all n, and the frequencies of all modes are raised. Conversely, 
if the diameter is enlarged near the closed end, the frequencies of all modes 
are lowered. 

More interesting is the case in which the bore is enlarged at a point 
one-third of the length away from the closed end, that is at x = 2L/3. The 
bracket in Eq. (8.72) then behaves like cos(2n/3) = -0.5 for the first mode, 
n = 1, and like cos 2n = + 1 for the second mode, n = 2. Thus, the frequency 
of the first mode is lowered while that of the second mode is raised. 
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8.11. Numerical Calculations 

With the ready availability of computers, it is often practically convenient, 
though generally less instructive, to calculate the behavior of horns numerically. 
This can be done conveniently only in the plane-wave approximation or the 
local spherical-wave approximation, so that its accurate use is limited to horns 
with small flare, but this is adequate for many wind instruments. 

The bare bones of the procedure have already been set out, but its use in 
this way has not been made explicit. The basis of the method is the recognition 
that an arbitrary horn can always be represented to very good accuracy by 
a succession of small conical sections joined end to end. In the limit in which 
the length of the sections becomes infinitesimal, the representation is exact. 
Now, in the spherical-wave approximation, the input impedance of a section 
of conical horn of length L is related to its terminating impedance ZL by 
Eq. (8.51). Indeed, if the length Lis small so that the cross section is nearly 
constant, the propagation constant kin Eq. (8.51) can be made complex to 
allow for wall losses according to Eqs. (8.14), (8.15), and (8.35). To make 
a numerical calculation for an arbitrary horn therefore, we simply start from 
the open end, with ZL the radiation impedance shown in Fig. 8.8. We then use 
Eq. (8.51) successively for short distances back along the horn until the input 
throat is reached. A modification of the program readily allows the pressure 
distribution along the horn to be calculated at the same time. In Chapters 
14-16, we will refer to calculations for particular musical instruments that 
have been carried out in this way. 

For the plane-wave version of this calculation, which trades off a simpler 
calculation at each step against an increased number of steps, we can approxi
mate the horn by a series of very short cylindrical sections. Equation (8.23) 
replaces the more complicated conical form of Eq. (8.51), but each cylindrical 
section must be made very short in order to give a reasonable approximation 
for a flaring horn. 

8.12. The Time Domain 

Nearly all of our discussion has been carried on in the frequency domain-we 
have examined the propagation in a horn of sinusoidal waves of steady 
frequency w. While this is generally the most convenient framework in which 
to study the physics of musical instruments, it is sometimes helpful to revert to 
the time domain and examine the buildup and propagation of pressure dis
turbances along the horn and their reflection from its open end. This is clearly 
a good way to treat the initial transients of musical sounds, and the time
domain method can also be used for steady tones. Formally, treatment of a 
problem in the time domain or the frequency domain must give identical 
results, but in practice we are forced to make approximations in our analysis 
in order to get a reasonable answer, and the nature of these approximations 
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can be quite different in the two cases, so that one can usually be employed 
more easily than the other (Schumacher, 1981; Mcintyre et al., 1983). 

In Sections 8.3 and 8. 7, we gave explicit expressions for the input impedance 
Z(w) of horns of various profiles, while Figs. 8.11 and 8.15 illustrated the 
behavior of Z(w) relative to the characteristic impedance Z0 = pc/S1 of an 
infinite cylindrical tube having the same area S1 as the throat of the horn. In 
general, Z(w) displays a long series of more or less sharp impedance peaks at 
frequencies w. that are, for useful musical instruments, related moderately 
closely to some harmonic series nw0 . 

If now we seek the pressure waveform p(t) observed in the mouth of the 
horn when the acoustic flow into it is U(t), we can proceed in two ways. Either 
we express U(t) as a Fourier integral, 

U(t) = J: U(w)eiwt dw, (8.73) 

and use the definition of Z(w) to write 

p(t) = J: Z(w)U(w)eiwt dw (8.74) 

or else we define an impulse response function G(t - t'), which gives the 
pressure response at timet to a unit impulse of flow at timet', and then write 
directly the convolution integral 

p(t) = foo G(t- t')U(t')dt'. (8.75) 

As we remarked before, these results are formally equivalent, and, indeed, 
the impulse response function G(t) can be shown to be simply the Fourier 
transform of the impedance function Z(w). 

As Schumacher (1981) has pointed out, the problem with using Eq. (8.75) 
as a computational formula from which to derive p(t) arises from the fact that 
G(t - t') has a considerable extension in time; an acoustic flow pulse injected 
into the horn reflects from its two ends for some tens of periods before its 
amplitude is reduced enough for it to become negligible. This follows at once 
from the sharply peaked nature of Z(w), which is an equivalent feature in 
the frequency domain. 

A useful way out of this computational problem is to note that for a short 
time after the injection of a flow pulse and before any reflections have returned 
to the throat from discontinuities along the horn the input impedance of 
a cylindrical horn is the simple resistive quantity Z0 . This suggests that we 
should write 

G(t) = Z0 c5(t) + G(t), (8.76) 

where c5(t) is a Dirac delta function. It is clear then that G(t) ~ 0 fort less than 
the wave transit time ' from the throat of the horn to the first significant 
reflecting discontinuity-often the open mouth-and back. In fact G(t) is 
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the impulse response of the horn if it is assumed that its throat is blocked 
by a nonreflecting termination. G(t) shows the effect of reflections from all 
irregularities along the horn as well as the reflection from its open mouth. 

Schumacher (1981) has shown that G(t) can be usefully expressed as the 
Fourier transform of the reflection coefficient r(w) of the horn as seen from its 
throat, as defined by 

r(w) = Z(w) - Z0 , 

Z(w) + Z 0 

and from this he derives the result 

(8.77) 

p(t) = Z 0 U(t) + Loo r(t')[Z0 U(t- t') + p(t- t')]dt', (8.78) 

where r(t) is the Fourier transform of r(w). It turns out that r(t) is nearly zero 
fort less than the wave transit timer and that r(t) has a significantly smaller 
extension in time than the original impulse function G(t). It is therefore 
relatively straightforward to use Eq. (8.78) as an integral equation from which 
to calculate numerically the transient behavior of a tube-loaded acoustic 
generator. 

As an example, let us apply Eqs. (8.77) and (8.78) to the case of a uniform 
cylindrical tube open at its far end. Neglecting radiation corrections at the 
open mouth, we have, from Eq. (8.25), 

Z = jZ0 tan kL, 

where Lis the length of the tube and k = wjc. Then, from Eq. (8.77), 

r(w) = -e-2jroL/c. 

Taking the Fourier transform, 

r(t) = - f ej"'1e-jroLfcdw = -o(t- r), 

where 
'= 2Ljc. 

Substituting into Eq. (8.78), we find 

p(t) = Z0 U(t) - Z0 U(t - r) - p(t - c), 

and applying Eq. (8.78) again to p(t- r), 

(8.79) 

(8.80) 

(8.81) 

(8.82) 

(8.83) 

p(t) = p(t- 2r) + Z 0 [U(t)- 2U(t- r) + U(t- 2r)]. (8.84) 

For a lip-driven or reed-driven instrument, Z0 U(t) is always much smaller 
than p(t), since the excitation mechanism is pressure controlled. We can 
therefore neglect the U terms to give 

p(t) = p(t - 2r), (8.85) 

so that the pipe acts as a quarter-wave resonator with frequency 1/2T = c/4L. 
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The behavior of a nearly complete conical horn is rather more complex and 
really requires a different derivation, but the pressure wave reflects to the 
throat with a time delay r given by Eq. (8.82) as before. When we consider 
Eq. (8.83), however, we find from Eqs. (6.26) and (6.27) that the terms Z0 U 
behave like 1jr2 near the origin and so dominate the terms in p, which behave 
like 1/r. We can therefore ignore the p terms in Eq. (8.83) and conclude that, 
in the steady state, 

U(t) = U(t - r), (8.86) 

so that the horn acts as a half-wave resonator with frequency 1/r = cj2L. 
A detailed discussion of the impulse response of a conical horn has been 

given by Ayers et al. (1985) and includes the more complex case when the 
conical frustum is not nearly complete. 

For a more general type of horn, such as is found in brass wind instruments, 
there is usually an initial cylindrical section which then flares to conical 
or Bessel form near the mouth. We expect the reflection behavior to be 
intermediate between that of a cylinder and a cone of the same length, but the 
reflected pulse will be considerably distorted by dispersion effects. Details can 
be found either by direct measurement or by taking the Fourier transform of 
the input impedance. 
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CHAPTER 9 

Acoustic Systems 

The preceding chapters have introduced us to the physics and mathematics 
of a wide range of acoustic components, and the explicit formulae we have 
derived allow us to calculate behavior of simple systems in a good amount of 
detail. Very often, however, we shall wish to understand and even to calculate 
the behavior of more complex systems combining a number of acoustic 
components to make resonators, mufllers, auditory systems, loudspeakers, 
and microphones. While a study of the detailed complexity of such systems 
would take us too far from the purpose of this small book, it is very useful to 
know the basic principles by which their behavior can be calculated. 

The basic approach is closely similar to that of electrical network theory, 
with acoustic components replacing electric components. Close analogies 
between the acoustical and electrical situations can be drawn, but it is gener
ally adequate to take a more relaxed approach and to point out the details 
only when this helps understanding. 

9.1. Low-Frequency Components and Systems 

The basic acoustic quantities with which we shall be concerned are acoustic 
pressure p and acoustic volume flow U, both considered to be quantities 
oscillating in time with angular frequency w. In analogy with electrical 
quantities we can think of the acoustic pressure as being equivalent to electric 
potential and acoustic volume flow to electric current. Just as in the electrical 
case, there is a difference between network analysis at low frequencies where 
electrical components are connected by simple wires, and the high frequency 
case in which transmission lines and waveguides must be used. Let us consider 
the low-frequency case first. 

Suppose we have a short pipe of length I and cross-section S, and that p is 
the pressure difference between its ends, considered as an acoustic quantity 
with time variation eirot. The air in the pipe behaves as a simple mass of 
magnitude piS and the force acting upon it is pS. Its velocity is U/S, and the 
relation between acceleration and force then gives 

T. D. Rossing et al., Principles of Vibration and Sound
© Springer Science+Business Media New York 2004
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pS = plS :t(~) or p = (~)dd~ = j(~)wu (9.1) 

The analogy between this equation and the electrical relation between the 
voltage V across the inductance L and the current i through it 

di 
V= L dt =jwLi (9.2) 

is immediately apparent. The quantity 

Zp1pe = jw(pl/S) (9.3) 

is an acoustic impedance, as discussed previously in Section 8.18, and is 
analogous to the electrical inductance. It is usually called an acoustic inertance. 

In just the same way, the pressure inside a cavity of volume Vis related to 
the acoustic current into the cavity by the equation 

p = Y~a f Udt (9.4) 

where Pais the steady atmospheric pressure and y is the ratio of specific heats 
for air, so that YPa is the bulk elastic modulus for the air in the cavity, as 
discussed in Section 6.1. Since the integral is just the total flow into the cavity, 
and is analogous to the electric charge, the quantity VfYPa is analogous to the 
electrical capacitance, and is generally referred to as the acoustic compliance. 
A more convenient expression for it is, from Eq. ( 6.11 ), V/ pc2 and the acoustic 
impedance of the cavity is 

(9.5) 

The third acoustic component we need is the analog of an electrical resis
tance, and is generally realized physically by a disk of permeable fabric or felt. 
The acoustic resistivity, in this case, results from the viscous drag associated 
with motion of air through the narrow passages in the resistive material. The 
flow through such an acoustic resistance is simply proportional to the pressure 
across it, and can be related to its thickness l, area S, and acoustic resistivity 
ra by Zres = R = ral/S. 

Finally we need two other simple components representing a rigid stopper 
and a simple opening. The impedance of the stopper is simply infinite, as in 
an electrical open circuit, while to a first approximation the impedance of an 
opening is zero, corresponding to an electrical short circuit. Although the first 
idealization is always appropriate, the second requires modification in careful 
work to take account of the radiation impedance Zrad = R + jX as discussed 
in Section 8.3 and given explicitly in Eqs. (8.29) and (8.30). For the open end 
of an unbaffled pipe of radius a and areaS= 1ra2, 

,..., pw2 • pa 
Zrad,..., 0.16-c- + 0.6JwS (9.6) 

provided w < cja. 
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To complete our treatment of acoustic components at low frequencies we 
need two sorts of acoustic generators-an acoustic pressure generator and an 
acoustic current generator. The first is simply a pressure source with zero 
internal impedance-it can supply any amount of acoustic current and always 
maintains its driving pressure. The second is an acoustic flow generator with 
infinite internal impedance-it always supplies the same acoustic current, 
whatever driving pressure it requires. Such idealized sources do not exist in 
reality, of course, but free sound fields come close to being pressure sources 
and mechanically driven pistons are close to being acoustic current sources. 

The free-field pressure source is particularly important, so we look briefly 
at the way in which it differs from a true acoustic pressure source. This differs 
somewhat from case to case, but in fact the internal impedance to be associated 
with a free field at low frequencies is just the radiation impedance of the 
aperture upon which it acts. While we are dealing with low frequencies, this 
impedance is small and, from Eq. (9.6), largely inertive-the resistive compo
nent is very small. At high frequencies we will see that things become a little 
more complicated. 

The basic principles by which components are assembled into networks 
are straightforward, and are most easily presented through the examples that 
follow. Ambiguities that appear to arise about constructing the network can 
be resolved by considering, in a physical way, the flow of acoustic current 
through the system and the way in which pressure drops may occur across 
the circuit elements. The behavior of the network can then be described in 
terms of circulating currents U; flowing through its interconnected circuits. 
These currents can generally be drawn in more than one way, but alternative 
descriptions lead to the same results. We need only follow a few general rules: 
(a) each current must flow around a complete circuit and must not cross over 
itself; (b) each circuit element must have at least one current flowing through 
it; (c) the number of currents should be as small as possible. The direction 
associated with each current is not important, because this is sorted out when 
solving the network equations, but it is generally best to draw currents that 
pass through pressure or current generators in the "natural" direction for the 
generator to avoid possible errors of sign. 

We have already met the Helmholtz resonator in Section 1.6.2 as an 
example of an "air spring," and it is now appropriate to examine it in a little 
more detail as our first example of a network problem. The resonator consists 
simply of an enclosure of volume V vented by a pipe of length l and cross
sectionS, as shown in Fig. 9.1a. The network describing this system and its 
coupling to external acoustic radiation is shown in Fig. 9.1b-notice that we 
have included the radiation impedance. There is only a single circuit in this 
network, and we can easily write an equation to describe it, by setting the 
driving pressure in the circuit equal to the sum of the pressure drops across 
the individual circuit elements, to give 

P = (Zrad + Zpipe + Zcav)U. (9.7) 

In a very careful calculation we might want to include the resistive losses 
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(a) 

p 

(b) 

Fig. 9.1. (a) A simple Helmholtz resonator driven by an external sound field; and (b) 
the analog network describing its behavior. 

associated with viscous drag on the walls of the pipe and thermal and viscous 
losses to the walls of the cavity, but here we simply ignore these in comparison 
with the radiation loss-an approximation that is justified if the pipe is short 
and wide. We can now use the explicit expressions given above to write 

u ~ {o.16p;2 + j[ wp(l; 0.6a)- ';~Jrl p. (9.8) 

This is just a simple damped resonator equation, resonance with maximum 
acoustic flow occurring at the frequency 

[ s ]1/2 w* ~ c 
~ V(l + 0.6a) 

(9.9) 

The resonance Q value is determined in this case by the radiation resistance, 
or more generally by the sum of this resistance and the resistive losses inside 
the resonator. This is only a first-order treatment of the Helmholtz resonator, 
and we shall return to look at it more carefully in the next section after we 
have considered high-frequency networks. 

It is interesting to consider the related situation in which the resonator is 
excited, not by an external sound field, but rather by a simple piston volume 
source located within the cavity, as in Fig. 9.2a. In this case the network 
appears as shown in Fig. 9.2b and has two circuits. We do not know the 
pressure Po produced by the flow generator, just the flow U0 , and there is no 
pressure generator in the second mesh, so that the equations for the two 
meshes can be written 
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u 

(a) 

(b) 

Fig. 9.2. (a) A Helmholtz resonator driven by a volume source within its cavity; and 
(b) the analog network describing its behavior. 

Po = Zcav(Uo - U) 

0 = Zcav(U- Uo) + (Zpipe + Zrad)U. 
(9.10) 

The first of these equations is not needed, and the second gives the current U 
through the open neck of the resonator as 

U = ZcavUo 
Zrad + Zpipe + Zcav 

(9.11) 

The resonance frequency is thus given again by Eq. (9.9). If we are interested 
in the pressure in the cavity, rather than the flow through the pipe, then this 
can easily be found by substituting U from Eq. (9.11) in the first of Eqs. (9.10). 
Both U and p have maximum amplitude at the same frequency, but they differ 
in phase by an amount that depends upon the magnitude of the resistive loss 
term. 

Two practical applications ofthe system shown in Fig. 9.2 should be noted. 
The first is a simple exhaust muffier such as shown in Fig. 9.3a. The engine 
connected to the muffier produces a pulsating gas flow which can be regarded, 
to a first approximation, as a steady flow and an oscillating component of 
frequency w. The design minimizes the amplitude of the flow out the exhaust 
pipe at frequency w by arranging that the resonance frequency w* given by 
Eq. (9.9) is much lower than the engine frequency w. From Eq. (9.11), under 
these conditions, the exhaust flow U(w) varies as w- 2 and is significantly less 
than the engine flow U0 (w). The muffier efficiency increases as w* is made 
smaller, which requires a large cavity and a long tail-pipe of small diameter. 
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u 

(a) (b) 

Fig. 9.3. Two practical examples of the system shown in Fig. 9.2: (a) a simple muffier 
for an internal-combustion engine; and (b) a bass-reflex loudspeaker enclosure. 

The first requirement is inconvenient and the second impedes the steady 
component of the flow, so that design compromises are required. 

The second application is to the so-called "bass-reflex" loudspeaker design 
shown in Fig. 9.3b. The rear of the loudspeaker cone provides a volume drive 
U0 (w) and the acoustic flow through the vent port is U(w), as given by Eq. 
(9.11), which has a resonance maximum at frequency w* and a falling charac
teristic above and below this frequency. This acoustic output is supplemented 
by the direct volume flow - U0 (w) from the front surface of the speaker cone. 
The direct speaker output falls dramatically at frequencies below the natural 
resonance frequency ofthe loudspeaker cone suspension but, if the vented-box 
resonance is arranged to have a frequency somewhat below this cone reso
nance, phase relations are such that the vent flow reinforces the direct flow at 
all frequencies above the box resonance, giving improved bass response. In 
practice the enclosure is lined with heavy felt to broaden the box resonance. 
This can be modelled as a resistance in series with the impedance Zcav in Fig. 
9.2b. The coupling between the cone and the enclosure actually shifts the two 
resonance peaks apart a little in frequency, in a way that can be calculated. 

It is perhaps worth noting that in the case of Fig. 9.1 we had a series
resonant circuit driven by a low-impedance source, and the resonance condi
tion corresponded to a minimum in the input impedance of the resonator as 
seen by the source. In the case of Fig. 9.2 the resonator appeared as a 
parallel-resonant circuit driven by a high-impedance generator, and the reso
nance condition corresponded to a maximum in the impedance presented to 
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o--[g-o 
p uj (d) 

(a) (b) (c) 

Fig. 9.4. Analog circuit elements for (a) a pressure generator, (b) a flow generator, (c) 
a cavity, (d) a pipe, and (e) a resistance, drawn in relation to a convenient "ground" 
potential. 

the generator. Power transfer is always greatest when the impedance of the 
circuit is matched to the impedance of the generator-specifically the resistive 
parts ofthe impedances should be as nearly equal as possible, and the reactive 
parts should be equal in magnitude but opposite in sign. 

Sometimes it is difficult to decide just how the analogs for components 
should be assembled into a network-whether, for example, the network 
should be series or parallel, as in the cases above. A simple procedure helps 
resolve this difficulty by introducing a baseline or "ground" lead to which 
some of the components are always connected. In particular, one terminal of a 
pressure or flow generator must always be connected to ground, and the same 
must be true of one terminal of a cavity element. The elements corresponding 
to pipes or resistive loads, however, can have both terminals above ground 
potential. This is illustrated in Fig. 9.4, where we have also modified the 
drawing of the cavity element to show explicitly the possibility that it might 
be connected to more than one other element-to an inlet and an outlet tube, 
for example. If one of the connections is unused in this case, it can simply be 
left open-circuited (not connected to anything), which is equivalent to closing 
the port with a rigid plate. 

Before going on to consider high-frequency systems it is as well to note the 
limitations on the low-frequency analysis outlined above. Essentially what has 
been assumed is that all the elements involved are small in dimensions com
pared with the wavelength of the sound involved. This means that in the case 
of cavities the pressure is uniform throughout, and that in the case of pipes 
the flow into one end is exactly equal to the flow out the other. Because sound 
wavelengths of concern in air typically range from a few meters to a few 
centimeters, this means that we are justified in applying the analysis above 
only to rather low frequencies or to rather small systems. 
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(b) 

Fig. 9.5. Definition of (a) the acoustic quantities and (b) the network quantities to be 
associated with an extended acoustic element. 

9.2. High-Frequency Components and Systems 

Once the sound wavelength is comparable with the dimensions of an acoustic 
system, we must take a rather different approach, though clearly the results 
must reduce to those we have already derived if we let the frequency become 
sufficiently low. In this section we consider only what we might call one
dimensional components, implying by that phrase that only one of the compo
nent dimensions is comparable to the wavelength and the other dimensions 
are small. This essentially limits the discussion to pipes and horns of arbitrary 
length but of relatively small transverse dimensions. We will say a little about 
more general systems at the end. 

With this limitation on the components we are considering, the important 
thing is that they all have two ends, and that we can no longer make the 
assumption that the acoustic flow out of one end is exactly equal to the flow 
in at the other. We therefore need more variables to describe each component, 
and a convenient scheme is shown in Fig. 9.5a. We choose the relevant physical 
quantities to be the acoustic pressures p1 and p2 at the two ends and the 
acoustic flows U1 and U2 in those two ends. Defining the flow directions in 
this way has the advantage of displaying the appropriate symmetry for simple 
components such as pipes of uniform cross-section. Figure 9.5b shows the 
analog network element, which is usually referred to as a two-port element 
for obvious reasons. Because we are dealing only with linear systems, we can 
write simple relationships between the acoustic quantities for the element in 
the form 
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P1 = Zu U1 + Z12 U2 

P2 = Z21 U1 + Z22u2 
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(9.12) 

where the coefficients Zii are generally complex. There is a very general 
theorem, called the reciprocity theorem, which shows that, for any system not 
involving magnetic fields, Z21 = Z12, and we shall use this result often. There 
is no similar relation between zll and z22 unless it is imposed by the physical 
symmetry of the component-clearly this equality holds in the case of a 
uniform pipe, but not in the case of a flared horn. 

Before we can use these ideas to analyze a system, we must have a way of 
determining the values of the impedance coefficients Zii for that system. 
Generally this involves determining the analytical form for waves propagating 
through the element, calculating the pressures and flows for two simple cases 
such as for a stopped and an ideally open end, and comparing the results with 
Eqs. (9.12). In this way we find, for the case of a uniform pipe of length I and 
cross-section S, the explicit forms 

Z11 = Z22 = -jZ0 cotkl 

Z21 = Z12 = -jZ0 coseckl 
(9.13) 

where Z0 = pc/S is called the characteristic impedance of the pipe, and k = wfc 
as usual. We can, if we wish, include viscous and thermal losses to the walls 
of the pipe, as discussed in Section 8.2, by taking k to be the complex quantity 
wfc - ja., where a. is the attenuation coefficient for wave propagation in the 
pipe. 

From Eqs. (9.12) and (9.13) we can easily calculate the input impedance Z;0 

for open and stopped pipes, simply by setting p2 = 0 or U2 = 0, respectively. 
After a little algebra we find 

() ......._ ----0 
(a) 

Fig. 9.6. (a) A Helmholtz resonator with a long neck and a small cavity; and (b) the 
associated network diagram. 
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(9.14) 

(9.15) 

The final form of writing is in each case the low-frequency result for kl « 1, 
and these agree exactly with Eqs. (9.3) and (9.5) as required. 

We can now carr~ out a more sophisticated examination ofthe Helmholtz 
resonator, allowing the possibility that the length l of the neck may become 
comparable with, or even considerably greater than, the sound wavelength. 
We must suppose, however, that the neck is rather narrow and that the 
diameter of the cavity is always a good deal less than the wavelength. The 
physical arrangement is shown in Fig. 9.6, together with the associated net
work. There are two circuits to the network, and we can easily write down the 
equations describing them as 

P = (Zrad + Z11)U1 + Z12U2 

0 = Z21 U1 + (Zcav + Zzz)Uz 

which can easily be solved to give 

u1 = (Zcav + Zzz)P . 
(Zrad + ZuHZcav + Zzz)- Z12Z21 

(9.16) 

(9.17) 

The resonance frequencies, of which there are now many, are given by the 
minima of the denominator. 
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Fig. 9.7. Calculated mode frequencies for the Helmholtz resonator of Fig. 9.6 as a 
function of the volume of the cavity. The first mode has a behavior corresponding to 
that of a simple Helmholtz resonator. 
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If we take Vto be the volumeofthe cavity, so thatZcav = -jpc2/Vw, ignore 
the small radiation impedance Zrad> and use the expressions for the Zii given 
in Eq. (9.13) then we find the resonance condition to be 

wV wl 
-tan-= 1. (9.18) 
Sc c 

These frequencies are plotted as functions to the cavity volume V in Fig. 9.7 
for a particular case. The frequency of the lowest mode agrees with the value 
calculated from the simple low-frequency expression (9.9), except for omission 
of the radiation correction, but there are also important higher modes that 
start out, for very small cavity volume, at the frequencies for a pipe stopped 
at its far end, as given by Eq. (9.15), and end up, for large cavity volume, at 
the values for an open pipe as given by Eq. (9.14). We obviously get a great 
deal more information by using a more detailed approach. 

Other problems can be handled in a very similar manner, a good case being 
that of an exhaust muffier consisting of a number of cylindrical expansion 
chambers connected by lengths of narrower pipe. Each section is represented 
by a two-port element with S and l chosen appropriately, and the transfer 
characteristic U0 u1/U;0 can be calculated in a straightforward manner. 

To obtain realistic bandwidths and input impedances for systems of the 
type we have been describing, it is necessary of course to include losses other 
than just the radiation losses at the open ports. The major dissipation mecha
nism will, in fact, generally be viscous and thermal losses to the walls of the 
tubes in the system. This can be dealt with by replacing the propagation 
constant k = wfc in formulae such as Eq. (9.13) by the complex quantity 
wfc - jrx., where rx. is the attenuation coefficient in the pipe as given by Eq. 
(8.15). We must then carry through the evaluation of formal results such as 
Eq. (9.17) by complex arithmetic. This does not involve much extra labor if 
an appropriate computer program is written. Of course Eq. (8.15) applies to 
pipes with smooth rigid walls-we must allow for extra attenuation if the pipe 
is lined with some sort of absorbing material. Cavities in the system may be 
similarly lossy, particularly if they are lined with porous material, as is often 
the case in duct silencers. This is handled in a rather similar way by adding 
a resistive loss in series with the acoustic compliance within the element 
representing the cavity. 

9.3. Finite Horns 

We should devote special attention to the behavior of horns, since they are of 
particular importance in many applications of acoustics. The method of 
analysis is just the same as that used above for pipes, but we need explicit 
expressions for the impedance coefficients Zii for the horn profile and length 
involved. These are rather more complicated than in the tube case. The discus-
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sion below is an abbreviated form of that given by Fletcher and Thwaites 
(1988) and Fletcher (1992). 

For a conical horn it is best to relate the geometry to that of a complete 
horn truncated at a distance x1 from its apex to make port 1 of area S1, and 
at a distance x 2 to make port 2 of area S2 • The horn length is l = x 2 - x1, 
which is positive if port 1 is taken to be the narrow throat. The impedance 
coefficients for such a horn are given by 

_ _ jpc[sin(kl + 02)sin01] 
Zu- -

S1 sin(kl + 02 - Od 

_ jpc [sin(kl- Od sin 02 ] 
z22--

s2 sin(kl + ()2 - ()1) 

jpc [ sin 01 sin 02 J 
221 = 212 = - (S1S2)112 sin(kl + 02- 01) 

where k = wjc, 01 = tan-1 kx 1 and 02 = tan-1 kx2 • 

(9.19) 

For an exponential horn with throat area S1, mouth area S2 and length l, 
the flare constant is defined to be m = (1/2l)ln(S2/S1). Above the cutoff fre
quency for which k = wjc = m, the impedance coefficients are given by 

Z = _ jpc [cos(Kl- 0)] 
11 S1 sinK/ 

Z = _jpc[cos(Kl + 0)] 
22 S2 sinK[ 

(9.20) 

jpc [cosO] 
221 = 212 = - (S1 S2)112 sin Kl 

where K = (k2 - m2)1'2 and()= tan-1(m/K). These formulae need to be trans
formed to a somewhat different form at frequencies below cutoff, since K then 
becomes imaginary. 

Because the mouth of a horn is often not small compared with the wave
length of the sound involved, this provides an added complication when we 
come to calculate horn response for two reasons. The first is that, although 
the equivalent sound pressure generator for a free field acting on a small 
aperture is just the free-field acoustic pressure p in series with the radiation 
impedance Zrad of the aperture, the case of an aperture that is large compared 
with the wavelength demands an equivalent pressure generator of magnitude 
2p in series with the radiation resistance, which is essentially just pcjS. This 
transition from p to 2p for the equivalent pressure generator occurs gradually 
over a frequency range near ka = 1, where a is the radius of the aperture. Let 
us denote this pressure magnification factor by E(ka). 

The second complication arises from the fact that the wavefront at the horn 
mouth is not plane, as expected in a one-dimensional approximation, but 
curved. This curvature introduces a further factor Fa.(ka) into the effective 
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magnitude of the free-field pressure generator for on-axis response, given by 

F (ka) = sin[(ka/2) tan(oc/2)] 
a (ka/2) tan(oc/2) 

(9.21) 

where oc is the semiangle of a cone that would be tangent to the surface of the 
horn at its mouth and a is the mouth radius. Fa(ka) is approximately unity for 
ka < 1, but decreases rapidly at higher frequencies, reflecting the fact that 
the free plane wave is unable to couple efficiently to the curved wavefront 
propagating in the horn. The matter is even more complicated if we consider 
off-axis response-again not envisioned in a simple one-dimensional treat
ment. If a plane wave falls on the horn mouth from a direction making an 
angle e with the horn axis, then the effective driving pressure is reduced by a 
further factor 

(k ) "' 2J1 (ka sin 8) 
G6 a "' k . e asm 

(9.22) 

which defines the beam-width of the horn, J1 being a Bessel function. This 
factor has a complicated angular dependence, as described in Section 8.4 and 
Fig. 8.10, but is unity on the axis where e = 0 and declines more or less rapidly 
with increasing e for ka > 1. 

A horn must be treated as a two-port element and some sort of connection, 
even if a free field, must be prescribed at both its mouth and its throat before 
its acoustic behavior can be calculated. A particularly instructive calculation 
relates the pressure gain between the free field and the horn throat for the 
particular case in which the horn throat is rigidly blocked. We assume that 
the mouth is port 1 and set U1 = 0. The driving pressure at the mouth, 
assuming the source to be on-axis, is pFa(ka), where pis the free-field pressure 
at the position of the mouth with the horn absent, and Pr is the pressure in 
the horn throat. The network equations are then 

PM= Z12u2 

pE(ka)Fa(ka) = (Z22 + Zrad)U2 

which can be simply solved to give 

Pr = [ z21 J E(ka)Fa(ka)p. 
Zrad + Z22 

(9.23) 

(9.24) 

The results of evaluating this expression for three horns with the same throat 
and mouth diameters but with different flare profiles are shown in Fig. 9.8. 
There is clearly a trade-off between maximum gain and bandwidth, with the 
exponential horn giving the narrowest bandwidth and the highest gain. 

We should emphasize that the curves in Fig. 9.8 apply only to the case in 
which the horn throat is rigidly blocked, which is not a practically useful 
arrangement. More generally we would expect the throat to be connected to 
some sort of transducer-either a human ear or a microphone-with a finite 
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Fig. 9.8. Pressure response of (a) parabolic, (b) conical, and (c) exponential horns of 
the same length (50 em), mouth diameter (50 em), and throat diameter (5 em), with the 
throat rigidly stopped. (Rescaled from Fletcher 1992.) 

acoustic impedance. The response of such a system is easily calculated, along 
the lines indicated above, and is always lower than that for the rigidly blocked 
case. If the transducer has resonances, then the response function may look 
very different from those displayed in Fig. 9.8. 

Finally we should point out that we can calculate, in a very similar manner, 
the pressure produced at a distant point when an acoustic volume source is 
located in the otherwise blocked horn throat. The reciprocity theorem guar
antees, however, that the pressure response produced at this distant point by 
a small source of unit flux located in the horn throat will be identical to the 
pressure produced in the horn throat by the same source located at the distant 
point under consideration. 

9.4. Coupled Mechanical Components 

All the systems we have discussed above have been purely acoustic, in the 
sense that the only motion was due to acoustic waves in air. We can often 
separate off the acoustic part of a system in this way, regarding any associated 
mechanical vibrator as simply a source of acoustic flow or acoustic pressure. 
Sometimes, however, this approach is too simplistic-for example, when 
analyzing the operation of a microphone or an auditory system, in which the 
motion of a taut diaphragm is the penultimate output, the ultimate one being 
an electrical signal. 
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(a) (b) 

Fig. 9.9. (a) A simple elastic diaphragm, regarded as an acoustic element; (b) the acoustic 
analog circuit for the diaphragm element, broken into components and combined. 

There are many possible mechanical elements that might be coupled to an 
acoustic system, and here we consider just one as an example-the elastic 
diaphragm shown in Fig. 9.9a. Clearly such an element can be integrated fairly 
simply into the analysis if we can assign to it an acoustic impedance, so the 
essence of our discussion is to establish how to do this. Suppose that the 
diaphragm has area S and thickness d, and that it is made from material with 
density Pd· The restoring force associated with diaphragm displacement may 
be either a tension or a stiffness, or a combination of both, and we need not 
be definite about this to a first approximation. The important thing is that the 
restoring force establishes a resonance frequency wd for the first mode of 
the diaphragm. This first mode is all that we are really concerned with, but 
we shall return to the higher modes later. Finally, we recognize that the 
diaphragm will have some internal damping associated with its motion which 
is most easily quantified by giving the Q value of the diaphragm resonance in 
vacuum, which we shall denote by Qd . 

To calculate the acoustic impedance of the diaphragm we must simply 
describe its motion using the acoustic quantities p and U. To an adequate 
approximation we can replace the flexible diaphragm by a simple piston of 
the same mass and area, tethered by a spring of the right stiffness and damping 
to give the defined resonance behavior. The velocity of the piston is then U/S 
and the force exerted on it by a pressure difference p between its faces is pS. 
Its oscillatory behavior is then described if we suppose it to have an acoustic 
inertance Ld = pdSd, an acoustic compliance Cd = l/w~Ld, and an acoustic 
series resistance Ldwd/Qd. The formal expression for the acoustic impedance 
is then 

(9.25) 

This is one case-almost the only case-in which the analog circuit for the 
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element, as shown in Fig. 9.9b, involves an acoustic compliance that is not 
connected to ground, as in Fig. 9.4. 

We know that diaphragms have higher modes, and that the frequencies of 
these may be resonably low if the stiffness and tension are both low, so it is 
relevant to ask about their effect on system behavior. Such upper modes of a 
diaphragm do have a plane-wave acoustic current associated with them, 
because the integral of the mode displacement across the diaphragm surface, 
while much smaller than that of the fundamental mode, does not vanish. This 
also means that such higher modes can be driven by a simple plane-wave 
acoustic pressure. These modes can be represented by additional elements Zd 
of the form given in Fig. 9.9, placed in parallel with the fundamental-mode 
impedance. Their acoustic impedance is higher than that of the fundamental 
mode, however, by a factor approximately equal to the inverse square of the 
ratio of the integral of the areal mode displacements for the two cases. 
Generally we can neglect the second and higher modes in most practical 
applications. 

9.5. Multi-Port Systems 

Although individual components such as horns or pipes are two-port entities, 
with two separate connections to their environment, all the systems we have 
discussed so far, with the exception of the bass-reflex loudspeaker enclosure 
shown in Fig. 9.3, have been single-port systems in which there is only a single 
aperture communicating with the outside environment. It is appropriate now 
to give brief attention to multi-port systems, since some of them have impor
tant practical applications. 

The principles of analysis for multi-port systems are just the same as those 
for systems with only a single port. The only important point to note is that, 
in the case of a passive system in a sound field, there will generally be a phase 
difference between the acoustic pressures at the different ports, depending 
upon the direction of incidence of the sound wave, and this can have important 
consequences. In a reciprocal sense, if the system is excited internally, then 
radiation from its separated ports will interfere to produce a characteristic 
radiation pattern. 

The auditory systems of many animals have a multi-port nature-the same 
is true topologically of the human auditory system, but the Eustachian tubes 
connecting the open nostrils to the middle ear cavity are so narrow that the 
nostrils can generally be disregarded as input ports. One biologically useful 
feature of two-port systems is they allow the animal to determine the direction 
from which a sound is coming. The technical analog is the direction micro
phone, and it will illustrate the principles involved to analyze this in a little 
detail. 

In an ordinary omnidirectional pressure microphone, sound pressure is 
allowed access to only one side of a flexible diaphragm, the other side being 
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Fig. 9.10. (a) A simple omni-directional "pressure" microphone; (b) a simple cardioid 
response "directional" microphone; and (c) the network for the microphone in (b). 

shielded by a closed cavity as shown in Fig. 9.10a. The diaphragm vibrates 
under the influence of the acoustic pressure, and its motion is detected by 
electrical (condenser microphone) or electromagnetic (dynamic microphone) 
means. The directional response pattern is uniform at low frequencies but 
directionality develops at frequencies high enough that the wavelength is 
comparable with the diaphragm diameter. A simple directional microphone 
can be made by setting a second port into the back or around the sides of the 
backing cavity, as shown in Fig. 9.10b. If the sound comes from a direction 
making an angle() with the microphone axis, then the path difference between 
the sound at the two ports is approximately d cos () and the phase difference 
kd cos(), where k = w/c. For careful design work this phase difference involves 
diffraction effects .around the microphone casing and must be calculated more 
accurately, but this simple approximation illustrates the principle. 

The network for the directional microphone is shown in Fig. 9.10c. In the 
interest of simplicity we have omitted radiation impedances at the two ports, 
since these make little difference if the diaphragm is fairly robust. We can write 
down and solve the network equations to find the acoustic current U through 
the diaphragm, since this is directly proportional to the diaphragm motion. 
The result is 

U = ZportPl + Zcav(Pl - P2) 
Zportzdia + ZcavZport + ZcavZdia 

(9.26) 

where the impedances and pressures are as shown in the diagram. The denomi
nator of this expression essentially determines the frequency response, and has 
no directional element-all the directionality is contained in the numerator. 



226 9. Acoustic Systems 

We note in passing that, if we close off the port so that Zport- oo, Eq. (9.26) 
simplifies to U = ptf(Zdia + ZcaJ which is just the nondirectional response we 
would expect for the microphone of Fig. 9.10a. 

Depending on just how the second port is constructed, it will generally have 
both an inertance and a resistance, so that Zport = R + jmL, while the cavity 
will be a simple compliance Zcav = -jjmC, with C = Vf pc2 where V is the 
cavity volume. The pressure difference p1 - p2 = p(1 - eikd) and we can ap
proximate this at frequencies for which d is only a small fraction of the 
wavelength by p1 - p2 ~ jpkd cos()= j(pdmfc) cos(). The directional factor 
provided by the numerator of (9.26) is thus 

dcos () 
F(()) ~ R + jmL + ----cc (9.27) 

It is immediately clear that, to attain optimal directionality, we must make 
the port a simple opening, so that L is negligibly small, and cover it with fine 
mesh to increase its resistance to a value R = dfcC = pcd/V. The angular 
response then has the simple cardioid form (1 + cos()), which is just what is 
required. 

This example illustrates the way in which two-port systems can be ana
lyzed, and also the way in which such an analysis can be used to design 
desirable characteristics into acoustic systems. 

9.6. Conclusion 

This is as far as we can conveniently go in using network analogs to calculate 
the behavior of acoustic systems. The next step in sophistication is to recognize 
that all systems are, in fact, three-dimensional, so that we must be concerned 
with waves propagating in three orthogonal directions and with mode func
tions of three-dimensional extent. The network approach is not adapted to 
dealing with more than one dimension because of the geometrically linear 
nature of circuits, so that such problems must be attacked by using finite
element methods if the geometry is such that exact analytical solutions are 
not possible. Such methods must be left to specialized textbooks. 

Despite this limitation, network methods are of immense value in analyzing 
all sorts of practical acoustic systems in a quantitative manner, and are much 
used in practical design. Examples of practical applications are given by 
Beranek (1954), Olson (1957), and Fletcher (1992). The methods build upon 
detailed physical knowledge of the behavior of acoustic elements and integrate 
these conveniently to describe the system as a whole. Specialized computer 
programs are available to perform the network analysis once the configura
tion of the system has been decided, but for many practical cases the network 
is sufficiently simple that a straightforward solution using the algebra of 
complex variables is possible, and a simple computer program can easily be 
written to calculate and plot the numerical results for particular cases. 



References 227 

References 

Beranek, L.L. (1954). "Acoustics." McGraw-Hill, New York. Reprinted 1986 by Ameri
can Institute of Physics, New York. 

Fletcher, N.H. (1992). "Acoustic Systems in Biology." Oxford University Press, New 
York. 

Fletcher, N.H. and Thwaites, S. (1988). Obliquely truncated simple horns: Idealized 
models for vertebrate pinnae. Acustica 65, 194-204. 

Olson, H.F. (1957). "Acoustical Engineering." Van Nostrand, New York. 



CHAPTER 10 

Microphones and Other Transducers 

In many practical applications it is necessary to convert acoustical signals 
into electrical signals, or vice versa, and for this purpose a variety of trans
ducers may be used. The most common are microphones and loudspeakers, 
but other important transducers include accelerometers, which convert vi
brational signals to electrical signals, and force transducers, which measure 
vibrational forces. The purpose of this chapter is to examine the principles 
underlying the most common examples of each type of transducer and to see 
how they operate. The technical details, which are extensive and varied, need 
not concern us here, though they are important in the practical world. 

The basic designs underlying most of these transducers date back nearly 
100 years, and even their present forms were usually developed nearly 50 
years ago. For this reason, many classic texts, such as those by Hunt (1954), 
Beranek (1954, 1988), and Kinsler et al. (1982), are still highly relevant, 
though papers in more modern publications such as the Encyclopedia of 
Acoustics (Crocker, 1997) and the specific references cited later should also 
be consulted. What is new is the associated electronics, which 50 years ago 
involved vacuum tubes (valves) and now relies upon transistors and integrated 
circuits. Important though these electronic developments are, consideration 
of them would take us too far outside the field of this small book. Most of 
the chapter is devoted to microphones and loudspeakers, but we will also 
make brief mention of other transducers. 

10.1. Microphone Principles 

One of the most important acoustic transducers is the microphone, the es
sence of which is to convert an acoustic pressure signal into a mechanical 
displacement, and then to convert this displacement into an electrical signal. 
There are excellent books on this subject such as those edited by Gayford 
(1994), by Wong and Embleton (1995), and by Busch-Vishniac and Hixson 
(1997). 

T. D. Rossing et al., Principles of Vibration and Sound
© Springer Science+Business Media New York 2004
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Because acoustic pressures are generally small, the first stage of this con
version almost always involves a thin, light foil of some sort. There are, as 
we shall see, two different varieties of foil diaphragm-one is tautly elastic 
and responds essentially to a pressure signal, and the other is slack and re
sponds more nearly to velocity. The problem is then to convert the motion of 
this diaphragm into an electrical signal, and again there are two different 
approaches-either the displacement is detected electrostatically using a 
capacitance effect, or else the motion velocity is used to generate a voltage 
with the aid of a magnetic field. We disregard early telephone microphones 
in which the diaphragm motion applied pressure to a container of carbon 
granules and altered their contact resistance, and a discussion of optical mi
crophones, in which optical techniques are used to detect diaphragm motion 
(Keating, 1994), would lead us too far afield. 

The first type of transducer, generally called a "condenser microphone," 
is now the most common type for precise measurement microphones, flexible 
studio microphones, and inexpensive electret microphones for general use. 
Here the conducting diaphragm acts as one plate of a charged capacitor, and 
the electrical signal resulting from its motion is detected. There are two dif
ferent types of electromagnetic microphones, the robust "dynamic micro
phone," in which motion of the diaphragm is communicated to a coil in the 
strong field of a permanent magnet, and the more delicate "ribbon micro
phone" that was once largely used as a directional microphone in demanding 
studio applications. These are considered in turn in the following sections. 

The directional response of a microphone is very important in many ap
plications. An "omnidirectional" microphone responds to the total sound 
pressure, and this is useful in many applications, for example in the mea
surement of noise levels. For applications in which a signal needs to be iso
lated from surrounding sound, however, a selective directional response is an 
advantage. The two basic directional responses that can be achieved are the 
"figure-eight" pattern defined as (cos e) 2 and the "cardioid" or heart-shaped 
pattern ( 1 + cos e) 2, where (} = 0 is the sensitivity axis of the microphone. 
These patterns are illustrated in Fig. 10.1. In practice, these directional pat
terns cannot be achieved exactly at all frequencies, and even a nominally 
omnidirectional microphone generally has a response that is concentrated 
increasingly along the normal to the diaphragm plane at frequencies high 
enough that the wavelength is comparable to the diaphragm diameter. In
termediate patterns of the form ( 1 + (X cos(}) 2, with different values of the 
parameter (X, are also possible. If (X > 1 so that the pattern is intermediate 
between a cardioid and a figure-eight response, the microphone is called a 
hypercardioid, while if (X < 1 it is called a wide cardioid and is like an off
center omnidirectional pattern. Some studio microphones allow selection 
between all these patterns, as will be discussed later. 

There is one important feature of directional microphones that is easily 
overlooked, and that is the "near-field" or "proximity" effect. Referring 
back to Section 6.2, we see that the pressure in an outgoing spherical wave 
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(a) (b) 

(c) (d) 

Fig. 10.1. Basic directional response patterns for microphones: (a) omnidirectional, 
(b) figure-eight, (c) cardioid, (d) hypercardioid with a= 1.5. In each case the direc
tional pattern is plotted in decibels relative to the on-axis response. Intermediate 
patterns are also possible. 

from a simple source has the form 

p(r) = !!_eJ(wt-kr), 
r 

(10.1) 

and this pressure is the stimulus that is detected by our ears. An omnidirec
tional pressure-sensitive microphone can convert this pressure signal into an 
electrical replica. 

A directional microphone with a figure-eight pattern, however, is re
sponding to either the acoustic velocity u or to the pressure gradient Vp. If 
the microphone IS pointed directly at the source, then these signals have 
forms like 

dp = _ jkA (l + _1_) ei(wt-kr) 
dr r jkr 

(10.2) 

u(r) = _j_ op = ~ (1 + _;_) ei(wt-kr). 
pw or rpc jkr 

(10.3) 

In the far field, where the microphone is several wavelengths away from the 
source, the term 1 jjkr can be neglected in comparison with unity. The pres
sure gradient is then simply proportional to w at all frequencies and the 
velocity is independent of frequency. A pressure-gradient microphone can be 
designed to compensate for this smooth frequency variation. At distances 
less than about one-sixth of a wavelength from the source, however, the 
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additional term 1/ kr becomes dominant and there is an increase at lower 
frequencies by a factor w-1 that is not compensated for. A close signal 
source, such as a singer holding the microphone, will therefore appear to 
have a significant bass boost, which may be either an advantage or a dis
advantage. 

A microphone with a cardioid response pattern is essentially a superposi
tion of an omnidirectional and a figure-eight response and will show a near
field effect similar to that of a figure-eight gradient microphone, modified 
only slightly by the presence of the omnidirectional element. 

It is possible to combine microphones in order to achieve more extreme 
directional patterns. A figure-eight response is characteristic of a microphone 
that responds to the pressure gradient, and so is often called a first-order 
gradient microphone. If two gradient microphones are placed back-to-hack 
a small distance apart then they respond to the difference in the pressure 
gradient between their two positions, and the result is called a second-order 
gradient microphone. The directional response of an nth order gradient mi
crophone in a free plane-wave field is V = cosn (), which results in a much 
more narrowly confined pattern if n > 1. 

10.2. Omnidirectional Condenser Microphones 

The simplest form of omnidirectional condenser microphone, as used for 
measurements and for some studio applications, is shown schematically in 
Fig. 10.2 and discussed in detail by Nielsen (1994) and by Zuckerwar (1995). 
A metal diaphragm, generally about 5-10 f.1ID in thickness, is stretched 
tightly across a ring support with a tension sufficiently high that its reso
nance frequency is at the top of the desired measurement range. This fre
quency is typically between I 0 and 50 kHz, depending on the diameter of 
the microphone, which is usually between 3 and 25 mm, the smaller micro
phones having higher resonance frequencies. Beneath the diaphragm, and 
supported at a distance of 20-30 J.lm from it by an insulating disc, is a plane 
metallic electrode. This electrode is perforated by a number of holes, so that 
the motion of the diaphragm is not too much impeded by the air film be
tween it and the electrode. The whole assembly is mounted in an airtight 
metal case, with just a small controlled leak to allow equilibration with 
atmospheric pressure. 

Suppose that the area of the electrode is A and its spacing from the dia
phragm d, then the electrical capacitance of the microphone is C = eoA/d, 
where e0 = 8.85 x I0-12 F/m is the permittivity of the vacuum. If the elec
trode is connected to a very high-impedance voltage source, typically 100 V 
at an impedance approaching 1 Gn, the charge induced on it is Q = CV. 
Now suppose the diaphragm is deflected inwards a distance <5 by the acoustic 
pressure. Then the electrical capacitance increases to C' = e0Aj(d- o) and, 
since the charge cannot change because of the high source impedance, the 
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Fig. 10.2. Schematic design of an omnidirectional pressure microphone such as is 
used for precision sound measurements. 

voltage decreases to 

v' = 2, = v(1-£). (10.4) 

The voltage on the electrode therefore follows the deflection of the dia
phragm, which in turn follows the acoustic pressure. 

This treatment oversimplifies the response, however, in several ways. 
Clearly the deflection of the diaphragm at its edge is zero, so that J must be 
taken as the diaphragm deflection averaged over its area, but this is no 
problem. Much more significant is the way in which J at a given acoustic 
pressure varies with frequency because of the mechanical properties of the 
diaphragm. As discussed in Section 3.3, the first resonance frequency of the 
diaphragm is at a frequency 

1:0 = 2.405 (!._)1/2, 
11 2na a (10.5) 

where a is the diaphragm radius, T its tension, and a its mass per unit area. 
This is a slight underestimate for a measuring microphone with a metal dia
phragm, because there is also a small restoring force from the air enclosed 
within the microphone cavity, but we ignore this for the present. The reso
nance frequency fo is typically in the range 10- 30 kHz, depending on the 
diameter of the microphone. The resonance would be a problem except for 
the fact that it is strongly damped by the necessity for the diaphragm motion 
to expel the air between the diaphragm and the electrode, and the holes in 
the electrode are so designed that this damping almost completely removes 
the resonance. 
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The response of the microphone to a pressure signal is therefore flat over 
a large frequency range. Above the resonance, the diaphragm displacement, 
and thus the electrical response, falls as 1/!2 or 12 dB/octave, but it is then 
nearly flat below the resonance and down to a frequency determined by the 
enclosed air volume and the resistance of the venting leak, which will allow 
sound pressure to enter and act on the rear of the diaphragm at very low 
frequencies. Typically the leak is adjusted so that the lower frequency is 
about 10Hz, because a more extended response can lead to problems with 
air pressure fluctuations caused by closing doors and other disturbances. 

Such a microphone is not truly omnidirectional because of diffraction 
effects. Signals reaching the diaphragm from directly in front lead to greater 
than normal pressure on the diaphragm at high frequencies, ultimately an 
increase of 6 dB, while those arriving from behind are shielded by the mi
crophone body and so reduced in intensity. For oblique incidence at very 
high frequencies, there may be a whole wavelength or more across the dia
phragm, and regions of positive and negative pressure tend to cancel. All 
these effects become significant only when the sound wavelength is compa
rable to the microphone dimensions. 

Sometimes measuring microphones are further specialized into "free
field" types, which have flattest response for sound incident normally on the 
diaphragm, and "diffuse field" types, whose parameters have been optimized 
to give flattest response for a random or diffuse field. The high-frequency 
response of a typical "half-inch" (12 mm) condenser microphone is shown in 
Fig. 10.3. Condenser measuring microphones range from I inch (25 mm) 
down to 1/8 inch (3 mm) in diameter, smaller sizes having higher frequency 
response (up to 60kHz for a 3 mm microphone) but lower sensitivity. 

Omnidirectional studio microphones differ from measuring microphones 
principally because the diaphragm is made from thin mylar plastic film with 
an evaporated gold conducting layer. The lower mechanical yield strength 
of the mylar means that it can only support a much lower tension, so that 
the free resonance frequency of the diaphragm is only about 1 kHz. The 
microphone must therefore rely upon the restoring force provided by the air 
enclosed in the capsule to raise this frequency to 15 kHz or more. Suppose 
that the enclosed air volume is V and the diaphragm area A, then an average 
displacement J of the diaphragm increases the pressure from its normal at
mospheric value Po and gives a restoring force 

F = yA2Jpo 
v ' (10.6) 

where y = 1.4 is the ratio of the specific heats of air, since the rapid com
pression is adiabatic. This restoring force raises the resonance frequency of 
the mounted diaphragm, and an enclosed volume of about I cm3 is generally 
appropriate. This may either be simply an enclosed volume behind the per
forated electrode plate, or sometimes cylindrical cavities drilled into a thick 
metal electrode, as illustrated later. 
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Fig. 10.3. Response of a typical 12 mm ("half-inch") measuring microphone. The 
diaphragm resonance is at about 30 kHz. The curves show high-frequency response 
for different sound incidence directions relative to the axis. The broken curve shows 
the response for a random or diffuse sound field. At low frequencies the response is 
fiat down to about 10 Hz. 

To give a feel for some of the dimensions involved, the separation be
tween diaphragm and electrode plate in a measuring microphone is typically 
about 20 f.£ill and in a studio microphone about 50 f.liD, the difference being 
because of the use of plastic film for the studio microphone diaphragm. Such 
microphones will tolerate sound pressure levels up to perhaps 150 dB, 
corresponding to nearly 1 kPa, without diaphragm collapse, so that the 
diaphragm amplitude at normal "loud" levels of say 90 dB is only about 
0.02 f.illl. 

Electret microphones (Sessler and West, 1973) differ from standard con
denser microphones only by having a thin polarized ferroelectric film on the 
surface of the electrode, or by having the diaphragm itself made from ferro
electric plastic. The electrical polarization is built into this film at manu
facture by applying a strong electric field at high temperature and then 
quenching to low temperature with the field still applied. This arrangement 
provides the necessary potential between diaphragm and electrode and ob
viates the need for an external power supply. Such microphones are now 
used nearly universally in many applications such as hearing aids, where the 
saving in space and battery power is of great significance. Other miniature 
microphones have been developed more recently in which the diaphragm is 
etched from crystalline silicon using techniques developed for computer 
chips. 
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10.3. Directional Condenser Microphones 

In many applications a cardioid directional response, as illustrated in Fig. 
10.1, is required, and this can be built into a microphone by allowing addi
tional acoustic pressure to reach the back of the diaphragm with an appro
priate phase delay. Suppose that the distance between the front of the dia
phragm and the rear entry port of the microphone is d, as in the design 
shown in Fig. 10.4(a), that the enclosed cavity has a volume V, and that the 
port has an acoustic impedance Zport between it and the enclosed cavity. 
Then we can use the techniques explained in Chapter 9 to construct a simple 
electric network analog for the microphone, as shown in Fig. 10.4(b). In the 
interests of simplicity, we neglect radiation impedance and diffraction effects. 
If the sound arrives at an angle e to the symmetry axis of the microphone, 
then to a first approximation the phase delay in the sound pressure p 2 at the 
rear port is kd cos e where k = w 1 c as usuaL 

To solve this network and find the motion of the diaphragm, we need to 
calculate the acoustic current U1 through it. The network equations are 

PI = (Zctia + Z cav) U1 - Zcav U2 

P2 = Zcav U1 - (Zcav + Zport) U2, 

( 10. 7) 

(10.8) 

where the Zi are the acoustic impedances of the elements concerned. Solving 

diaphragm I 
zdia ~I 

electrode -~1 

cavity 
P, I 

= 

"'case vent 

ooc:5<t----acoustic resistance 

zport 

Zcav I 
'===~ = 

(a) 

(b) 

Fig. 10.4. (a) A simple cardioid response "directional" microphone; and (b) the ana
log network for the microphone in (a). 
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these equations to find the acoustic volume flow U1 through the diaphragm, 
which corresponds to its average motion, gives 

U1 = ZportPl + Zcav(Pl- P2) 
ZportZdia + ZcavZport + ZcavZctia 

(10.9) 

The denominator of this expression essentially determines the frequency re
sponse, and has no directional content-all the directionality is contained 
in the numerator. We note in passing that, if we close off the port so that 
Zport = oo, then this equation simplifies to U = pi/(Zctia + Zcav), which is 
just the non-directional response expected from the microphone of Fig. 1 0.2. 

The impedance of the cavity, which is small compared with the wave
length, is Zcav = -j lwC where C = VI pc2 is the compliance of the cavity, 
p is the air density, and V is the cavity volume. The pressure difference 
PI- P2 = p(l- ei(wd/c)cose) ~ j(pwdlc) cose provided dis small compared 
with the sound wavelength. The desired final result can be obtained if the 
port is designed so as to be nearly purely resistive, for example by making it 
a simple opening covered by fine mesh, so that Zport = R. The directional 
factor provided by the numerator of (10.9) is then 

(10.10) 

and this takes on the simple cardioid form ( 1 + cos 8) if R = d IcC = pcd IV. 
A neat way of implementing this arrangement is to use, instead of a sep

arate cavity and acoustic resistance, a block of porous sintered material 
which has the form of a distributed RC delay line. In some microphone 
designs, this material is gold-plated on one surface and actually serves as the 
electrode. 

10.4. Studio Condenser Microphones 

High quality studio microphones are often designed so as to have a sensi
tivity pattern that can be changed from omni-directional through figure
eight to cardioid by a simple switching operation (Zuckerwar, 1978). Such 
microphones, which were originally designed many years ago, have two 
identical diaphragms and electrodes mounted back-to-hack and connected 
by an acoustic resistance, as shown in Fig. 10.5(a). The cavity behind each 
diaphragm is usually in the form of blind holes in the thick metal electrode, 
as shown, but other designs are possible, for example using thick porous 
electrodes. In the case of solid electrodes with holes, some of these must lead 
through to the central region to provide an interconnection between the two 
halves of the microphone. In the design shown, the narrow offset holes in the 
electrodes and the narrow central cavity form an acoustic resistance path 
with negligible capacitance. 
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Fig. 10.5. (a) Outline design of a twin-diaphragm studio microphone cartridge; (b) 
simplified network analog allowing for easy computation of response. 

Once again the design can be expressed as an electric network analog, a 
simplified version of which is shown in Fig. l 0.5(b ), and this network can be 
solved to give the motions of the two diaphragms when the acoustic pres
sures Pi and pz are given. Whatever the values of these pressures, we can 
decompose them into a superposition of two cases- one in which the two 
pressures are equal, and one in which they are opposite, the relative weight
ing of the two cases giving the actual pressures. These two cases lead to two 
normal modes for the diaphragms, one in which they both move in and out 
in-phase, and one in which one diaphragm moves out while the other moves 
in. In the first mode, the diaphragm motion is controlled largely by the 
compressive stiffness l / C of the air in the electrode cavities, and we have a 
simple omnidirectional pressure response, which can be detected by making 
the polarizing voltages on the two diaphragm equal. In the second mode, 
since the plastic diaphragms are not very stiff, the motion is limited primarily 
by the resistance 2R1 + R2 impeding air flow from beneath one diaphragm 
to beneath the other. In this case the velocity of the diaphragms is propor
tional to the pressure difference PI - p2 so that the diaphragm displacement, 
which generates the electrical signal, varies as (PI - pz) / w, thus canceling 
out the frequency weighting w (or k) imposed by the pressure gradient ac
cording to (10.2). 
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When the design has been optimized by appropriate choice of physical 
parameters, there are thus three possibilities. If the voltages on the two dia
phragms are made equal, then the response is omni-directional; if the vol
tages are equal and opposite, then the response is figure-8; while if one of the 
voltages is zero, then with proper design the response is cardioid. This is a 
very convenient arrangement for studio purposes. The microphone is gener
ally quite large and the condenser cartridge is mounted vertically inside a 
metal screening case. 

10.5. Piezoelectric Microphones 

Many crystalline materials are anisotropic and mechanical distortion causes 
the positive and negative charges in their structure to move in slightly dif
ferent ways so that an electrical potential is developed between their faces. 
This effect is called piezoelectric behavior, and two of the best known 
piezoelectric materials are quartz and ammonium dihydrogen phosphate 
(ADP). Slices can be cut from these crystals in such orientations as to max
imize the effect. Often two such cuts are cemented together, sometimes sep
arated by a thin metal sheet for mechanical stability, and such a structure is 
called a "bimorph." Recently ceramic materials, such as barium titanate, 
have been made to show similar effects by polarizing them in a strong elec
tric field at high temperature and then cooling to room temperature. 

Piezoelectric microphones are made by connecting the center of a slightly 
conical diaphragm to the end of a cantilever of piezoelectric material, usu
ally in bimorph form, as shown in Fig. 10.6(a). They have the advantage 
of simplicity, reasonably high output at moderate impedance, and do not 
require a voltage supply. 

piezoelectric 
dimorph 

(a) 

cavity 

diaphragm 

(b) 

Fig. 10.6. (a) Design of a piezoelectric microphone. The diaphragm is conical, to in
crease its stiffness, and its apex is connected to a bimorph strip which it excites by 
bending. (b) Design of a dynamic microphone. Motion of the diaphragm moves a 
coil, r igidly connected to it, between the poles of a permanent magnet. 
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10.6. Dynamic Microphones 

In a "dynamic" microphone, the transduction principle is that the moving 
diaphragm is directly connected to a wire coil, symmetrical about the dia
phragm axis, and this coil moves in the small circular gap between the poles 
of a permanent magnet, also designed to be symmetrical about the dia
phragm axis, as shown in Fig. 10.6(b) and discussed in more detail by Busch
Vishniac and Hixson (1997). Motion of the coil generates a voltage between 
its end that is proportional to the velocity of motion, so the microphone de
sign should attempt to make this velocity independent of frequency for a 
given acoustic pressure. 

The diaphragm and its attached coil clearly have appreciable mass, and 
must be supported on some sort of elastic mounting, generally a corrugated 
ring around the edge of the diaphragm and connecting it to the microphone 
frame. The diaphragm motion will then be that of a simple mass-spring 
resonant system, with a maximum velocity response at the resonance fre
quency. Clearly such a response is unsatisfactory, and the next addition is an 
aerodynamic resistance, generally stretched fine silk cloth, through which air 
is driven by the motion of the diaphragm. This greatly increases the damping 
and can remove most of the resonance peak, but the response still falls off at 
both very low frequencies, where the stiffness of the supporting ring becomes 
important, and at high frequencies, where the moving mass dominates the 
impedance. Further refinement of the design by the addition of vented 
chambers and tubes behind the diaphragm can then further extend the fre
quency response at the high and low-frequency ends. 

Dynamic microphones are widely used because they are robust, not 
overly expensive, and the frequency response is perfectly adequate for quite 
demanding sound applications. Modifications of the design by providing a 
sound path to the rear of the diaphragm as previously discussed, can give a 
cardioid response pattern, which is what is most often required. The output 
impedance is typically a few tens of ohms, which is ideal for connection to 
cables, sometimes with a small transformer to raise the impedance to a 
standard value such as 600 n. Such microphones are, however, not really 
suitable for demanding measurement applications, primarily because their 
complicated structure, particularly that of the diaphragm, its support, and 
the attached coil, lead to irregularities in the fine detail of the amplitude and 
phase response. 

10.7. Ribbon Microphones 

An early form of high-quality studio microphone with what was called a 
"velocity response" was the ribbon microphone (Rosen, 1994). A light and 
generally corrugated strip of metal foil was mounted between the elongated 
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poles of a permanent magnet in such a way that sound had access to both 
sides of the ribbon, though with a symmetrical spatial displacement caused 
by the size of the magnet. The tension in the ribbon was so small that its 
natural resonance was below the normal audio frequency range, so that the 
motion of the ribbon was limited essentially by just its mass, according to the 
equation 

(10.11) 

where p is the acoustic pressure, x is the displacement, m is the mass, and is 
A area of the ribbon, and Ll is the acoustic path length between its two sur
faces. Now dpjdx = pdvjdt for a sound wave, so that single integration of 
(10.11) leads to the result that 

dx = (ALlp)v 
dt m ' 

(10.12) 

and the velocity of the ribbon follows the particle velocity in the sound wave, 
at least up to the frequency where Ll becomes more than about one-quarter 
of the sound wavelength. Since microphones of this type are generally rather 
large, the frequency response is typically limited to not much above 10kHz. 

The electrical signal is simply the voltage induced in the ribbon by its 
motion in the magnetic field, and so is proportional to the particle velocity in 
the sound wave, hence the common name of the microphone. Since the 
acoustic path length difference Ll ~ d cos(), where d is the physical path 
length between the two faces of the ribbon and () is the angle between the 
sound direction and the normal to the foil surface, the response has a figure
eight pattern. The microphone also shows the same "near-field" effect as 
other directional microphones, as discussed in equation (10.3). 

The electrical impedance of a ribbon microphone is very small, as also is 
the signal voltage, because the ribbon is only a single conductor rather than 
a coil. The ribbon output is therefore fed through a step-up transformer to 
increase the signal voltage and provide a match to normal input impedances 
of around 600 Q. Because of their mechanical fragility, ribbon microphones 
are rarely used today, having been superseded by condenser microphones. 

10.8. Electrical Circuitry 

Here is not the place to write much about electrical circuitry, but a few re
marks are in order. For a condenser microphone 25 mm in diameter and 
with a diaphragm spacing of 50 f.J.m, the electrical capacitance is only about 
10-1° F, so that at 1000Hz the impedance is about I MQ. The microphone 
preamplifier must therefore have a very high input impedance, and generally 
consists of a field-effect transistor (FET) mounted inside the microphone 
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case. In fact the whole preamplifier is normally mounted inside the micro
phone case and is generally arranged so that its output has the standard 
impedance of 600 n. The signal cables connecting the microphone to other 
circuitry are normally arranged so as to supply the necessary power for the 
preamplifier and polarization voltage for the microphone cartridge. In a 
simple electret microphone, no external polarization voltage is required, 
however, and the preamplifier is normally powered by small batteries in
cluded in the microphone case. 

10.9. Loudspeakers 

All the microphone designs discussed above are, in principle, reversible. This 
means that if, instead of applying an acoustic pressure signal and observ
ing the electrical output, we apply an electrical signal containing an audio
frequency component, then the transducer will reproduce that sound as an 
acoustic signal. This applies only to the transducer itself-the associated 
electronics will not generally operate in reverse. While this reversibility, or 
"reciprocity," is made use of in so.me precise microphone calibration meth
ods, it is not otherwise of great practical value, since the sound power pro
duced by a reversed microphone is generally very small. What it means, 
however, is that there is a close similarity between the basic design of ami
crophone and that of a loudspeaker, though important practical parameters 
may be changed. 

The most important of these parameters is size. Suppose we have a cir
cular piston of radius a, corresponding to the diaphragm of a loudspeaker, 
mounted in a large plane baffle, and that it vibrates at frequency w with 
velocity amplitude u. Then, as discussed in Section 7.6, the radiated sound 
pressure at a distance r large compared with both a and the wavelength A is 

( ) -1 . 2 (e-Jkr) [2J1 (ka sin())] 
p r - 2 Jwpua k . () , 

r asm 
(10.13) 

where k = w I c and () is the direction of the measuring point relative to the 
normal to the disc surface. The angular factor in square brackets, which is 
equal to 1 for () = 0, is nearly independent of () if ka « 1 but peaks increas
ingly around () = 0 for higher frequencies. The response falls to zero when 
ka sin()~ 3.8, or equivalently when sin()~ Al2a, where A is the sound 
wavelength, and then rises again to subsidiary maxima for larger angles. 

This result tells us that, in order to achieve a fiat frequency response in the 
direction in which the speaker is pointing, the velocity amplitude u of the 
vibrating disc must vary as 1 I w, or the vibration amplitude as 1 I w2 for a 
constant electrical input amplitude. It also tells us that, in order to achieve a 
high sound pressure and a loud sound, the disc radius a must be large and it 
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must be made to vibrate with a large amplitude. Finally, it tells us that high 
frequencies in the sound will always tend to be concentrated around the 
direction of the axis of the diaphragm. 

The total acoustic power radiated by the loudspeaker could be obtained 
by integrating (10.13) over all directions, but there is an easier way to do 
this, based on the discussion in Section 8.3. A vibrating circular piston of 
radius a set in a plane baffle feels the acoustic impedance of the air, of which 
the resistive part R is given by (8.28) and plotted in Fig. 8.7. The more 
complicated case of a piston set in the end of a pipe is plotted in Fig. 8.8 and 
is not very different. In each case, R increases as (ka) 2, or (wajc) 2, for small 
values of ka, and then saturates for ka > 2. If the velocity amplitude of 
the piston motion is u, then the radiated power is ! R( na2u) 2, which rises as 
w 2 at low frequencies and saturates at !pcna2u2 when w > 2cja or A,< na 
where A, is the sound wavelength. Translating this into practical values for a 
loudspeaker 10 em in diameter, the turnover frequency is about 2 kHz. 
Clearly the loudspeaker design must compensate for this behavior. 

It is interesting to reflect on the acoustic efficiency of loudspeakers-the 
ratio of the acoustic power output to the electrical power input. This is rarely 
mentioned by loudspeaker manufacturers for a reason that is immediately 
apparent-the efficiency is very low indeed! Loudspeakers are advertised 
instead in terms of simply the electrical power input that they can tolerate 
before distortion becomes severe. Of course, there is sense in this, for it al
lows the choice of an appropriate amplifier to drive a chosen loudspeaker. 

When acoustic output power is specified, it is usually given in terms of a 
figure such as "93 dB per watt, on-axis, at 1 meter." When we read this as an 
intensity level relative to 10-12 Wjm 2, then the intensity at 1 m from the 
speaker is 2 m W Jm2 and, if we neglect the fact that the intensity is higher in 
front of the speaker than behind, and simply multiply by 4n for the area of a 
sphere of radius 1 m, we get about 25 m W as the total acoustic power output 
for 1 W of electrical input-an efficiency of 2.5%. A figure like this is typical 
of most devices that convert mechanical or electrical energy to acoustic 
energy-devices such as musical instruments, the human voice, and even jet 
aircraft engines. Hardly any conversion exceeds 10% in efficiency, and most 
are well below 1%. The reason is primarily the low wave impedance pc of air. 
We consider horns as an acoustic matching device below. 

There are three basic types of loudspeaker in common use. The first is the 
dynamic or electromagnetic speaker, which is the most common of all. The 
second is a small piezoelectric loudspeaker that is often used to supplement 
dynamic speaker response at very high frequencies. The third is the horn 
loudspeaker, usually driven by a special electromagnetic driver. Electrostatic 
speakers in the form of rather large panels have also seen some use, but 
are not popular today. Because the piezoelectric speaker is very similar in 
behavior to a small dynamic speaker, we shall not consider it further here, 
but concentrate on dynamic and horn speakers. 
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10.10. Dynamic Loudspeakers 

The general design of a dynamic loudspeaker is sketched in Fig. 10.7(a) and 
is discussed in detail by Starobin (1997). The diaphragm is made of light 
cardboard-like material formed into a cone to give it stiffness and raise the 
frequencies of its vibrational modes so that it mostly vibrates as a single 
structure. The cone is supported by flexible corrugated rings around its edges 
and close to its center. At the center is rigidly affixed a coil of wire on a 
cylindrical former, which then moves in the small circular gap between the 
poles of a specially shaped permanent magnet with as high a magnetic field 
strength as possible. This coil is generally termed the "voice coil." 

The application of an oscillating electrical signal to the coil causes it to 
experience a force in the magnetic field, this force being along the axis of the 
cone. The force moves the coil, and with it the cone, but this motion in turn 
induces an electric potential across the coil in such a direction as to oppose 
the original applied voltage. The complete analysis is very complicated (see 
the books by Beranek 1954, 1998, Kinsler et al. 1982, or Olson 1957 in the 
references) and we will not go into it here. By careful design of cone mass, 
support stiffness, and associated damping, it is possible to get a smooth fre
quency response over quite a wide frequency range. 

Design of the speaker itself is only part of the problem, however. A 
loudspeaker in open air would radiate nearly equally from the front and rear 
surfaces of the cone and, since these are in opposite phase, they would tend 
to cancel at low frequencies. There are several alternative solutions. The first 

supporting ribs wooden cabinet 

(a) (b) 

Fig. 10.7. (a) Outline design of a dynamic loudspeaker. The cone is supported by 
flexible corrugated rings and drives a coil mounted between the poles of a cylin
drically symmetric permanent magnet. (b) Bass-reflex cabinet design. 
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is to fix the speaker in a large baffle, such as the wall of a room, so that rear 
sound does not interfere. The second is to enclose the rear of the speaker in a 
closed box lined with absorbent material such as felt, to eliminate the rear
radiated sound. Such an enclosure necessarily raises the resonance frequency 
of the cone and so may limit the low-frequency response. The third solu
tion is to use a vented rear-enclosure, called a "bass-reflex enclosure," with 
a resonance designed so as to extend the low-frequency response of the 
speaker. 

This design was discussed briefly in Section 9.1 and is shown in Fig. 
10.7(b). If C = V / pc2 is the analog capacitance of the box volume V and 
L = pl / S the analog inductance of the vent pipe which has length l and area 
S, then at frequency w the outflow U though the vent is related to the inflow 
U0 caused by displacement of the speaker cone by 

Uo 
U = l-LCw2 . (10.14) 

This means that, at frequencies above the box resonance w* = l/(LC) 112, 

the duct flow U is 180° out of phase with U0 and therefore in-phase with the 
flow driven by the cone into the outside air, so the two sources reinforce. 
At the box resonance the two flows differ by 90° in phase, so that there is 
still reinforcement and the resonant flow from the box vent will add to the 
total sound output. Below the box resonance, however, the net outflow 
U- U0 -+ U0LCw2 , so that there is a low-frequency cut of 12 dB/octave 
even if U0 does not vary with frequency. The dimensions of the enclosure 
must therefore be carefully tailored to the properties of the speaker, partic
ularly its cone resonance frequency, in order to provide a smooth extension 
of the low-frequency response. 

In the high-frequency regime, a loudspeaker set against a wall has a di
rectional response similar to that discussed in Section 7.6 for a circular disc 
set in an infinite plane baffle. Assuming that the speaker design gives a uni
form frequency response on-axis, the acoustic intensity I at an angle e to this 
axis is 

J(e) = 2JI(ka_sin8) I(O), 
ka Slll 8 

(10.15) 

where 11 is a Bessel function of order unity, a is the radius of the speaker 
cone, and k = w / c as usual. Because the speaker radius is typically 5 to 15 
em, this results in a significant weakening of off-axis high frequency sound. 
The usual solution is to filter off the high-frequency part of the signal and 
feed it to a separate smaller loudspeaker either mounted independently or 
sometimes supported in a small enclosure at the center of the larger speaker. 
Such an arrangement has other advantages, since a speaker can be more 
easily designed to function efficiently and without distortion over a limited 
frequency range. 
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10.11. Horn Loudspeakers 

As noted above, the efficiency of most loudspeakers is only a few percent, 
largely because of the rather low acoustic wave impedance of air. One way 
to improve efficiency is to use some sort of matching device, and that is what 
a diaphragm aims to do relative to the voice-coil driver. A horn loudspeaker 
achieves the same objective by using the properties of a horn to couple a 
compact and robust electromagnetic driver to a much larger area at the horn 
mouth (Salmon, 1997). The advantage of a horn loudspeaker over an ordi
nary diaphragm speaker is that it can be driven much harder, because the 
complex mechanics of a diaphragm are avoided. 

Wave propagation in horns was discussed in Sections 8.6-8.9. Here we 
limit ourselves to exponential horns, since they are the type most often used 
in loudspeakers. If the profile of horn radius is defined by 

a(x) = ao exp(mx), (10.16) 

where ao is the throat radius, x the distance measured from the throat, and m 
is called the flare constant, then equation (8.47) shows that waves with 
k < m or w <me are attenuated rather than propagating. Horns are there
fore generally deficient in low-frequency response unless they flare rather 
gently and so are very long. A finite horn has other problems, because waves 
are reflected to some extent from its open mouth end and cause resonances in 
its response. Putting these problems aside, the impedance gain in a horn with 
throat radius a0 and mouth radius a1 is ( a1 j a0) 2 , and the horn behaves like 
a diaphragm loudspeaker with diaphragm radius a1• The small compact 
dynamic driver, however, can be driven to high amplitude without mechan
ical problems, and the acoustic output can be high. Add to this the fact that 
the horn mouth can be made large without great difficulty, and we have a 
speaker that is rather highly directional and therefore suitable for large halls 
or for outdoor gatherings. In a more modest way, innovative designs have 
been developed in which the horn is folded to fit in a compact cabinet while 
still having a mouth diameter of up to 50 em, and these horns can be used to 
improve the low-frequency efficiency of domestic audio systems. 

10.12. Hydrophones 

While in principle hydrophones are similar to microphones or loudspeakers, 
there is a practical difference caused by the vastly greater wave impedance of 
water (1.54 x 106 Pa sjm3) than air (412 Pa sjm3). This means that, for a 
given sound intensity in water, the pressure is about 600 times higher and the 
particle velocity about 600 times lower than for the same sound intensity in 
air. Underwater transducers, therefore, can be much more robust devices 
than microphones or loudspeakers, and different designs are appropriate. A 
general discussion is given by Blue and van Buren (1997). 
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Two very successful designs make use of either bulk piezoelectric effects 
or bulk magnetostrictive effects. When an electric field is applied to a piezo
electric crystal or ceramic, its crystal structure distorts and the external di
mensions of a macroscopic piece of material change. The same thing occurs 
when a strong magnetic field is applied to a block of ferroelectric material 
such as an iron or nickel alloy. The actual dimensional change in a piezo
electric crystal is small, amounting to about 5 x 10-11 per volt/m for barium 
titanate or, since fields of 105 or 106 V/m can be applied to small crystal 
elements, a static dimensional strain of only about 5 x 1 o-5 . A typical value 
for the magnetostrictive strain of a ferromagnetic material is 10-4 per tesla, 
and applied magnetic fields will generally be only about 0.1 T so that the 
maximum strain is less than 10-5. 

In many applications, however, underwater transducers are required to 
operate at only a single frequency, for example to transmit sonar pulses, and 
mechanical resonance effects can be used to multiply the static response by a 
factor equal to the Q value of the resonator. Examples of such resonant 
structures are quarter-wave plates, with one free surface and the other sur
face bonded to a thin steel plate that in turn communicates the vibrations to 
the surrounding water. In the case of a piezoelectric transducer, the exciting 
voltage is easily applied between the metal plate and a thin metallic coating 
on the other surface of the crystal, while for a magnetostrictive transducer 
the material may be formed as an array of quarter-wavelength rods, each of 
which is surrounded by an exciting coil. Other arrangements using different 
aspects of the piezoelectric or magnetostrictive distortion in structures of 
different shapes have also been developed. 

As in the case of microphones and loudspeakers, the design of the two 
components is related, except that hydrophones for underwater sound re
ception as passive listening devices are required to be sensitive over a rather 
large frequency range, so that resonance enhancement cannot be used in 
these cases. 

10.13. Ultrasonic Transducers 

Because the transmission of ultrasound in gases is highly attenuated over 
quite small distances, most applications of ultrasound are for transmission in 
liquid or solid media. A particularly important application is medical imag
ing of the human body, but similar techniques are also used to search for 
defects in solid structures such as aircraft components (Papadakis, 1997). 

In most cases the transducer is required to act over only a very narrow 
frequency band, so that resonant enhancement techniques can be used, as for 
underwater sonar transmitters. Piezoelectric transducers made from barium 
titanate ceramic are often used in this application, the field orientation being 
chosen so that the transducer is driven in thickness mode, rather than in 
shear. The frequency in this application is very high, typically 1 MHz or 
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more, so that the wavelength in water is less than 2 mm. This is important, 
since the wavelength determines the spatial resolution of the image. Since the 
wavelength of sound in a solid is comparable with that in water, this implies 
that the active resonant parts of the transducer will also have dimensions in 
the millimeter or sub-millimeter range. For medical applications, the trans
ducer cannot generally be inserted into the body, but contact is made though 
a flat plate pressed against the skin, often with an oil film to eliminate air 
cavities, the presence of which would cause an impedance mismatch. 

10.14. Force Transducers and Accelerometers 

In vibrational problems, the quantities to be measured are mechanical force 
and the displacement of a solid object, rather than pressure and acoustic 
velocity. Some means is also required to impart mechanical vibration to the 
object under test. In most cases the frequency range of interest is similar to 
that for ordinary acoustics, but sometimes vibrations of infrasonic frequen
cies are important. The principles are very much the same as those used in 
the acoustic case, though details of the devices are different. 

To produce a controlled sinusoidal force for the mechanical excitation of 
an object, the simplest approach is to use an electromagnetic drive nearly 
identical to that used in loudspeakers and illustrated in Fig. 10.7(a). The 
difference is that, instead of the drive exciting a conical diaphragm, it is 
connected directly to the object under test. The connection usually needs to 
be through an adhesively bonded or bolted pin to prevent "chattering" or 
loss of contact during the vibration. For examination of small objects, the 
"shaker" drive is comparable in robustness to that for a normal large loud
speaker, but for larger of heavier structures a much more massive and pow
erful shaker may be required. The shaker must be made relatively heavy in 
all cases so that it is the test object that is shaken, rather than just the body 
of the shaker under the influence of the reaction force. 

While the force exerted by the shaker is proportional to the current flow
ing through its electrical circuit, this current is influenced by the motion of 
the coil itself and thus by the impedance of the object being examined. It 
is therefore desirable to have a separate transducer to measure the force 
actually applied. For this purpose a piezoelectric device is ideal, and all that 
is required is to sandwich a piece of appropriately polarized piezoelectric 
material, such as barium titanate ceramic, between two sections of the driv
ing pin so that it bears the full mechanical load, as shown in Fig. 10.8(a). 
Since a ceramic is brittle, the pin is specially weakened so that it will fail 
before the transducer is damaged. 

The vibration of a solid object is also most easily measured using a pie
zoelectric transducer. Such a device is generally an accelerometer and con-
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Fig. 10.8. Conceptual designs of mechanical transducers. (a) A force transducer; (b) 
an accelerometer; (c) an impedance head combining both devices. As shown here, all 
the piezoelectric elements are excited in compression mode, whereas practical designs 
sometimes arrange for the excitation to be in shear mode, with the elements disposed 
in a triangular array around the connecting axis. 

sists of a test mass mounted on a piezoelectric support that is itself connected 
rigidly to the test body, as shown in Fig. 10.8(b). Since the test mass is con
strained to move with the vibrating body, the force exerted on the piezo
electric element is proportional to the acceleration of this test mass and the 
same is then true of the electrical output signal. This signal can then be in
tegrated electronically to give either the velocity or the displacement. 

Devices are available that integrate both a force transducer and an accel
erometer into the same casing, as in Fig. 10.8(c), so that the two outputs can 
be combined to give the mechanical impedance (force/velocity) for the object 
under test. If the signal driving the shaker is wide-band noise, then the two 
outputs can be subject to further calculation using a fast Fourier transform 
(FFT) algorithm to give the impedance as a function of frequency, or " im
pedance spectrum." 

In recent times, optical devices such as laser interferometers have been 
introduced to provide a convenient non-contact means of measuring me
chanical vibration. It would take us too far afield to discuss the operation of 
these methods here, but details are available in books on laser techniques. 
Apart from the advantage of non-contact measurement, these techniques 
also allow a significant area of the test body to be viewed simultaneously and 
measurements made over the whole of this area, thus revealing the shapes of 
vibrational modes and other details of interest. 
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CHAPTER 11 

Sound in Concert Halls and Studios 

When music or speech is heard indoors, most of the sound waves that reach 
the listeners' ears have been reflected by one or more surfaces of the room 
or by objects within the room. Typically, sound waves undergo many re
flections before they become inaudible. It is not surprising, then, that the 
acoustical properties of the room play an important role in determining the 
nature of the sound heard by a listener. Performers in a concert hall, teachers 
in a classroom, actors in a theater, and speakers in a church or assembly hall 
all depend upon the acoustics of the room in which they attempt to com
municate with their audience. When we listen to recorded music or watch 
television or home movies in our living rooms, the acoustics of the room also 
has much to do with the quality of the sound we hear. Recording studios, 
large and small, have their own special acoustical requirements, and many 
musicians are creating small studios to make demonstration records. 

In this chapter, we will discuss some principles of sound fields in rooms, 
and see how they might apply to different types of rooms, including large 
concert halls, small studios, churches, and classrooms. We also consider 
some ways to control noise in listening rooms. 

11.1. Spatial Dependence of the Sound Field 

An environment in which the sound pressure is proportional to ljr (where r 
is the distance from the source) is called a free field. When a sound source is 
small enough to be considered a point source and is located outdoors away 
from reflecting objects, a free field results. Sound waves travel away from the 
source in all directions, the wave fronts having the shape of spheres, as dis
cussed in Section 6.2. The sound pressure p is halved when the distance is 
doubled. From the definition of pressure level in Section 6.3, we see that the 
sound pressure level decreases 6 dB each time the distance r is doubled. 
Figure 11.1 illustrates the way in which sound pressure and sound level de
crease with distance in a free field. 

T. D. Rossing et al., Principles of Vibration and Sound
© Springer Science+Business Media New York 2004
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p 

.__-------log r 

Fig. 11.1. The way in which sound pressure p and sound pressure level Lp decrease 
with distance r in a free field. 

Free-field conditions rarely occur indoors, except in reflection-free an
echoic rooms. (Anechoic means "echo-free"; this is generally achieved by 
covering the walls, ceiling and floor with wedges of sound-absorbing mate
rial, as in Fig. 11.2). 

In Chapter 6, we learned that the sound intensity I for free progressive 
waves is proportional to the square of the sound pressure (see Eq. 6.32). At a 
distance r from a sound source that radiates W watts of sound power in an 
anechoic field, the sound intensity will be given by 

w 
[=4~' nr 

Fig. 11.2. An anechoic room. 

(11.1) 
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Fig. 11.3. (a) Spherical sound waves in a free field. The power from source S is dis
tributed over a spherical surface 4nr2 in area. (b) Hemispherical sound waves from a 
source S on a hard reflecting surface. The power is distributed over a surface 2nr2 in 
area. 

since the power is distributed throughout the surface of a sphere of radius r. 
If the sound source is placed on a hard reflecting surface, the sound waves 
will be more nearly hemispherical, and the intensity will be given by I = 
W / 2nr2 . 

The sound intensity level (see Eq. 6.31), in both a free (spherical) field and 
a hemispherical field will decrease by 6 dB for each doubling of the distance 
r, although it starts 3 dB higher in the hemispherical case. Spherical and 
hemispherical sound fields are illustrated in Fig. 11.3. 

11.2. Time Dependence of the Sound Field 

Sound reflections do much to determine the acoustical characteristics of a 
room. We generally do not sense the individual reflections, and it is conve
nient to characterize the time dependence of the sound we hear in terms of 
direct, early, and reverberant sound. In a large room, the sound waves that 
travel directly to the listener (at about 343 m/s) may reach the listener's ears 
after a time to of anywhere from 20 to 200 ms, depending upon the distance 
from the source to the listener. A short time later, the same sound will reach 
the listener from various reflecting surfaces, mainly the walls and ceiling. 
In Fig. 11.4 these reflections are shown arriving with various time delays 
t1 , t2 , t3, etc. The first group of reflections, reaching the listener with about 
50- 80 ms of the direct sound, is often called the early sound. 

After the first group of reflections, the reflected sounds arrive thick and 
fast from all directions. These reflections become smaller and closer together, 
merging after a time into what is called reverberant sound. If the source 
emits a continuous sound, the reverberant sound builds up until it reaches an 
equilibrium level. In the case of an impulsive sound, the decay begins im
mediately, and there is no equilibrium level. 
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Fig. 11.4. Paths of direct and reflected sound from source to listener with corre
sponding time delays for a sound impulse. 

11.2.1. Direct and Early Sound: The Precedence Effect 

Our auditory system has an uncanny ability to determine the direction of a 
sound source, even in the presence of many distracting sounds. For sounds 
of low frequency, localization depends mainly on the observation of a very 
slight difference in the time of arrival (or the phase of steady sounds) at our 
two ears. For sounds of high frequency (above about 1000 Hz), the differ
ence in sound level at our two ears, due to the shadow cast by our head, 
provides the main clue. 

Imagine that the sound source emits an impulsive sound. Our ears will 
receive not only the direct sound but several reflections that closely follow 
the direct sound. The spectrum and time envelope of these reflected sounds 
will be more or less identical to those of the direct sound, and if they arrive 
within about 50 to 80 ms of the direct sound, the ear does not hear them as 
separate sounds. Rather, they tend to reinforce the direct sound, a fact that is 
especially important to listeners located quite a distance from the source. 
(For rapidly varying sound, such as speech, the limit is probably around 
50 ms, but for more slowly varying music, the limit is more like 80 ms). 
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Quite remarkably, however, the auditory processor deduces the direction 
of the source from the first sound reaching the ears, which it interprets as 
following the direct path, and ignores successive sounds arriving a few mil
liseconds later from reflecting surfaces. This remarkable ability of our audi
tory system is called the precedence effect (other names are the "law of the 
first wavefront" and the "Haas effect"). The source is perceived to be in the 
direction from which the first sound arrives provided that ( 1) successive 
sounds arrive within about 35 ms; (2) the successive sounds have spectra and 
time envelopes reasonably similar to the first sound; and (3) the successive 
sounds are not too much louder than the first. 

As a result of studying 76 of the world's leading concert and opera halls, 
Beranek (1996) concluded that a concert hall can be considered "intimate" if 
the delay time between direct and first reflected sound is less than 20 ms. If 
the auditorium has the traditional rectangular ("shoebox") shape, this first 
reflection for most listeners will come from the nearest side wall, although 
listeners located near the center may receive their first reflection from the 
ceiling. In some concert halls, a portion of the audience will be too far re
moved from both ceiling and side walls to receive early reflections within the 
desirable time interval; in those case reflecting surfaces of some type are 
often suspended from the ceiling. Studies have shown that early reflections 
from side walls are not equivalent to early reflections from the ceiling or an 
overhead reflector, however. One study showed a high preference for concert 
halls with ceilings sufficiently high that the first lateral reflection reaches the 
listener before the first overhead reflection (West, 1996). If the total energy 
from lateral reflections is greater than the energy from overhead reflections, 
the hall takes on a desirable "spatial responsiveness." Apparently our two 
ears prefer to receive slightly different sounds ("binaural dissimilarity") 
rather than identical sounds, as they will when the first reflection comes from 
directly overhead. 

11.2.2. Reverberant Sound 

Instead of the impulsive source illustrated in Fig. 11.4, let us switch on a 
steady source for a time T, after which it is switched off. The growth and 
decay of the sound levels at the source and listener are shown in Fig. 11.5. 
The listener's sound level increases in small steps as the direct sound D, and 
then the reflections 1, 2, etc. arrive. After the first few reflections, the indi
vidual steps are difficult to observe, and the sound builds up to its reverber
ant level. The reverberant level is reached when the rate at which sound 
energy is supplied by the source (source power) is equal to the rate at which 
sound is absorbed. 

When a steady sound is switched off, the sound pressure at a typical 
listener location dies away approximately exponentially, which leads to a 
nearly linear decay of the sound pressure level. The time it takes the level to 
decrease 60 dB is generally called the reverberation time of the room. 
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Fig. 11.5. Growth and decay of reverberant sound in a room: D represents direct 
sound; 1, 2, 3, etc. are early reflections. 

In principle, it is easy to determine the theoretical reverberation time of a 
room, in which the sound is uniformly distributed. The sound energy stored 
in the room depends on the power of the source and the volume of the room; 
the rate at which that energy is absorbed depends on the area of all surfaces 
and objects in the room and their absorption coefficients. In a bare room, 
where all surfaces absorb the same fraction of the sound that reaches them, 
the reverberation time is proportional to the ratio of the volume to the area 
of sound-absorbing surface (Sabine, 1922). 

'T' K x volume 
.160 = area 

(11.2) 

In SI units K = 0.161, so T60 = 0.161 V/A in a hypothetical room with A 
square meters of perfect absorber (such as an open window). (When V and A 
are expressed in ft3 and ft2 , then T6o = 0.049V/A.) In a real room, we can 
compute the Sabine reverberation time by comparing the absorbing power of 
each surface to that of the window in our hypothetical room. The window is 
assumed to absorb all the sound incident on it, so its absorption coefficient a 
is assumed to be 1. A Sllfface having an area S and an absorption coefficient 
oc has a total absorption given by A = Sa. The total absorption in a room 
is found by adding up the contributions from each surface exposed to the 
reverberant sound: 

(11.3) 

Absorption coefficients for various materials at six different frequencies are 
given in Table 11.1. Note that some surfaces (e.g., carpet on concrete) 
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Table 11.1. Absorption coefficients for various materials 

Frequency (Hz) 

Material 125 250 500 1000 2000 4000 

Concrete block, unpainted 0.36 0.44 0.31 0.29 0.39 0.25 
Concrete block, painted 0.10 0.05 0.06 O.o7 0.09 0.08 
Glass sindow 0.35 0.25 0.18 0.12 O.o7 0.04 
Plaster on lath 0.14 0.10 0.06 0.05 0.04 0.03 
Plywood paneling 0.28 0.22 0.17 0.09 0.10 0.11 
Drapery, lightweight O.D3 0.04 0.11 0.17 0.24 0.35 
Drapery, heavyweight 0.14 0.35 0.55 0.72 0.70 0.65 
Terazzo floor 0.01 0.01 O.D2 0.02 0.02 0.02 
Wood floor 0.15 0.11 0.10 0.07 0.06 O.o7 
Carpet, on concrete 0.02 0.06 0.14 0.37 0.60 0.65 
Carpet, on pad 0.08 0.24 0.57 0.69 0.72 0.73 
Acoustic tile, suspended 0.76 0.93 0.83 0.99 0.99 0.94 
Acoustic tile, on concrete 0.14 0.20 0.76 0.79 0.58 0.37 
Gypsum board, 12 mm 0.29 0.10 0.05 0.04 0.07 0.09 

absorb sounds of high frequencies well but have little absorption at low fre
quency (since the carpet is nearly transparent to sounds with long wave
length), while others (e.g., window glass) absorb low frequencies much better 
than high frequencies (glass sheets flex at low frequency). This affords an 
architect the opportunity to design an auditorium to have the desired rever
beration time over a wide range of frequency. 

11.2.3. Absorption by Air, by People, and by Seats 
In a large auditorium, the air can contribute a substantial amount to the 
absorption of sound at high frequencies. The absorption of air depends upon 
the temperature and relative humidity (see Section 6.5), and an additional 
term m V, proportional to the volume, is generally added to the total ab
sorption A. The constant m is given in the last two lines of Table 11.2. Also 

Table 11.2. Sound absorption by people and seats, and air absorption 

Frequency 

Material 125 250 500 1000 2000 4000 8000 Unit 

Wood or metal seats, 0.014 0.018 0.020 0.036 0.035 0.028 m2 
unoccupied 

Upholstered seats, 0.13 0.26 0.39 0.46 0.43 0.41 m2 
unoccupied 

Audience in upholstered 0.27 0.40 0.56 0.65 0.64 0.56 m2 
seats 

Air absorption per m3 

20aC, 30%RH 0.012 O.D38 0.136 m-1 
20°C, 50% RH 0.010 0.024 0.086 m-1 
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given in Table 11.2 are values of absorption (in m 2) that should be added to 
the total absorption of the walls, ceiling, and floor to take into account the 
absorption by seats and people. Note that an occupied seat absorb pretty 
much the same amount of sound as an unoccupied upholstered seat, since 
the occupant covers up most of the upholstered surface. (Note: Values of 
sound absorption are given in m2 ; to convert to ft2 , multiply by 10.8. Values 
of air absorption are given in m- 1; to convert to n-1, divide by 3.3.) 

11.3. Sound Fields in Real Rooms 

The rather straightforward calculation of reverberation time described in the 
preceding section is based on the idealization of Sabine (1922) that sound 
"fills" a reverberant room in such a way that the sound energy is uniformly 
distributed throughout the room. This approximation applies quite well to 
rooms whose dimensions are larger than the sound wavelength, whose ab
sorbing surfaces are well distributed throughout the room, and whose total 
absorption is not too great. Within such a room, the sound field can be re
garded as a superposition of freely propagating plane waves, no two of 
which are traveling in the same direction. Such a field is known as a diffuse 
sound field. 

When sound waves fall on a surface, their energy is partially reflected and 
partly absorbed (see Chapter 6). For most surfaces, the absorption coeffi
cient (giving the portion that is absorbed) is dependent on the angle of inci
dence. In a reverberant room with a diffuse sound field, the sound waves are 
randomly incident upon absorbing surfaces, and it is possible to define a 
statistical absorption coefficient rx. Most published values of sound absorp
tion coefficients (including those in Table 11.1) are determined by measuring 
the sound decay rate in a highly reverberant room with and without a sam
ple of the material. Absorption coefficients thus determined generally exceed 
the true statistical (energy) absorption coefficient. Absorption coefficients 
determined from decay rates are sometimes called Sabine absorption co
efficients. 

Diffraction of the sound field incident on an absorbing patch of finite size 
in the test chamber probably accounts for most of the difference between the 
statistical absorption coefficient and the Sabine absorption coefficient. In 
order to minimize the error, the absorbing sample should be as large as 
possible, and moving reflectors should be used to help ensure diffuseness of 
the sound field (Embleton, 1971 ). Another complicating factor is the de
crease in sound energy density near a highly absorptive surface, so that a 
diffuse field does not exist. In the extreme case where the absorption coeffi
cient is unity, there would be no waves from the direction of this surface, so 
the energy density and sound pressure level near the surface would fall by 3 
dB compared to some average point. 

Other equations have been proposed as alternatives to the Sabine equa-
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tion for calculating reverberation times. One is that proposed by Eyring 
(1930) which is based on the mean free path between reflections. The mean 
distance traveled between successive reflections from the walls of a rectan
gular enclosure is L = 4 VIS, so the number of reflections per second is 
N = cS I ( 4 V). With each reflection, the sound is reduced in energy by a 
factor (1 -a), where a is the average random~incidence absorption coeffi
cient of all surfaces. The total attenuation of the energy over a time interval 
equal to the reverberation time T6o is ( 1 - a) NT60 , which results in a reduc
tion of the sound level by 60 dB, so 10 log[(1 - a)NT60 ] = -60. This leads to 
the so-called Norris-Eyring reverberation equation (Norris was responsible 
for the derivation of it): 

4V 
T6o =- . 

cSln(l- a) 
(11.4) 

For live rooms with a« 1, the Norris-Eyring equation gives the same result 
as the Sabine equation (as can be seen by expanding the natural logarithm). 
For rooms with one or more very absorbing surfaces, the Norris-Eyring 
equation usually gives a value of T60 closer to the observed value, and the 
extra effort is justified. Further discussion of refinements in the reverberation 
formula can be found in Cremer, Muller, and Schultz (1982), in Pierce 
(1981), and in a number of other books on architectural acoustics. 

11.3.1. Coupled Rooms 

Some large auditoria, churches, and concert halls, although they comprise a 
single air volume, are divided architecturally into several subspaces, so the 
sound energy will not be uniformly distributed, especially during the buildup 
and decay of the sound field. In the example shown in Fig. 11.6, the source 
room with a volume V1 and the second room with a volume V2 are con
nected by an opening with area S. If A 10 denotes the equivalent absorption 
of area of room 1 (except for the opening S) and A20 denotes the equivalent 
absorption of room 2 (without the opening), then the respective amounts of 

Qj )) '--

vl s v2 
w 

-

Fig. 11.6. Two rooms coupled by an opening with area S. 
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sound power actually absorbed in the two rooms (assuming diffuse sound 
fields) are A 10E1cj4 and A2oE2c/4, respectively, where E1 and E2 are the 
energy densities in the two rooms. The power transferred from room 1 to 
room 2 is SE1cj4 and that transferred from room 2 to room 1 is SE2c/4. If 
the source power is W, we can write power balances for the two rooms as: 

W- (cj4)AJOE1- (c/4)SE1 + (cj4)SE2 = 0 

(c/4)SE1 - (cj4)A2oE2- (cj4)SE2 = 0. 

(11.5) 

( 11.6) 

Letting An = A 10 + S and A22 = A 2o + S (which means including, as 
part of the absorption in each room, the coupling area S with absorption 
coefficient ofunity), we can write (11.5) and (11.6) in the form: 

4Wjc = AuE1- SE2 (11.7) 

(11.8) 

Solving these equations gives the energy density in room 1 containing the 
source: 

E1 = 4PJ/c . 
Au- S 2/A22 

(11.9) 

If these two rooms had been treated as a single space, we would have an 
energy density 

E= 4PJ/c 
A10 +A2o 

(11.10) 

The denominator of equation (11.9) can be written (A10 +A2oS/A22). 
Comparing this with the denominator of (11.10), we see that the equivalent 
absorption area A20 of room 2 does not enter into the energy balance in its 
full amount but is diminished by the factor S / A22, which can be called the 
"coupling factor" from room 2 to room 1. This factor, which characterizes 
the difference between the "single room" and "coupled room" analyses, de
pends not only on the ratio of the coupling area to the total area of the room 
but also on the absorption coefficients of all the surfaces in that room. 

If A2o » S, the resultant absorption area for room 1 is A10 + S, which 
means the coupling area acts as an open window that must be added to the 
rest of the absorption in room 1. On the other hand, if A20 « S, the coupling 
factor differs so little from unity that A 2o can be added directly to A10, 
effectively treating the two rooms as one. The statistical treatment of coupled 
rooms can be extended to cases in which the coupling area is not an open 
window but a thin wall (or curtains or doors) having a transmission coeffi
cient less than one (Cremer et al., 1978). 

11.3.2. Reverberation in Coupled Rooms 

The energy (power) balance equations, (11.5)-(11.8), pertain to the steady 
state. If we set W = 0, the energy densities E 1 and E2 in the two rooms de-
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~----------------------------! 

Fig. 11.7. Decay of reverberant sound in a room with different reverberation times in 
two coupled subspaces. 

crease with time and we can write 

dE, c 
- = -- (AuEI - rSE2) 
dt 4V1 

(11.11) 

dE2 c 
- = -- ( -rS12E1 + A22E2) 
dt 4V2 ' 

(11.12) 

where r is the transmission coefficient It/ Io for the common wall, as defined 
by equation (6.40). It can be shown, as discussed by Cremer et al. (1978), 
that the solutions to these equations can lead to compound reverberation 
decay curves that have two different slopes due to different reverberation 
times in the two coupled rooms. Such a decay curve is shown in Fig. 11.7. A 
listener might tend to characterize the hall as "dry" on the basis of the more 
rapid initial decay rate (when the sound is loudest), even though the full 
60-dB decay time is fairly long. For this reason, the early decay time is an 
important parameter in concert halls and auditoria. Furthermore, concert 
halls are usually provided with irregular surfaces (statues and other decora
tions served well in classic concert halls) to help promote diffusion of sound 
throughout the hall. 

In a study of22 European concert halls, Schroeder et al. (1974) found that 
the greater the early decay time, the greater the audience preference for the 
hall, up to a reverberation time (determined from extrapolating the early 
decay rate) of 2 s. Above 2 s, the preference for the hall decreased with 
increasing reverberation time. 
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11.4. What Makes Good Acoustics? 

Since the reverberation time and the level of the reverberant sound are 
strongly interdependent, the optimum reverberation time is a compromise 
between clarity (requiring a short reverberation time), loudness (requiring a 
high level of reverberant sound), and liveness (requiring a long reverberation 
time). The optimum reverberation time will depend on the size of the audi
torium and the use for which it is designed. An auditorium intended pri
marily for speech should have a shorter reverberation time than one intended 
for music. Figure 11.8 indicates reverberation times considered desirable for 
auditoriums of various sizes and functions. 

The acoustic requirements for concert halls, opera houses, lecture halls, 
theaters, and churches are quite different, but there are a number of common 
requirements that should be met: 

1. Adequate loudness. Everyone must be able to hear the speaker or per
former. The room should not be too large or have excessive absorption. 

2. Uniformity. Listeners in all parts of the room should hear as nearly the 
same sound as possible. There must be a sufficient number of sound dif
fusing surfaces to avoid "dead spots." 

3. Clarity. There must be sufficient absorbing surfaces that the reverberant 
sound does not mask following sounds. 

4. Reverberance or liveness. The listener should feel bathed in sound from all 
sides, but at the same time be able to localize the sound source. 

1 
.5 
u 

·E 
1::: 
0 

] 
~ u 

1¥ 

Cubic meters 

Room volume in thousands of cubic feet 

Fig. 11.8. Desirable reverberation times for auditoriums of various sizes and for var
ious functions. 
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100 200 soo 1000 2000 
/(Hz) 

Fig. 11.9. Variation of reverberation time with frequency in a good concert hall. 

5. Freedom from echoes. Reflected sound should arrive early enough to 
reinforce the direct sound but not be perceived as a separate echo. 

6. Low level of background noise. The noise from heating and ventilating 
systems and from external sources should be kept very low. 

A feeling of liveness or reverberance is especially important at low fre
quency to give support to bass notes. Fortunately, many building materials 
have lower absorption coefficients at low frequencies. Figure 11.9 shows how 
the reverberation time may vary with frequency in a good concert hall. 

Several studies have stressed the importance of having sufficient reflected 
sound arriving from the sides. Such lateral reflections arriving with time 
delays of from 25 to 80 ms add to the feeling of spaciousness, whereas 
overhead reflections during the same period add mainly to the early sound 
(Barron, 1971; Reichardt et al., 1975). 

11.5. Measuring Sound Absorption Coefficients 

When sound waves fall on a surface or object, their energy is partially 
reflected and partially absorbed, as discussed in Chapter 6. The sound
absorbing efficiency of the surface is given in terms of an absorption coeffi
cient rx. A more detailed analysis, however, shows that there are several 
different absorption coefficients. 

The sound absorption coefficient for a given angle of incidence rxo is the 
ratio of the sound energy absorbed by a surface to the sound energy incident 
upon that surface at a given angle fJ. 

A statistical sound-absorption coefficient rx is defined as the ratio of sound 
energy absorbed to the sound energy incident in a perfectly diffuse field, 
which implies a random distribution of incidence angles. 

The Sabine sound-absorption coefficient if.sab is the ratio of absorbed en
ergy to incident energy in a reverberation room with and without a patch of 
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the absorbing material. A well-designed reverberation room has a nearly 
diffuse sound field, and yet asab differs slightly from the true statistical co
efficient a since the absorbing material itself distorts the diffuse field, mainly 
due to diffraction (Embleton, 1971). 

11.5.1. Measuring Absorption Coefficients in a Reverberation Room 

Reverberation rooms general have stationary irregular reflectors and moving 
vanes to redistribute the sound energy continuously among the modes of 
vibration to help ensure diffuseness of the sound field except in the vicinity of 
highly absorbing surfaces. The area of absorbing material used to measure 
its absorption coefficient is a matter of compromise: if the area is large, its 
absorption becomes too great, and the incident sound field is not sufficiently 
diffuse. If the area is too small, then the correction of the measured values 
to account for diffraction becomes large. In general, small test samples give 
larger absorption coefficients than large samples. These considerations argue 
for large reverberation rooms with large patches oftest material (typically of 
about 7-12m2). 

11.5.2. Measuring Absorption Coefficients in an Impedance Tube 

The normal impedance of a material can be measured by placing a sample in 
a heavy-walled tube and noting its effect on the sound field. Generally a 
sound source is placed at one end of the tube and the sample at the other. A 
movable microphone is used to determine the sound pressure as a function of 
position. Such an instrument is called an impedance tube. Measurements are 
restricted to the frequency range over which plane-wave propagation is as
sured (see Section 8.1). For a cylindrical tube, this is given by f = 0.586cjd, 
where d is the diameter. 

Two examples of impedance tubes are shown in Fig. 11.1 0. In both tubes, 
a small loudspeaker is at one end and the sample to be measured is mounted 
at the other end. In the first one, a small probe tube is used to sample the 
sound pressure within the main tube and transmit this pressure to a micro
phone. The microphone assembly is moved along a scale to determine the 
position. In the second tube, a sound level meter is placed in a sliding section 
of a tube to determine the sound pressure level at various positions along the 
impedance tube. 

In both tubes the positions of pressure maxima and minima are deter
mined, along with sound pressure levels. The ratio of maximum to minimum 
sound pressure is the standing wave ratio n. The normal incidence sound 
absorption a9o is given by: 

( n- 1)2 (lOL/20 _ 1)2 

a9o = 1 - n + 1 = 1 - IOL/20 + 1 . (11.13) 
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Fig. 11.11. Relation of sound absorption coefficient at normal incidence 1X90 to the 
difference L in decibels between the maximum and minimum sound levels. 

A graph of ago as a function of standing wave ratio L in decibels (20 log10 n) 
is given in Fig. 11.11. 

The statistical absorption coefficient of porous materials may be calcu
lated either from a measurement of the normal impedance using an imped
ance tube or a measurement of the material flow resistance. 

If a constant differential pressure is imposed across a layer of porous 
material of open cell structure, a steady flow of gas will be induced through 
the material. Provided that the flow velocity is small, the differential pressure 
p and the induced normal flow velocity U (normal velocity per unit surface 
area) are linearly related. The ratio of differential pressure to normal velocity 
is known as the flow resistance Rr of the material. Rr = pAj U, where A is 
the sample area. 

11.6. Standing Waves and Normal Modes 

Theoretical derivations of the Sabine reverberation equation (and similar 
equations) are generally based on a ray model of sound, in which sound 
rays are assumed to travel outward from the source; each time they en
counter a boundary, they are partially reflected and partially absorbed. After 
a large number of reflections, the average energy density becomes the same 
throughout the room, and all directions of propagation are equally prob
able (that is, the sound field becomes diffuse). This model oversimplifies the 
behavior of sound in a room, particularly at low frequencies, because it 
neglects the existence of normal modes, the distribution of absorbing mate
rials, and the shape of the room. In some rooms, particularly in small ones, 
these factors may become important. 
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The wave equation can be readily solved for simple enclosures, such as 
rectangular rooms, and real rooms can often be approximated by a simple 
enclosure. Solutions to the Helmholtz equation (see section 6.2) are in
terpreted as room modes. In a large room, the frequencies of these modes are 
packed closely together, but in a small room they can sometimes be observed 
individually. 

The sound pressure in a rectangular enclosure with sides of lengths a, b, 
and c is given by equation (6.55), and the normal mode frequencies by 
equation (6.56). A room mode is designated by (l,m, n). Modes in which two 
of the integers l, m, and n of that equation are zero are called axial modes, 
because they consist of standing waves propagating back and forth parallel 
to pairs of room boundaries and being reflected by another pair. Modes in 
which only one of the integers l, m, and n is zero are called tangential, and 
they consist of waves reflecting off two pairs of surfaces (like balls on a bil
liard table). Modes in which none of the integers l, m, and n is zero are called 
oblique modes. In general, axial modes store more acoustic energy than the 
other types because the sound waves travel farther between reflections. 

Contours of equal sound pressure for the (2, 0, 0) axial mode and the 
(3, 2, 0) tangential mode are shown in Fig. 11.12. Note the pressure maxima 
along the boundaries and the pressure maxima that occur in the corners. 
Pressure maxima occur in the corners for all room modes, which suggests 
corners as good locations for sound absorbers. Placing a loudspeaker or 
microphone near a corner maximizes the response, but only at such low fre
quencies that the distance to the corner is smaller than a quarter wavelength 
or so. 

11.7. Small Rooms and Studios 

From (6.56) it is easy to see that the frequency distribution of the modes of a 
room is determined by its dimensions. Distributions of mode frequencies for 
a cubic and a rectangular room are compared in Fig. 6.3. The cube has a 
very "peaky" response with many coincident modes, whereas a rectangular 
room with dimensions in the ratio 1 : 2: 3 has a more even spread of reso
nances. Even better mode distribution can be obtained by avoiding integer 
multiples entirely. The golden ratio 1.618: 1:0.618 gives a very smooth re
sponse. Rooms with oblique walls do also, but rectangular rooms are gen
erally preferred for other reasons. As frequency increases, the number of 
modes greatly increases. The number N(f) of modes with frequencies within 
the range 0 to an upper limit I is given approximately by the expression 

4n (1)3 n (1)2 L' I N(f) ~ - V - +-S - +--, 
3 c 4 c 8c 

(11.14) 

where Vis the volume of the room, Sis its area, L' = 4(L + W +H) is the 
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Fig. 11.12. Contours of equal sound pressure in a rectangular room. (a) (2, 0, 0) axial 
mode; (b) (3, 2, 0) tangential mode. Dashed lines represent nodes. 

sum of the lengths of all the edges of the room, and c is the speed of sound 
(Kuttruff, 1997). 

When the resonance peaks are closer together than the bandwidth of each 
peak, the resonances are less evident. Since the average spacing decreases 
with increasing frequency, there is a frequency above which the resonance 
peaks can be regarded as a smoothed-out continuum (Schroeder, 1954). This 
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frequency, called the Schroeder cutoff frequency, is given by 

c 160 ( 3 'T' )1/2 
fsc= 4Vlnl0 (11.15) 

Above the Schroeder cutoff frequency, a sum over mode indices can be 
approximated by an integral (Pierce, 1981). 

In a small room, such as a home listening room, walls and ceiling are 
generally so close to the listener that many reflections arrive within a few 
milliseconds after the direct sound. It is, therefore, not so important to dis
tinguish between early reflected sound and reverberant sound. Achieving 
"intimacy" (which depends upon a short time delay between direct and first 
reflected sound) is no problem at all in a small room. In fact, the inherent 
intimacy in a small room makes it difficult to simulate the acoustics of a 
larger space. 

We can walk into a strange room blindfolded and rather quickly and 
accurately estimate its size by listening to the sound in the room. Presum
ably, when reflected sounds follow the direct sound with little delay, an 
auditory impression of smallness is created. Conversely, when the reflections 
arrive with a distribution in time and space that is characteristic of a large 
concert hall, a feeling of spaciousness is created. 

In addition to home listening rooms, the design of home theaters, small 
sound-recording studios and their control rooms requires the application of 
the acoustics principles we have discussed. In sound-recording studios care
ful control of reverberation time and diffusion are important as is noise iso
lation. In order to lengthen the initial time delay in the control room, so that 
the sound mixer can hear the sound from the studio more clearly, early 
reflections from the front end of the control are sometimes minimized so that 
the first reflection comes from the rear of the room. Such an arrangement 
is often called a live-end dead-end (LEDE) control room in which the 
front half of the room is very absorptive and the rear half as diffusive as 
possible. 

11.8. Sound Diffusers and Absorbers 

The sound we hear in a listening room is a combination of the direct sound 
and reflections from many surfaces in the room. In a large auditorium, re
verberant sound comes from a complex mixture of reflections from many 
surfaces, and there is adequate delay between the direct and reflected sound. 
In small rooms, the sound is often absorbed before there is a uniform mix
ture, and sound diffusors are especially important. 

Geometric shapes attached to room surfaces help to scatter and diffuse 
the sound. Rather than reflecting sound in a single direction, as a flat surface 
does, triangular shapes, rectangular protrusions, and semi-cylindrical sur
faces scatter sound in many directions, resulting in a diffuse sound field, even 
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Fig. 11.13. Cross section of a grating (quadratic residue) sound diffuser. 

in a small room. Using the finite difference time domain method, Yokota et 
al. (2002) have calculated how various types of diffusing reflectors increase 
the diffusivity of a rectangular room. A grating of slits can also effectively 
diffuse sound due to diffraction. 

In 1975, Schroeder suggested the use of phase-grating sound diffusers. 
The theory of phase-grating sound diffusers is based on number theory; 
Schroeder used a scheme called maximum-length sequences, a stream of 
fixed-length digital 1 s and 0 s with some interesting statistical properties. 
Based on this theory, quadratic-residue diffusers and primitive-root diffusers 
have been developed. A cross section of a phase-grating sound diffuser con
sisting of a structure with a sequence of wells to scatter sound within a cer
tain frequency band is shown in Fig. 11.13. The sequence is repeated along 
the diffusers. The maximum depth of the wells determines the effective low
frequency limit of the diffusers. The well depth should be 12 times the 
wavelength at the lowest frequency. The highest frequency is determined by 
the well width, which is half a wavelength at the highest frequency. The 
actual sequence of wells is determined by number theory (Schroeder, 1986). 

Sound absorption in a room depends mainly upon the surface area of the 
walls, ceiling, and floor, and the nature of the surfaces. Porous materials, 
such as drapery, carpets, glass fiber, and acoustical tile convert acoustic 
energy to heat as the vibrating air particles interact with the tiny fibers in the 
absorber. Porous materials absorb very well at high frequency (Table 11.1 ). 
Panels of wood, glass, gypsum board, and even plaster on lath, on the other 
hand, flex in response to sound waves of long wavelength and thus absorb 
rather well at low frequency but have very little absorption at high fre
quency. 

Another type of absorber, which depends upon the principle of the 
Helmholtz resonator (section 9.1 ), can provide absorption over a selected 
frequency band. A Helmholtz resonator absorbs sound energy near its re
sonance frequency. One way to achieve this is to cover cavities with a 
perforated panel. The resonance frequency is given approximately by 
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f = 200tp112 jd, where p is the perforation percentage (hole area/panel 
area x 100), t is the effective hole length with the correction factor (panel 
thickness+ 0.8 x hole diameter), and dis the depth of the air space. 

11.9. Rooms for Worship 

Churches, temples, and synagogues share many of the same requirements for 
good acoustics discussed in section 11.4. Figure 11.7 illustrated how different 
the optimum reverberation time is for speech and organ music. Obviously 
some compromise is called for in church design. Most of the old cathedrals 
in Europe have long reverberation times, as the spoken word was gener
ally not as important as it is in most contemporary worship. In many old 
churches (especially in northern Europe), the pulpit is strategically placed 
in the center of the congregation and has a large canopy to reflect the 
preacher's voice. 

It is important that the background-noise level in churches be kept as low 
as possible in concert halls. Heating, ventilating, and air-conditioning 
(HV A C) systems must be designed with great care. Electronic reinforcement 
of sound is often necessary in larger churches, although it too frequently is 
overdone. Smaller churches should be able to function without electronic 
reinforcement except, perhaps, sound reinforcement for the hard of hearing. 

11.10. Classrooms 

The need for good acoustics in classrooms is simple: students must be able to 
understand the teacher and each other. Providing adequate speech intelligi
bility is a matter of controlling three types of classroom sound: reverbera
tion; heating ventilation and air-conditioning (HV A C) noise; and noise from 
outside the classroom. 

Studies have shown that reverberation times in a quiet classroom should 
be 2 s or less in order to avoid speech interference. Special con~ideration 
should be given to the speech intelligibility range, 500 to 4000 Hz. Deciding 
on the maximum acceptable noise level of classroom HV AC systems is crit
ical. According to the American National Standards Institute (ANSI), the 
noise rating (NC) for lecture halls and classrooms should be NC-25 to NC-30. 
A teacher using a normal voice will produce a sound level of about 46 dB at 
the ears of a student 30 ft away. NC-30 corresponds roughly to a back
ground noise level of about 36 dB, which should produce the 10-dB differ
ence in speech and noise level required for speech intelligibility. Setting cri
teria for exterior noise is somewhat more complex. Traffic noise tends to be 
more or less constant, and the criteria for HV AC noise are appropriate. 
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Requirements for intermittent noise, such as aircraft flyovers, can be slightly 
less stringent. Speech interference levels (SIL) of SIL-50 are generally ac
ceptable; these are roughly equivalent to NC-50. Lower levels are clearly 
desirable if learning is to be maximized. The Department of Education, the 
Acoustical Society of America, and other professional organizations have 
organized several conferences on the important topic of classroom acoustics, 
and increased attention will be paid to it in the future (ASA 2000, 2003). We 
urge readers of this book to become activists in their own communities. 
Students deserve the opportunity to learn in quiet classrooms! 

11.11. Walls and Noise Barriers 

When an airborne sound wave strikes a solid wall, the largest part is re
flected, whereas smaller portions are absorbed and transmitted through the 
wall. The coefficients of reflection, absorption, and transmission are deter
mined by the physical properties of the wall and by the frequency of the 
sound and its angle of incidence to the wall (see section 6.4). 

The transmission coefficient r is defined as the ratio of transmitted to 
incident intensity 

r = h/Io (11.16) 

and the transmission loss TL in decibels as 

(11.17) 

Sound waves striking a wall can bend it, shake it, or both. (These motions 
can be described as flexural or compressional waves in the wall). At low 
frequency, the sound transmission loss in a solid wall follows a mass law; 
it increases with increasing frequency and mass density M of the wall. For 
waves that approach a wall of large dimensions with normal incidence, the 
transmission loss is 

TL(Oo) = 10 log1o ( 1 + ~~t), (11.18) 

where M is the wall mass density (in kg/m2) and f is the frequency (in 
hertz). In a room, it is a good approximation to assume the sound waves of 
low frequency to be randomly distributed over all angles from 0 to 80°. This 
decreases the transmission loss by about 5 dB, so that 

( nMf) TL = 10log10 1 + 400 - 5. (11.19) 

From these formulas it is clear that the common wall between adjacent 
rooms should be as heavy as possible, and that low-frequency sounds are the 
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Fig. 11.14. Transmission loss TL of a wall as a function of mass and frequency. Note 
the drop in TL near the critical frequencies. (From Rossing et al., 2002. Reprinted 
with permission from Addison-Wesley.) 

most difficult to block (no surprise if you have heard sound from a neigh
bors' stereo through a common wall). 

Transmission loss for a wall may fall considerably below that predicted by 
the mass law, due to any of the following effects: 

1. Wall resonances that occur at certain frequencies; 
2. Excitation of bending waves at the critical frequency, where they travel at 

the same speed as certain sound waves in air; 
3. Leakage of sound through holes and cracks. 

The transmission losses for walls of several materials are shown in Fig. 
11.14. Note the dip in TL at the critical frequency, which is different for each 
material. 

Leakage of sound through small holes or cracks in walls tends to be un
derestimated all too often in building construction. Openings around pipes 
and ducts and cracks at the ceiling and floor edges of walls allow the leakage 
of airborne sound. Common causes of leakage in party walls separating 
apartments may include back-to-hack electrical outlets or medicine cabinets. 
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Fig. 11.15. The effect of a hole on transmission loss TL. (From Rossing et al., 2002. 
Reprinted with permission from Addison-Wesley.) 

Cracks under doors are especially bad. Figure 11.15 illustrates the effect of 
holes of various sizes on the transmission loss of walls. 

Sound barriers, which block the direct sound path from source to receiver, 
can result in appreciable noise reduction, both indoors and outdoors. Sound 
transmission through a barrier is generally less important than sound trans
mission around a barrier. A typical situation in an indoor office is shown 
in Fig. 11.16. There are three types of transmission paths to be considered: 
transmission through the barrier (path SCR), diffraction around the barrier 
(path SBR) and reflection from the ceiling (paths SAR, SDER, etc.). 

Transmission through the barrier, which is similar to that through a full 
wall of the same construction, will generally be much less than will trans
mission by diffraction and reflection. The diffraction of sound of a given 
frequency around a barrier depends on the Fresnel number N, which is ex
pressed as N = 2/ A.(A + B- d), where A. is the wavelength, and A, B, and D 
are shown in Fig. 11.16(b). Transmission by reflection (Fig. 11.16(c)) de
pends on the acoustic properties of the ceiling, the size of the opening above 
the barier, and the nature of the walls on the source and receiver sides of 
the barrier. A highly absorbent ceiling is essential in an open-plan office or 
school. 

The use of barriers to attenuate noise outdoors will be discussed in 
Chapter 12. 
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Fig. 11.16. (a) Transmission paths through and around a barrier. (b) Diffraction 
around the barrier. (c) Reflection paths around a barrier. 
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CHAPTER 12 

Sound and Noise Outdoors 

In a free field, the sound pressure at a distance r from the source is propor
tional to 1/r and the sound intensity to 1jr2 , as we have discussed in Chap
ters 6 and 11. Ideally, an outdoor environment away from sound-reflecting 
buildings and other hard surfaces could be considered a free field. However, 
effects such as atmospheric absorption, turbulence, refraction, diffraction, 
and the proximity of the ground make the description of sound propagation 
outdoors somewhat more complicated and interesting. In this chapter we 
will consider outdoor sound propagation with particular attention to the 
propagation of noise outdoors, which has become such an important envi
ronmental consideration. Some consideration will be given to the control of 
noise outdoors. 

12.1. Sound Propagation in the Atmosphere 

When sound propagates in an ideal uniform atmosphere, its intensity de
ceases with distance, both because of inverse-square-law spreading and also 
because of losses due to thermal conduction, viscosity, and molecular ab
sorption. The intensity I(r) at a distance r from a point source is therefore 

( 12.1) 

where aa is the attenuation coefficient for sound in air, as discussed in Sec
tion 6.5. The attenuation increases with increasing frequency w at a rate that 
varies somewhat depending upon humidity (Basset al., 1995) but is, over the 
range 10Hz-100kHz, roughly proportional town with n ~ 1.5. The abso
lute values are around 0.3 dB/km at 100Hz, rising to 300 dBjkm at 10kHz. 
Over the more limited range 100 Hz-1 0 kHz, n ~ 1, or the range can be split 
as in equations (6.48). The effect of this frequency variation of aa is clearly 
heard in the sound of thunder. A nearby thunderclap makes a sizzling snap, 
with acoustic energy spread over the entire frequency spectrum, as is to be 

T. D. Rossing et al., Principles of Vibration and Sound
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expected from a sharp pulse of energy; a distant thunderclap, on the other 
hand, is a dull rumbling with only very low frequencies still audible. 

Such a semi-infinite uniform atmosphere does not, however, occur in 
practice, and many other effects must be considered (Sutherland and Daigle, 
1997). In a stable atmosphere, the pressure decreases exponentially with alti
tude h with a scale height H of about 6 km, so that p(h) = p(O) exp( -h/ H). 
The temperature also decreases with height at about 0.6°C per 100m, the so
called "adiabatic lapse rate." At altitudes above about 10,000 m, above the 
tropopause and into the stratosphere, the lapse rate reverses and the atmo
spheric temperature begins to rise again. The real atmosphere is, however, 
not as simple as this. Weather conditions such as frosts or fogs can lead 
to formation of a temperature inversion, with cold air close to the ground 
and warmer air above, and of course the atmosphere is not stationary, but 
disturbed by winds, the strength and direction of which may change with 
altitude. 

A change in atmospheric pressure does not itself change the propagation 
speed of sound, but the associated change in temperature does. Equation 
( 6.13) shows that c is proportional to T 112, where T is the absolute temper
ature, so that c decreases by as much as 10% between ground level and the 
typical flight altitude of jet aircraft. Because we are familiar with optical ray 
propagation, and because optical refractive index is the ratio of the speed of 
light in a material to its speed in a vacuum, it is sometimes helpful to think 
of the atmosphere as a medium with a refractive index that increases with 
height above ground level. This allows us to draw the generalized ray tra
jectories shown in Fig. 12.l(a) and (b) for the case of a stable standard 
atmosphere. Sound from a source on the ground tends to be deflected up
wards, and the same is true of a source high in the air. The range at which 
such sources might be heard at ground level is therefore reduced from what 
would be expected from (12.1 ). 

In the contrary case of a temperature inversion, there is cold air close to 
the ground and warmer air above, as on frosty or foggy mornings, the tem
perature gradient in the lower air being inverted from its normal behavior 
in the lower region. Sound rays then behave as in Fig. 12.l(c), and those 
propagating at low angles to the horizontal are bent back towards the 
ground, making distant sounds louder at ground level. This can often be 
noticed in the case of noise from a distant freeway on foggy or frosty morn
ings, though increased attenuation in the fog may also have an influence in 
the opposite direction. 

Sound at ordinary frequencies is attenuated so rapidly by atmospheric 
absorption that little penetrates into the stratosphere, where again the tem
perature gradient is reversed. This is not true of infrasound below about 
10 Hz, however, at which frequencies atmospheric attenuation is very 
small. Infrasound can therefore be refracted back in the stratosphere towards 
the surface of the Earth and detected at very large distances (Gabrielson, 
1997). 
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(a) (b) 

(c) (d) 

Fig. 12.1. (a) Ray propagation paths for a ground-level sound source in a standard 
atmosphere with temperature decreasing steadily with increasing altitude. (b) Ray 
paths for a high-level source in a standard atmosphere. (c) Ray paths for propagation 
in an atmosphere with a low-altitude temperature inversion. (d) Ray paths for prop
agation in a standard atmosphere with a wind gradient, wind velocity increasing with 
altitude. 

Finally, consider the case in which there is a wind that increases steadily 
with altitude-quite a normal situation. The sound propagation is effectively 
tied to the local motion of the air through which it is propagating, so that it 
is convected downstream as shown in Fig. 12.l(d). 

Since much of our common experience with sound is limited to behavior 
near the ground, it is also relevant to examine the effect of different ground 
covers. As might be expected, smooth hard surfaces introduce little addi
tional attenuation, and even increase the radiated intensity by 6 dB over that 
from a point source in an infinite medium by ground reflection, soft or po
rous surfaces, such as grass, have a similar effect at frequencies below about 
100Hz, but introduce increasing attenuation at higher frequencies, reaching 
about 40 dB/km at 1 kHz. Trees and foliage add rather little to the attenu
ation at low frequencies, but contribute to intensity reduction by scattering 
when the sound wavelength becomes comparable to the dimensions of the 
tree trunks or leaves, typically above about 1 kHz. 

Sonar techniques can be used in the atmosphere for a variety of purposes. 
Turbulence, for example, as well as generating low-frequency sound, can also 
scatter high-frequency sound, so that radar-like sonar systems can be used 
near airports to detect hazardous atmospheric conditions. Passive listening 
devices with microphones arranged in arrays to give directional properties 
can also be used to detect the sources of particular noises. In early devices 
of this type, two large horns, separated by several meters and mounted on 
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D 

Fig. 12.2. Direct and reflected sound waves when both the source S and receiver R are 
near a hard ground surface. Their respective heights are h, and hr. 

a device like a gun-turret, were connected by flexible tubes to the ears of 
an observer, who used them as an extension of his own auditory system to 
locate enemy aircraft. These days passive directional listening devices are 
used for a variety of studies, particularly of wildlife. 

12.2. Effect of the Ground 

12.2.1. Hard Surface 

The most basic effect of the ground on the sound field is that of interference 
between the direct and reflected sound wave as shown in Fig. 12.2. At a hard 
surface, such as asphalt or concrete, there is a large impedance mismatch 
(z1 « z2 ) and the reflection coefficient (Eq. 6.37) is essentially 1, so little or 
no phase change occurs on reflection. Thus the observed effects are due to 
the difference in path lengths between the direct and reflected waves. Inter
ference effects lead to a sound spectrum of the type shown in Fig. 12.3, 
which is often described as "comb filtering." The greater the source height 
h8 , the closer together in frequency the interference minima will lie. 

12.2.2. Soft Ground 

Measurements of sound propagation over a grass-covered surface show an
other interesting effect. If the source is placed on the ground, the direct and 
reflected paths are equal, and the path length interference effects illustrated 
in Fig. 12.2 are avoided, as in the hs = 0 case at the top. For high frequen
cies, however, another type of attenuation is noted, as seen in Fig. 12.4. With 
the receiver very close to the ground, the sound pressure level remains es
sentially constant until about 800 Hz, and then decreases very rapidly with 
frequency. 

At an acoustically soft surface, such as grass-covered ground, z2 « z,, so 
the reflection coefficient becomes approximately -1 (Eq. 6.37), and so the 
incident and reflective waves are opposite in phase and destructively inter
fere. This is essentially what happens above 800 Hz, as shown in Fig. 12.4. 
But why is the received signal nearly full strength below 800 Hz? This is 
because of the so-called acoustical "ground wave" (which is similar, in some 
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Fig. 12.3. Relative sound pressure levels measured 15.2 m from a point source and 1.2 
m above an acoustically hard ground (asphalt). Results are shown for four different 
source heights, h, = 0, 0.3, 0.6, and 1.2 m, respectively. (From Embleton et al., 1976. 
Reprinted with permission.) 

respects, to the ground wave in electromagnetic wave propagation). The 
ground wave is that part of the reflected sound field that is not accounted for 
by the plane-wave reflection coefficient, and it occurs whenever the incident 
waves are not plane waves. A reasonably simple description of the ground 
wave can be obtained by considering the frequency dependence of the ground 
impedance. The specific acoustic impedance of a ground surface for normal 
incidence is the complex ratio of the acoustic pressure at the surface and the 
resulting normal component of particle velocity into the ground. For a semi
infinite medium, this specific acoustic impedance is the same as the charac
teristic impedance throughout the medium. 

Delany and Bazley (1970) showed that the normalized characteristic im
pedance Zc/ pc of a wide range of absorbent porous materials can be de
scribed by the expression 

:; = [ 1 + 0.0511 ( ~) -O.?Sl- j [ 0.0768 ( ~r0 -73l (12.2) 
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Fig. 12.4. Relative sound pressure levels measured 5 m from a point source at the 
surface of an acoustically soft (grass-covered) ground surface. Results are shown for 
four different receiver heights, hr = 0.02, 0.3, 0.6, and 1.2 m. (From Embleton, 1996. 
Reprinted with permission.) 

where pc is the characteristic impedance of air and O" is the flow resistivity at 
frequency f. (The actual quantity in parentheses is the dimensionless fp / O", 
but the numerical value of p has been substituted.) For a grass lawn the flow 
resistivity O" is about 1.25 x 105 to 3 x 105 Pa s/m2 . A fairly detailed sum
mary of this is given by Sutherland and Daigle (1997). 

A sort of cutoff frequency, the frequency at which the relative sound 
pressure level in Fig. 12.4 has fallen 3 dB, is shown in Fig. 12.5. The slope 
of this graph implies that the acoustic impedance of the grass surfaces is 
inversely proportional to the square root of the frequency. Also the position 
of this line depends on the magnitude of the frequency-dependent ground 
impedance (Embleton, 1996). 

12.2.3. Acoustic Surface Waves 

For distances greater than about 150 m, another component of the sound 
field, called a " trapped surface wave" must be included. This is a low
frequency component of the sound field , which at 300 Hz and at a large 
distance from the source, is reduced by 30 dB from its level at very low fre
quencies (Embleton, 1996). A surface wave only exists when the reactive 
component of the acoustic impedance exceeds its real part. Furthermore, the 
reactance must be a compliance, as it is for porous ground surfaces. 

The trapped surface wave has a maximum amplitude at the ground that 
decreases exponentially with height. The rate of decrease with height depends 
on the softness (acoustic compliance) of the surface, and on frequency . The 
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Fig. 12.5. Cutoff frequency (3 dB-down) versus distance for propagation over grass. 
Different symbols are from different locations. (From Embleton et al., 1996. Re
printed with permission.) 

surface wave extends to greater height for softer ground and lower frequency. 
The wave spreads only horizontally during propagation and so decreases by 
3 dB per doubling of distance (as compared to 6 dB per doubling of distance 
for spherical components of the wave). Hence at some distance the surface 
wave becomes dominant (Embleton, 2001). 

12.2.4. Foliage and Trees 

The attenuation of sound through a dense forest may be as great as 20 dB 
per 100m. The main effect at low frequencies is to enhance ground attenu
ation, the roots making the ground more porous (Aylor, 1972). At high 
frequencies, where the dimensions of leaves become comparable with the 
wavelength, there is also a significant attenuation caused by scattering (Em
bleton, 1963). In a forest, the vertical gradients of wind and temperature are 
reduced at elevations up to approximately the height of the trees, thus re
ducing the effects of refraction from such gradients (Sutherland and Daigle, 
1997). 

12.3. Effect of Refraction 

When the speed of a wave changes, refraction may result in a change in the 
direction of propagation or a bending of the waves, as discussed in Section 
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Fig. 12.6. Refraction of sound: (a) passing from helium to air; (b) in the atmosphere 
when temperature varies with height; (c) sound traveling against the wind (Rossing 
et al. , 2002). 

12.1. The change of speed may occur abruptly as the wave passes from one 
medium to another, or it may change gradually if the medium changes 
gradually. Examples of these are shown in Fig. 12.6. 

The situation illustrated in Fig. 12.6(b), which sometimes occurs during 
the cool evening hours, causes sounds to be heard over great distances. Be
cause the speed of sound increases with temperature (see Chapter 6), the 
sound travels faster some distance above the ground where the temperature 
is greater. This results in a bending of sound downward as shown. Sound 
that would ordinarily be lost to the upper atmosphere is refracted aback to
ward the ground. 

Figure 12.6(c) shows why it is difficult to be heard when yelling against 
the wind. (It is not because the wind blows the sound waves back; even a 
strong wind has a speed much less than that of sound). Refraction results 
because the wind speed is less near the ground than it is some distance above 
it. Because the speed of sound with respect to the air (in this case the moving 
air) remains the same, the ground speed of the sound changes with altitude. 
The resulting refraction causes some of the sound to miss its target. Nor
mally, temperature decreases with altitude: thus thee is an upward refraction, 
since sound travels faster in the warm air near the surface of the earth. Two 
examples of temperature inversion that will cause downward refraction are 
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Fig. 12.7. Refraction of sound under different conditions (Rossing eta!. , 2002). 

illustrated in Fig. 12.7. Mining companies, for example, carefully monitor 
the weather conditions to decide on the best time for blasting operations in 
order to minimize noise levels in surrounding communities. 

12.3.1. Analogy with Nonflat Ground 

There is an interesting analogy between a refracting atmosphere and ground 
surfaces that curve either downwards or upwards. Fig. 12.8(a) illustrates the 
basic idea of a direct field and a reflected field. When the atmosphere is 
nonrefracting and the ground surface is flat, both ray paths are straight and 
there is one point of specular reflection. 

Figure 12.8(b) and (c) illustrates the analogy between propagation in a 
nonrefracting atmosphere over upwardly curving ground and in a tempera
ture inversion above flat ground. In both cases there is interference between 
one direct wave and three that are reflected from the ground. The ground 
reflections in both cases are now located near the source and near the re
ceiver. In both cases, the grazing angles at the ground increase compared 
with Fig. 12.8(a). 

There is also a good analogy between propagation in a nonrefracting at
mosphere having straight ray paths over downwardly curving ground such 
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Fig. 12.8. Analogy between a refracting atmosphere and ground surfaces that are not 
flat. (a) propagation in a nonrefracting atmosphere above flat ground (compare with 
Fig. 12.2); (b) propagation in a nonrefracting atmosphere above upwardly concave 
ground; (c) propagation in a temperature inversion or downwind above a flat ground; 
(d) propagation in a nonrefracting atmosphere above upwardly convex ground. 
(From Embleton, 1996. Reprinted with permission.) 

as a hill (Fig. 12.8(c)) and in a temperature lapse over flat ground. There is a 
shadow region into which no sound can penetrate directly, according to ray 
theory. In both cases, sound energy penetrates into the shadow by prop
agating near the ground as a creeping wave, and some of this energy is shed 
upwards at an appropriate point to reach a receiver. Progressive shedding 
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of sound energy provides a sound field throughout the shadow region (Em
bleton, 1996). 

12.3.2. Outdoor Sound Propagation in the U.S. Civil War 

An interesting example of the dramatic effects of outdoor sound propagation 
is related in a book Trial by Fire: Science, Technology and the Civil War 
(Ross, 1999). Before electrical and wireless communications became avail
able, the sound of battle was often the quickest and most efficient method by 
which a commander could judge the course of a battle. Troop dispositions 
were often made based on the relative intensity of the sounds from different 
locations on the battlefield. Acoustic 'shadows' due to atmospheric absorp
tion, wind shear, temperature inversions, ground effects, or all of these ap
parently influenced several key battles in the U.S. Civil War. 

At the battle of Gettysburg, for example, Confederate General Ewell was 
apparently unable to hear the artillery of General Longstreet, and hence did 
not move his troops. As a result, Union General Meade was able to shift his 
troops in the nick of time to defeat Longstreet's attack. On the previous day, 
Meade had been unable to hear the Gettysburg fighting from his position at 
Taneytown (12 miles away), yet the battle was clearly audible in Pittsburgh, 
150 miles from Gettysburg. 

12.4. Diffraction and Sound Barriers 

Sound barriers are widely used to reduce highway noise and airport noise. 
If a large solid body blocks a sound field, the ray theory of sound propaga
tion predicts a shadow region behind the body with sharply define bound
aries. In practice, however, sound "leaks" across this sharp boundary due to 
diffraction. 

The diffraction of sound of a given frequency around a barrier depends cin 
the Fresnel number N, which is given by 

2 
N = ~ (d1 + d2 -d) (12.3) 

where A is the wavelength of sound and lengths d1, d2, and d are shown in 
Fig. 12.9. The attenuation by diffraction Ad due to diffraction is then given 
as a function of the Fresnel number: 

Ad= 10log10 (20N) (12.4) 

This equation is also plotted in Fig. 12.9, assuming a thin barrier and no 
ground and then empirically allowing for the presence of the ground by 
reducing the sound level loss by 2 dB (Sutherland and Daigle, 1997). The 
prediction curve is not exact, because the empirical correction does not ac-
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Fig. 12.9. Fresnel number in terms of the path difference and wavelength A. The curve 
is the barrier attenuation as a function of Fresnel number N . (From Sutherland and 
Daigle, 1997. Reprinted with permission.) 

count for the frequency dependence of the ground reflection interference in a 
specific configuration. 

In order to obtain a more exact prediction of the sound field behind the 
barrier, the complex interference spectrum resulting from the sum of four 
paths shown in Fig. 12.10 must be calculated. Nevertheless, the curve in Fig. 
12.9 is correct to about ±5 dB in most cases (Isei et al. , 1980). 

Studies of traffic noise reduction by barriers generally show average in
sertion loss of 5- 8 dB and rarely exceed 10 dB. When barriers are used to 
attenuate sound, it is good practice to locate them as closely as possible to 
either the source of the receiver. A barrier of a given height then results in 
the greatest value of path difference (d1 + d2 - d). The insertion loss of a 
barrier is limited by the effects of atmospheric turbulence to about 15- 25 dB 
(Sutherland and Daigle, 1997). 

12.5. Atmospheric Turbulence 

Turbulence is always present near the ground, even on a calm day. Tem
perature fluctuations of SOC are not uncommon. Similarly the wind fluctua
tions can be one third of the average velocity. When sound waves propagate 
through the atmosphere, these fluctuations scatter the sound energy. The 
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a. 

c. 

Fig. 12.10. Four paths contributing to the sound field behind a barrier above ground. 
(From Sutherland and Daigle, 1997. Reprinted with permission.) 

total sound field is the sum of these scattered waves, resulting in random 
fluctuations in amplitude and phase. Turbulence can be visualized as a series 
of eddies from millimeters up to meters in diameter. As the eddy size be
comes smaller, most of the energy is dissipated as heat. In addition to natural 
turbulence, common artificial causes of turbulence include the wake of 
moving vehicles, wind blowing around obstacles, jet engines or other exhaust 
p1pes. 

The effects of turbulence on sound fields can be large and result from two 
processes: one is the scattering of sound energy by each eddy; the other is the 
destruction of the constant phase relations that would otherwise determine 
sound level. The effects of turbulence on a sound field increase with distance 
(approximately as the 11/12 power of the distance up to a value of about 
6 dB) and with frequency (approximately as the 7/12 power of frequency) 
(Embleton, 1996). 

12.6. Motor Vehicle Noise 

With more than 100 million passenger cars in the United States traveling 
over 10 12 miles annually, automobiles generate megawatts of acoustic power. 
Fortunately, much of this power is radiated to areas with low population 
density, but an appreciable portion is generated in urban areas. Sources of 
noise in an automobile or truck include the engine, the cooling fan, the drive 
train, the tires, aerodynamic turbulence, body vibrations, and the intake and 
exhaust systems. 
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The modern automobile, when kept in good repair, is a relatively quiet 
vehicle at low speeds. Engine noise and aerodynamic noise are low at these 
speeds, and most of the noise is radiated from the exhaust system. Engine 
noise and aerodynamic noise increase with speed, however, and at high 
speeds tire noise also becomes an important factor. The average sound level, 
measured 50ft from the center of the roadway, rises about 10 dB for each 
doubling of speed. 

Trucks generate about 10 times as much mechanical power as do auto
mobiles, but they emit up to 100 times as much acoustic power. Thus, they 
present a serious problem so far as road noise is concerned. At low speeds, 
exhaust and fan noise are important, but at high speed tire noise takes over 
completely. Tire noise at 55 mi/hr for a single-chassis truck ranges from 75 
to 95 dB(A) (A-weighted sound pressure level-see Section 6.3), depending 
on the design of the tread. Diesel engines are noisier than gasoline engines, 
because the combustion is more sudden so that cylinder pressure rises more 
abruptly. Furthermore, a diesel engine produces nearly as much noise under 
no load as it does under full load. 

Although regulation of motor vehicle noise is generally left to state and 
local governments, the Federal government does regulate the noise of new 
trucks, motor homes, motorcycles and mopeds. Several states and cities set 
limits for passenger cars. Pass-by noise measurements generally follow pro
cedures defined by the Society of Automotive Engineers in the appropriate 
standards (SAE J986). For example, noise from passenger cars is measured 
15m from the roadway center and 1.2 m above the ground while the vehicle 
is undergoing maximum acceleration, and the car is to attain maximum 
rated engine speed not more than 45 m past the microphone. Most states set 
the "pass by" limit at 80 dB(A). Noise limits in Europe are somewhat lower 
(Hickling, 1997). 

12.7. Railroad Noise 

Noise from railroad operations is not as widespread as noise from highways. 
Nevertheless, for persons living near a railroad, it can be a great annoyance. 
Major sources of noise are locomotives, rail-wheel interaction, whistles and 
horns, yard retarders, refrigerator cars, maintenance operations, and loading 
equipment. 

According to EPA standards in the United States, locomotives manufac
tured after 1980 should not emit more than 90 dB(A) of noise, measured 100 
ft from the track. Railcars (or combination of them) should not emit more 
than 88 dB(A) at speeds up to 45 mijhr, or 90 dB(A) at speeds above 45 
mi/hr. Some of the possible ways in which railroad noise can be reduced in
clude equipping diesel locomotives with mu:ffiers, use of welded rails, careful 
maintenance of rolling stock, and barrier walls around retarders in rail 
yards. 
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12.8. Aircraft Noise 

Control of aircraft noise is one of the most challenging of urban environ
mental issues. Airlines transport approximately 80% of all intercity passen
ger traffic traveling by common carrier in the United States. In spite of efforts 
to develop high-speed ground transport, the number of aircraft takeoffs and 
landings near major cities continues to grow. Furthermore, as land prices 
rise, residential dwellings encroach on noise buffer zones near airports in in
creasing numbers. 

The modem jet aircraft is actually a rather inefficient noise source, radi
ating less than 0.02% of its total power as sound. Nevertheless, this may 
exceed 1 kW of sound power because of the prodigious amount of mechan
ical power generated by the engine. The development of the turbofan engine 
around 1960 led to greater efficiency and somewhat less total noise power, 
but it added a new source of annoyance: a siren like whine from the fan. 

A turbofan jet engine produces two main types of noise. The first is due 
to the turbulence created when the high-velocity jet of gas reacts with the 
quiescent atmosphere. This noise, which has a considerable low-frequency 
component, dominates during takeoff and climb. The second type of noise is 
the high-pitched whine of the fan, which becomes dominant during a landing 
approach with reduced power. Two major engineering developments have 
spearheaded the attack on jet engine noise: the development of acoustic lin
ings for engine nacelles and the high-bypass-ratio engines, now used in most 
wide body aircraft. 

Almost all major airports in the United States have active noise abate
ment programs (Eldred, 1997). The principal actions that can be taken to 
abate aircraft noise and its perceived problems are (1) realign runways or 
take-off and landing paths to avoid residential centers; (2) require opera
tional procedures, particularly throttle setting after takeoff, to minimize 
noise; (3) restrict hours of airport operation; (4) install sound insulation in 
affected buildings; and (5) continue to monitor airport noise and its effects. 

Although the United States terminated its program to develop a super
sonic transport plane (SST) in the 1960s, the Russian TU144 and the Anglo
French Concorde were put into service. SSTs present unique noise problems 
around those airports that they serve. Both the TU144 and the Concorde used 
afterburners for increased thrust during takeoff. Afterburners increase the 
noise emission, especially at low frequency where atmospheric absorption is 
very low. These low-frequency sounds are also apt to excite building vibra
tion and rattle. The afterburners can be cut out shortly after takeoff, how
ever to reduce noise by sacrificing rate of climb. 

A sonic boom is a pressure transient of short duration that occurs during 
the flyover of an aircraft at a speed that exceeds the speed of sound (ap
proximately 770 mi/hr or 343 m/s at low altitude where the temperature is 
about 20°C). A sonic shock is analogous to the bow wave produced by a 
boat moving through water at greater than the speed of water waves. At 
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Fig. 12.11. Structure of the sonic boom generated by an aircraft flying at supersonic 
speed. 

ground level, a momentary overpressure of 10 to 100 N/m2 occurs, followed 
a moment later by a similar underpressure as the pressure fronts (Mach 
cones) pass by (see Fig. 12.11). For the Concorde, flying at an altitude of 
40,000 ft, the overpressure on the ground is about 20 Njm2 (about 10-4 

atm), and the time between overpressure and underpressure is approximately 
0.2 to 0.3 s. 

12.9. Summary of Factors at Various Distances 

Embleton (1996) has summarized the influence of factors at various dis
tances from the source. 

Short range, up to 15 m. Standard test procedures for the measurement of 
motor vehicle noise require that the vehicle be driven along a hard level 
surface. Measurements are made at a height of 1.22 m. In North America, a 
15.2 m distance from the roadway is preferred, but in Europe the distance is 
7.6 m. Although most major sound sources such as tail pipe, engine block, 
and oil pan are small enough to be considered point sources at these dis
tances, interference between the direct sound field and that reflected from 
ground surface can affect the measured values. Interference effects are espe
cially strong in vehicles with elevated noise sources, such as the exhaust stack 
of a tractor-trailer. 

Intermediate range, up to about 50 m. The insertion loss of roadside noise 
barriers depends strongly on the type of ground in their vicinity. One reason 
is that grazing angles of reflection for sound fields diffracted over the top of 
the barrier are greater than the very small grazing angles without the barrier. 
This is a major reason why some barriers provide less noise reduction than 
expected. 
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Distances of the order of kilometers. In predicting noise around airports 
or from other strong noise sources, topography and meteorology are more 
important than at shorter distances. Near one airport, for example, the sound 
level at the top of a hill 5500 m away was found to be as much as 20 dB 
greater than at 4100 mat a lower elevation (Embleton, 1996). 

References 

Aylor, D. (1972). Noise reduction by vegetation and ground. J. Acoust. Soc. Am. 51, 
201-209. 

Bass, H.E., Sutherland, L.C., Zuckerwar, A.J., Blackstock, D.T., and Hester, D.M. 
(1995). Atmospheric absorption of sound: Further developments. J. Acoust. Soc. 
Am. 97, 680-683. 

Delany, M.E. and Bazley, E.N. (1970). Acoustical properties of fibrous absorbent 
materials. Appl. Acoust. 3, 105-116. 

Embleton, T.F.W. (1963). Sound propagation in homogeneous deciduous and ever
green woods. J. Acoust. Soc. Am. 35, 1119-1125. 

Eldred, K.N. (1997). Airport Noise. "Encyclopedia of acoustics," ed. M.J. Crocker, 
Wiley, New York, Vol. 2, 1059-1072. 

Embleton, T.F.W. (1996). Tutorial on sound propagation outdoors. J. Acoust. Soc. 
Am. 100, 31-48. 

Embleton, T.F.W. (2001). Noise Propagation and Prediction Outdoors. Tutorial at 
the 142nd meeting, Acoustical Society of America, Ft. Lauderdale. 

Embleton, T.F.W., Piercy, J.E., and Olson, N. (1976). Outdoor sound propagation 
over ground of finite impedance. J. Acoust. Soc. Am. 59, 267-277. 

Gabrielson, T.B. (1997). Infrasound. "Encyclopedia of Acoustics," ed. M.J. Crocker, 
Wiley, New York, Vol. 1, pp. 367-372. 

Hickling, R. (1997). Surface Transportation Noise. "Encyclopedia of Acoustics," ed. 
M.J. Crocker, Wiley, New York, Vol. 2, 1073-1081. 

Isei, T., Embleton, T.F.W., and Piercy, J.E. (1980). Noise reduction by barriers on 
finite impedance ground. J. Acoust. Soc. Am. 67, 46-58. 

Ross, C.D. (1999). "Trial by Fire: Science, Technology and the Civil War," White 
Mane, Shippensburg, Pa. 

Rossing, T.D., Moore, P.R., and Wheeler, P.A. (2002). "Science of Sound," 3rd ed. 
Addison Wesley, San Francisco. 

Sutherland, L.C. and Daigle, G.A. (1997). Atmospheric sound propagation. "Ency
clopedia ofacoustics," ed. M.J. Crocker, Wiley, New York, Vol. 1, 341-345. 



CHAPTER 13 

Underwater Sound 

Although oceans cover over 70% of the earth's surface, only in recent years 
has oceanography become a major science. Sound waves are widely used 
to explore the oceans, because they travel much better in sea water than do 
light waves. Likewise, sound waves are used, by humans and dolphins alike, 
to communicate under water, because they travel much better than do radio 
waves. 

In this chapter, we will present a brief introduction to some principles 
of underwater acoustics, including a discussion of how sound propagates in 
the sea and how sound waves are used in devices such as sonar. Acoustical 
oceanography has many military, as well as commercial applications. Much 
of our understanding of underwater sound has been a result of research 
conducted by the Navy during and following World War II. 

13.1. Underwater Sound Propagation 

Sound propagates in water very much as in air, but there are a few important 
differences. The sound velocity is (K / Pw) '12 where K is the reciprocal of 
the compressibility and Pw is the liquid density. This is straightforward. The 
sound speed in sea water, which is about 1500 mjs, increases with increasing 
static pressure by about 1 part per million per kilopascal, or about 1% per 
1000 m of depth, assuming temperature remains constant. The variation with 
temperature is an increase of about 2% per degree C temperature rise. In 
temperate parts of the ocean, the sound speed is around 1520 mjs in the 
warm water at the surface and stays fairly constant in the mixed surface 
layer of depth about 500 m. Below that depth the temperature falls and with 
it the sound speed, typically reaching a minimum of around 1490 m/s at a 
depth of about 1000 m. Below this, the ocean is nearly isothermal, the effects 
of increasing pressure dominate, and the sound speed rises steadily to reach 
1520 m/s again at a depth of about 4000 m. In the polar regions, however, 
the warm surface layer is absent, the sound speed at the surface is about 1440 
mjs, and this speed simply increases steadily with depth to reach about 1520 
mjs at 4000 m, as in warm oceans. 
T. D. Rossing et al., Principles of Vibration and Sound
© Springer Science+Business Media New York 2004
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Sound absorption coefficient aw increases with increasing frequency as w2 

for pure water, but for sea water there are several dispersion steps, giving an 
overall variation of aw about as wl.5• This behavior is very similar to the 
variation with frequency of aa for normally humid air, but the absolute value 
of aw is only about 0.001 dB/km at 100Hz and about 1 dB/km at 10kHz. 
This attenuation coefficient is thus less than that for air by a factor of about 
300. 

Sound propagation in the oceans is different from that in the atmosphere 
for another important reason. The lower part of the atmosphere terminates 
abruptly at the Earth's surface, but its upper regions fade off exponentially 
into space. The oceans, in contrast, terminate abruptly both at the sea bed 
and at the surface, so that sound transmission takes place in a confined duct 
of variable thickness. In addition to this, the variation of salinity and tem
perature with depth may create ducts of smaller vertical extent, rather like 
the inversion layers in the lower part of the atmosphere. Sound can propa
gate even more efficiently in such ducts because there is no absorption at the 
irregular ocean bottom to interfere. This means that the intensity I(r) of 
sound in oceans varies with distance r about as 

A I(r) = -e-cxwr, 
r 

(13.1) 

provided the distance r is very much greater than the ocean depth. For dis
tances smaller than the ocean depth, of course, the spreading behavior is as 
1jr2 rather than 1/r. 

One of the problems with duct propagation when the width of the duct 
(in this case the depth) is much greater than the wavelength of sound, is that 
higher modes can propagate in addition to the plane-wave mode. Such higher 
modes were discussed for the case of a cylindrical duct in Section 8.1, but 
here we need to consider the behavior of an extended planar duct. If the 
wave equation for propagation in the x direction in such a two-dimensional 
planar duct is written 

a2p _ 2 (a2p rip) 
ot2 - c ox2 + oz2 ' (13-2) 

and we impose the boundary conditions that p = 0 at the surface z = 0 and 
op / oz = 0 at the ocean floor at z = h, then the solution looks like 

. [(2n- 1)nz] . ( 1 ) p(x, z) = A sm 2h e-Jru t-x v , (13.3) 

where v is the phase velocity of the wave in the x direction. Substituting this 
expression into (13.2) gives 

(13.4) 

for n = 1, 2, 3, .... The phase velocity v is thus greater than c by an amount 
that increases with the mode number n. This is because waves are propagat-
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ing obliquely and being reflected at the seafloor and the surface as shown 
in Fig. 13.1-an oblique cut across such a wave by a horizontal plane makes 
it appear to have a longer wavelength and thus a faster phase-propagation 
velocity. The group velocity, which is the velocity with which a pulse of 
several cycles of the wave will propagate down the duct, is however less than 
c, as would be expected for such an oblique wave path. Calculation of the 
group velocity is algebraically a little complicated, and it differs for each 
mode. If the wavelength is much less than the ocean depth, or the duct depth 
if ocean layering is responsible for confining the sound, then we can simply 
use ray propagation and count up the total path covered by obliquely prop
agating rays. For short wavelengths there are many path options, so that a 
pulse will be spread out into a long signal at a distant point. 

Although the seafloor does reflect acoustic waves without a great deal 
of attenuation, its wave impedance pc, where p is its density and c is the 
acoustic wave velocity within it, is within a factor 3 or so of the wave im
pedance for sound in water. This contrasts with the situation in the atmo
sphere, where the wave impedance in solid earth is around 10,000 times that 
in air. This means that acoustic waves launched in the water propagate some 
distance into ocean floor sediments until they are reflected out by rocks or 
other discontinuities. Sound waves can therefore be used to examine both the 
surface shape of the ocean floor and also, to some extent, hidden geological 
features. If the frequency is in the high kilohertz range so that the wave
length is short, then sonar techniques can be used to map the ocean floor at 
quite high resolution. 

Sonar also takes the place of radar under water, for electromagnetic waves 
are strongly attenuated because of the significant electrical conductivity due 
to dissolved salts. Apart from the different nature of the waves carrying the 
information, sonar techniques are very much like those developed for radar. 
Multiple transmitting transducers arranged in an array are used to produce a 
narrow beam, and a similar technique is used for the receiving transducers. 
The reflection strength of a target, such as a submarine, is roughly propor
tional to its surface area, or rather its cross-section normal to the beam, 
provided the target is much larger than the sound wavelength. The returned 
echo strength is also proportional to the inverse fourth of the target distance, 
because of the inverse square-law spreading experienced in both propagation 
directions. 

13.2. Underwater Waveguides 

It is possible to transmit sound for long distances under water due to "wave
guides" which occur at various ocean depths due to reflection and refraction. 
During World War II, a "deep channel" was discovered in which sound 
waves could travel distances in excess of 3000 km. All rays originating near 
the axis of the deep sound channel and making small angles with the hori-
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Fig. 13.1. Schematic representation of various types of sound propagation in the 
ocean. (From Kuperman, 1997. Reprinted with permission.) 

zontal return to the axis without reaching either the surface or the bottom. 
This phenomenon gives rise to the deep channel or SOF AR (for "SOund 
Fixing And Ranging") channel. SOF AR has been used to locate, by acoustic 
means, airmen downed at sea. 

Figure 13.1 shows the basic types of propagation in the ocean resulting 
from sound speed profiles. According to Snell's law, sound waves bend to
ward the regions of lower sound speed, so waves are trapped in regions of 
low sound speed. Paths A and B correspond to surface duct propagation 
where the minimum sound speed is at the ocean surface, while path C prop
agates in the deep sound channel whose axis is at the sound speed minimum. 
For mid-latitudes, far away from the Arctic where the local minimum tends 
to become shallow, sound in the deep channel can propagate long distances 
without encountering lossy boundaries. Path D, which has a steeper angle 
than those associated with path C, is termed convergence zone propagation, 
which results from the upward refracting nature of the deep sound speed 
profile (Kuperman, 1997). 

The depth at which the sound speed is the same as it is at the surface 
is called the critical depth, and defines the lower limit of the deep sound 
channel. The bottom bounce path E, in which sound reflects from the ocean 
bottom, is also periodic. At the right-hand side of the figure are paths in a 
shallow region such as a continental shelf (Kuperman, 1997). 

13.3. Sonar 

One of the most important applications of underwater acoustics is Sonar 
(SOund Navigation And Ranging) , which dates back almost 100 years. The 
purpose of most sonar systems is to detect and localize a target, such as 
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submarines, mines, fish, or surface ships. Other sonars are designed to mea
sure some quantity, such as the ocean depth or speed of ocean currents or to 
image remote objects. Long-range detection sonars generally operate at fre
quencies below 50 Hz, while mine detection sonars operate at frequencies 
above 50 kHz, a frequency range greater than 3 decades (Barger, 1997). 
Sonar systems may be either active or passive. 

13.3.1. Active Sonars 

An active sonar system sends out a sound signal and detects one or more 
reflections. In modern sonar, very sophisticated systems are used in order to 
maximize range and accuracy. The most common active system, called an 
echo sounder, consists of a transmitter, a receiver, and a display. Systems 
range in complexity from the "fish finders" that are sold in sporting goods 
stores to the multibeam systems that are used by commercial fishermen and 
navies. 

A typical echo sounder has a time (or depth) varying gain to compensate 
for the 1/r2 dependence of the echo amplitude on range. Echoes also come 
from the multiple reflection path from the ocean bottom to the surface and 
back to the receiver. 

A side-scanning sonar is an echo sounder that is pointed sideways. The 
sending transducer produces a fan-shaped beam, and the receiver has a time
variable gain to compensate for range. Side-scanning sonars are used in geo
logical studies to give images of rough features on the sea floor and also 
to locate objects such as sunken ships (Medwin and Clay, 1998). A very 
high resolution side-scanning sonar, using a 1.5 MHz beam, has been used 
for mine detection. The forward motion of the towed system produces the 
second dimension for a plot of the searched area (McKinney, 2002). 

13.3.2. Multibeam Sonar 

Mapping with sonar is quite different from mapping with radar. Radar pulse 
travel time, for a range of 30 km, is only 2 x w-4 s so a complete 360° image 
can be made in less than 0.1 s, during which an airplane (flying at about the 
speed of sound) has traveled about 30 m. On the other hand, the time re
quired for sonar to range to 30 km is about 4 s. In a sequential data acqui
sition system that takes one echo at a time, several hours would be required 
for one 360° image at comparably high resolution. Thus sonar data must be 
acquired simultaneously from many different beams. 

A multiple sonar system for sea-floor mapping is shown schematically in 
Fig. 13.2. Since these systems are usually mounted on the hull of a ship, the 
receiving array points in different directions as the ship pitches and rolls. The 
data-reduction system must compensate for the ship motions and the direc
tion in which the receiving array is pointing when the echoes arrive (Medwin 
and Clay, 1997). 
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5 6 

Fig. 13.2. Schematic of a multichannel sonar system. The transmitter sends a broad 
beam. By adjusting time delays of the receiving elements, the multi element receiving 
array is preformed to a set of narrow beams that scan from port to starboard and 
measure the depths to various positions. (Reprinted from Medwin and Clay, 1998 
with permission from Elsevier.) 

13.3.3. Passive Sonars 

Passive sonars listen to and interpret the sounds that are in the ocean. The 
sound receiver may be a single hydrophone or it may be an array of hydro
phones. The receiver is generally located in a quiet place, such as the ocean 
bottom, or towed behind a quiet ship. Signals may follow a direct path from 
the source, reflect off the ocean bottom, or reflect from some other surface. 

Receiver arrays, beam formers, and signal conditioners do not differ sig
nificantly from those used in active systems. The weaker signal usually 
requires some type of filter plus a rather long time averaging. The phrase 
" acoustic daylight" has been applied to natural and man-made sounds in 
the sea that scatter off objects in the ocean. Since the water is acoustically 
transparent, images can be constructed from the scattered sound, just as 
scattered light allows us to see objects. Since natural sounds are variable in 
frequency spectrum, amplitude, and phase, the task is more difficult than 
viewing an image in daylight. Generally signal processing equipment is used 
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to compare the sounds from many directions at the same time in order to 
identify the scattering body. 

13.3.4. Doppler Sonar 

Doppler sonars are used to measure the velocities of ships relative to the 
water or to the sea floor. They may also be used to measure the motion of 
swimming objects such as fish. Just as the pitch of a train whistle changes 
abruptly as it passes the observer, the echo from a moving target underwater 
depends upon its velocity. The sound frequency fr of the echo observed at 
the receiver may be shifted either up or down from the sound frequency 
emitted fo. 

I" _ Cw ± Vr 1: 
Jr- JO 

Cw + Vs 
(13.5) 

where Vr and Vs are the receiver and source speeds and Cw is the speed of 
sound in water. 

13.4. Noise 

Below the surface of the ocean, it may seem quiet compared to the noise of 
the city. However there is enough noise to make it a matter of considerable 
interest. Noise is mainly of two kinds: ambient noise and self noise of the 
receiver and its supporting system or carrier. 

13.4.1. Ambient Noise 

Ambient noise sources include wind noise, noise of ocean mammals, noise of 
ships, and turbulence. Fig. 13.3 shows survey of noise in the open ocean by 
Wenze (1962). Although it was done in 1962, it is still considered the most 
definitive survey. Wenze distinguishes between prevailing and intermittent 
(or local) noise mechanisms. The prevailing noises are generally considered 
the more important. 

At the lowest frequencies, turbulence can induce pressure fluctuations at 
a hydrophone; they depend upon the hydrophone size and shape as well 
as the nature of the turbulence. Within the operating range of most sonars, 
however, these are generally overshadowed by other noise. Noise radiated by 
ships is distributed broadly in frequency, but at long distances its spectrum is 
shaped by the low-pass filtering of the ocean, so that it peaks in the 10-100 
Hz range. In the oceans around the United States and Europe, distant ship
ping is the dominant noise in this frequency range, while in the so.uthern 
oceans around Australia noise from wind, waves and biological sources is 
much more important (Cato and McCauley, 2002). 

In the range of about 100 to 10,000 Hz, noise from the formation and 
oscillation of air bubbles created by breaking waves dominate the spectrum. 



.. 
2' 
u 

' IJ.J 
z 
>-
0 

100 

N 80 
0 
0 
0 
ci 
IJ.J 
a:: 
IIl 

13.4. Noise 301 

INTERMITTENT AN D LOCA L EFFECTS 

t..•---"~~~~~~~~~~s-
BI OLOGICS ----------------1 •·· 

------PRECIPI TATION------

INDUS TRIAL ACTIVITY 
SEA I CE -··~ 

KEY 
--- LIMI TS OF PRE VA ILI NG NOISE 

--- WIND- DEPE NDEN T BUBBLE ANO SPRAY NOISE 

\ LOW-~ REOuE:NC't" VEFtl'·SHAlLOW - WA TE R 
·, WINO DEPENDE NCE 

\. -- HEA\.'Y PRECl~lf AT ION ---,.j - - --·HEAVY TR ~ FFIC NOISE \ 2:~ USU4L HUFF IC NOISE - SH 4LLOW WATER 

' = USUAL TR AFFIC NOI SE- ~EEP WATE R . 
\ - - - THER MAL NOISE 

' ·- · - ·- _ GENERAL Pt. TTERN OF NOISE FR OM 
E ART HOUA.KES AND EXPLOSIONS 

- ··········· EXTR ~Pul ATIONS 
0 60 1-"\.-----+ / 

...J 
IJ.J 
> 
w 
...J 

~ 40 1-----'li 
::> 
a:: 
1-
u 
w 
ll. 
<Jl 

w 
~ 2 
(J) 
(J) 

w 
a:: 
ll. 

0 
z 
::> 
0 
(J) 

PREVAILING NOISES 

-OCE ANIC TRAF FIC-

-BUBBLES ANDSPII.lY----- ~'----l 

===~==--::==::--::==--------,----, (SURF.lCE AG I U TI ON) / 
/ /lo10L ECULAR 

AGITATION 

10 IOl 

FREQUENCY 
Fig. 13.3. Composite of ambient-noise spectra, summarizing results and conclusions 
about spectrum shape, level, and probable sources of ambient noise between 1 Hz 
and 100kHz (Wenze, 1962). Note that 0.0002 dynejcm2 = 20 J.! Pa. 



302 13. Underwater Sound 

The ambient noise known as "Kundsen sea noise," which for many years 
was attributed to turbulence, is now known to be formed by the damped 
radiations from newly formed microbubbles created by spilling breakers 
(Medwin and Beaky, 1989). At the moment of their creation, the infant mi
crobubbles are shock-excited by the sudden radial inflow of water and the 
simultaneous application of surface tension. 

Rain and hail provide an additional source of surface bubbles. The im
pact of rain or hail will first create an impulse of sound, followed, after a 
few milliseconds, by the birth of bubbles which radiate as they oscillate. The 
newly-created microbubble is generally the source of dipole radiation be
cause its wavelength is large compared with its proximity to the ocean sur
face (Medwin and Clay, 1998). 

At high frequencies (f > 100kHz or so), ambient noise is dominated by 
molecular agitation. Dynamic forces from molecular momentum reversals 
cause this noise. 

13.4.2. Self-Noise 

Self-noise refers to noise from the vessel on which the hydrophone is located. 
The paths by which noise travels from the noise source to the hydrophone 
are many. Self-noise depends upon the directivity of the hydrophone, its 
mounting, and its location on the vessel. On surface ships, the sonar trans
ducer is generally located in a streamlined dome projecting below the keel. 
In submarines, the sonar transducer is generally located in the bow. 

Most self-noise can be classified as machinery noise, propeller noise, or 
hydrodynamic noise (Norwood, 2002). Noise reaches the hydrophone by a 
variety of paths, including a direct path through the hull of the ship, reflec
tion from the ocean bottom, or by scattering from various scatterers in the 
ocean. Machinery noise tends to dominant at low frequency, whereas pro
peller noise is more important at the higher frequencies. Hydrodynamic 
noise includes all the noise resulting from the flow of water past the hydro
phone and its housing, as well as the hull of the ship. Hydrodynamic noise 
increases strongly with speed, and thus it generally dominates at high speed. 
Hydrodynamic noise can be minimized by streamlining the transducer en
closure. Good discussions of self-noise are given by Urick (1983) and Nor
wood (2002). 

13.5. Bubbles in Water 

We have already mentioned ocean bubbles as a source of ambient noise 
(Section 13.4.1). Bubbles have several other acoustical properties as well. 
They scatter sound, and they affect the speed of sound and the attenuation as 
well. Medwin and Clay (1998) include a chapter on bubbles, and this brief 
discussion will borrow heavily from that. 
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Fig. 13.4. Relative back scattering length of a spherical air bubble at sea level com
pared with that of a rigid sphere. (Reprinted from Medwin and Clay, 1998 with per
mission from Elsevier.) 

While investigating the military implications of sound scatter from rough 
seas in the 1950s, underwater acousticians discovered that much of the scat
ter came from below the surface, presumably from bubbles created by the 
breaking waves. The scattering of sound by a fluid-filled sphere is quite dif
ferent from that of a rigid sphere, as shown in Fig. 13.4. The large resonance 
peak atka = 0.0136 was noted by Minnaert (1933) in research on the musi
cal sound of running water. For ka « 1, a spherical bubble can be treated as 
having an equivalent mass, stiffness, and mechanical resistance. The equiva
lent mass is due to the inertia of the adjacent layer of water that has essen
tially the same radial displacement as the bubble surface. The compressi
bility of the bubble volume (plus the surface tension for very small bubbles) 
determines the spring stiffness (Medwin and Clay, 1998). 

It can be shown (Medwin and Clay, 1998) that the effective mass m is 
given by 

(13.6) 

where a is the radius and Pw is the density of the water. This gives an 
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expression for the "breathing" frequency of a small bubble: 

/b = _I_ (3YPa)112 ' 
2na PA 

(13.7) 

where Pa and Pa are respectively the density and pressure of the air in the 
bubble and y = 1.4 is the ratio of specific heats for air. For a spherical air 
bubble in water, this gives: 

l'.b __ 3.25(1 + 0.1z) I/2 , 
Jl (I3.8) 

a 

where z is the depth below the surface. This is equivalent to ka = 0.0136 at 
surface level. 

Including the effects of shear viscosity and thermal conductivity changes 
the frequency less than IO% except in very small bubbles. The scattering 
cross section of an assemblage of identical bubbles depends on their spacing 
(Feuillade, 1995). As the bubbles are packed together, the frequency shifts 
downward and the resonance peak broadens. But bubbles in the ocean are 
not identical, and for realistic ocean distributions of bubble size and random 
spacings, the assemblage should be treated as a "bubbly mixture." 

13.5.1. Bubbly Mixture: Wood's Equation 

The velocity of sound in a bubbly mixture can be estimated with reasonable 
precision by assuming that the velocity is the same as that in a homogeneous 
fluid of the same mean density p and the mean elasticity E as in the mixture. 
Letting p1, Et and P2, E2 represent the density and elasticity of the con
stituents 1 and 2 and x the proportion of the first constituent by volume, 
Wood (I955) shows that the mean velocity will be: 

(E)1/ 2 { EtEz }1/ 2 

c = p = [xEz +(I- x)Et][xp1 +(I- x)p2] (13.9) 

The resulting velocity of sound, from pure water to pure air, is shown in Fig. 
13.5. Note that the velocity shows a minimum around IO% air, which is a 
fairly high bubble concentration. The minimum velocity is only about l/I5 
of the velocity of sound in air. Under such conditions the mixture may be 
regarded as "froth," the water serving to load the air-bubbles (the springs) 
and consequently to lower the velocity of sound. 

Wood (1955) also shows that the simple mixture model predicts a large 
reduction in sound intensify in a bubbly mixture. This is observed in the sea. 
The noise of a ship's propeller is reduced by the bubbly water in the wake. 
The loss increases rapidly as the proportion of air to water increases. 

13.5.2. Instant Coffee: A Bubbly Mixture 

The dependence of the velocity and absorption of sound on bubble density 
can be easily demonstrated by adding some instant coffee to hot water in a 
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Fig. 13.5. Velocity of sound in an air-water mixture (Wood, 1955). 

coffee cup. Tapping the bottom of the cup with a spoon before the powder is 
added gives a clear tone with an easily identified musical pitch. As the instant 
coffee foams up, the pitch drops (by two octaves or more), and the clear 
ring gives way to a rather dull "thud." As the bubbles density decreases, the 
pitch slowly returns to the original water-only pitch (Morrison and Rossing, 
2002). A similar but smaller effect is also observed in beer (Bragg, 1968) and 
hot chocolate (Crawford, 1982). 

13.5.3. Cavitation 

An interesting phenomenon called cavitation occurs when sound waves of 
high intensity propagate through water. When the rarefaction tension phase 
of the sound wave is great enough, the medium ruptures and cavitation 
bubbles appear. It might be expected that sound would induce cavitation 
when the peak sound pressure exceeds the difference between the static and 
vapor pressures, but that is only approximately correct. The cavitation onset 
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depends not only on the static pressure and the bulk physical properties of 
the liquid, but also on the frequency and pulse duration of the sound, the 
dissolved gas and undissolved impurities in the liquid, the past treatment of 
the liquid, and possibly also on the geometry of the sound field (Strasberg, 
1959). 

Minute bubbles are almost always present in the sea. When the peak 
sound pressure exceeds the cavitation threshold, these bubbles expand rap
idly by a process called "rectified diffusion." More gas diffuses inward from 
the liquid to the bubble during the expansion part of the cycle than moves 
outward during the contraction part of the cycle when the bubble surface is 
smaller. After growth to a critical radius, the bubble will expand explosively. 
Near the surface of the sea, the threshold for cavitation is of the order of I 
atm (0.1 MPa). 

Cavitation bubbles may also be produced by the Bernoulli pressure drops 
associated with the tips of high-speed underwater propellers. In fact, cavita
tion is generally the main source of propeller noise. Because cavitation noise 
consists of a large number of random small bursts caused by bubble collapse, 
it has a continuous spectrum. At high frequencies its spectrum decreases with 
frequency at the rate of about 6 dB/octave. As the speed of a ship increases, 
there is a speed at which propeller cavitation begins and the high-frequency 
radiated noise of the vessel suddenly increases. This is called the critical 
speed of the vessel. Above the critical speed, the cavitation noise increases 
more slowly with speed, leading to an S-shaped curve of cavitation noise vs 
ship speed (Urick, 1983). 

13.5.4. Sonoluminescence in Bubbles 

Sonoluminescence is a process in which gas bubbles in a liquid are nucleated, 
caused to grow, and then collapse by ultrasound. As the bubbles collapse, 
they give off flashes of light, which indicate that internal temperatures have 
reached thousands of degrees. The extremely short flashes of light occur at 
regular intervals, indicating that the bubbles grow and collapse repeatedly. 

Although sonoluminescence has been known since the 1930s, it was not 
until Gaitan and colleagues developed a technique for acoustically levitating 
a single bubble and driving it at its resonance frequency that our under
standing of sonoluminescence began. At a certain amplitude, the bubble be
gins to give off flashes of light (Gaitan et al., 1992). In single-bubble sono
luminescence, a small gas bubble that has been acoustically levitated and 
driven into large amplitude volume oscillations by the sound field radiates 
visible light each acoustic cycle (Crum, 1994). The collapsing bubble appar
ently generates an imploding shock wave that compresses and heats the gas 
in the bubble. The light emissions are extremely short in duration (<50 ps) 
and their spectrum suggests that the gas temperature exceeds that of the 
surface of the sun. 
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Problems 

Chapter 1 

1.1. A vibrating system is described by the expression: x = 2cos(l2.57t + 1.05) em. 
What are the displacement, velocity, and acceleration at t = 0 and t = 2 s? 
What are the maximum values of displacement, velocity, and acceleration? 

1.2. For a body executing simple harmonic motion around x = 0 at a frequency of 
3 Hz, the displacement and velocity at t = 0 are 0.25 m and 2 mjs. 
(a) Find the amplitude, the maximum velocity, the maximum acceleration, and 

the phase angle. 
(b) Write the equation of motion and an expression for x. 

1.3. Two particles are oscillating along parallel tracks with the same frequency and 
amplitude. What is their relative phase angle if they pass each other moving in 
opposite directions 
(a) at their equilibrium position; 
(b) where their displacements are half their amplitude? 

1.4. Given that x = a + jb and y = c + jd, 
(a) Find Rex· Re jl; Re(xjl); magnitude (xjl); magnitude x ·magnitude jl. 
(b) Express xy in the form Aei9 . 

1.5. Derive Eqs. (1.24) and (1.25) from Eq. (1.22). 
1.6. A vibrating system consisting of a 2-kg mass and a spring with a spring constant 

of 19.74 Njm is set into oscillation with an amplitude of 1 m. Find the potential 
energy, the kinetic energy, and the total energy at t = 0, t = 0.25 s, t = 0.5 s, and 
t = 1 s. 

1.7. An oscillator with negligible damping has a natural frequency of 10Hz. What is 
the natural frequency of this same oscillator with damping characterized by 
a = 3' s-1? If the phase angle is n /2, write an expression for the displacement of 
the damped oscillator. 

1.8. Show that two springs with spring constants K 1 and K 2 have an effective spring 
constant K 1 K 2 /(K 1 + K 2 ) when connected in series and K 1 + K 2 when con
nected in parallel. 

1.9. A mass of0.25 kg oscillates at 3Hz when supported by a spring oflength 0.3 m. 
If this spring is to be replaced by an air spring of the same length, what diameter 
should its piston have? 

1.10. A uniform spring having a length L and a spring constant K is cut into two 
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pieces, one piece being n times as long as the other, where n is an integer. Write 
the spring constants of the two segments in terms of L, n, and K. What are the 
values of K 1 and K 2 for n = 3? 

1.11. At what frequency does x in Eq. (1.60) have its maximum magnitude? 
1.12. Draw equivalent electrical circuits for the mechanical systems shown, and derive 

expressions for their resonance frequencies: 

~--7F(t) @---ttmr--o --7 F(t) 

(a) (b) 

a-L:J--G --7 F(t) @--'tmr-Ct--e --7 F(t) 

(c) (d) 

1.13. A force f(t) = F sin 2nft is abruptly applied to an initially stationary oscillator 
having a natural frequency fo and Q = 10. Compare the beat rates during the 
transient for f /fo = 0.2, 0.8, 1.0, 1.2, 2.0, and 4.0 to f and fo. 
How many cycles of oscillation will occur before the transient behavior has 
decreased to 37% (1/e) of its initial value? (Compare your solution to Fig. 1.15). 

1.14. Make a graph of A vs. w from Eq. (1.80) using the following values: m = 0.5 kg, 
F0 = 2N, K = 50 N/m, b = 0.2 N/m3 . 

Chapter 2 

2.1. What is the speed of transverse waves on a 2-mm diameter steel string (p = 
7700 kgjm3, E = 19.5 x 1010 Pa) having a tension of 500 N? 

2.2. (a) A nylon guitar string has a mass of 8.3 x 10-4 kg/m and a tension of 56 N. 
Find the speed of transverse waves on the string. 

(b) If the string is 63 em long, what is its fundamental frequency of vibration? 
2.3. By carrying out the integrals in Eq. (2.20), show that the amplitudes of the first 

six harmonics of a string plucked with amplitude h at one-fifth its length are 
0.744h, 0.301h, 0.1338h, 0.0465h, 0, and 0.0207h. 

2.4. Applying the coefficients in Prob. 2.3 to the string in Prob. 2.2, find the energy 
of each mode when the string is plucked with an amplitude of 5 mm at one-fifth 
its length. 

2.5. Find the characteristic impedance of the steel string in Pro b. 2.1 and the guitar 
string in Prob. 2.2. 

2.6. Calculate the input impedance of the guitar string in Pro b. 2.2 driven sinusoidally 
at the center at its fundamental frequency. [Hint: consider it to be two strings of 
length L/2 driven in parallel.] 

2.7. Suppose that one end of the guitar string in Prob. 2.2 is fastened to a bridge that 
can be characterized as having an effective mass of 2 kg at the fundamental 
frequency of the string. Find the fundamental frequency. How does it compare 
to the fundamental frequency calculated in Prob. 2.2 (which assumed a com
pletely fixed end)? 

2.8. Find the frequencies of the first three longitudinal modes of vibration ofthe guitar 
string in Prob. 2.2 (assume E = 5 x 109 Pa, p = 1140 kgjm3 ). Compare these 
to the frequencies of the first three transverse modes. 
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2.9. (a) Find the frequencies of the first three transverse modes of vibration in an 
aluminumbar356 x 38 x 9.5mm(E = 7.i x 1010 Pa,p = 2700kg/m3 )with 
free ends. 

(b) Find the frequencies of the first three longitudinal modes of vibration. 
(c) Find the frequencies of the first three torsional modes of vibration. 

2.10. Sketch the approximate configuration of the nodal lines for each of the nine 
modes in Prob. 2.9. 

2.11. Calculate the inharmonicity constant p and the frequency f 2 of the second partial 
of the following strings: 
(a) A0 string on a grand piano with a steel core diameter of 1.4 mm, L = 1.35 m, 

p = 7700 kgfm3, E = 1.95 x lOll N/m2, T = 941 N, fi = 27.5 Hz [data 
from Podelsak and Lee, JASA 83, 305-317 (1988)]. 

(b) Solid steel A4 string on an upright piano with a diameter of 1.04 mm, L = 53.5 
em, / 1 =440Hz [data from Fletcher, JASA 36, 203-209 (1964)]. 

2.12. By solving Eq. (2.62), show that the bending mode frequencies of a bar with free 
ends are given by Eq. (2.63). 

2.13. What tension would a steel wire I mm in diameter require in order that the 
transverse and longitudinal wave speeds are equal. Is this possible in practice? 

Chapter 3 

3.1. Find the first four vibrational frequencies of a timpani drumhead 66 em in 
diameter, having a surface density of 0.26kg/m2 and a tension of 4000Nfm. 
Are they harmonic? 

3.2. Find the first four vibrational mode frequencies of a square membrane having the 
same area, surface density, and tension as the circular membrane in Prob. 3.1. 

3.3. A cylindrical 1-kg mass with a diameter of 2 em is placed on the drumhead in 
Prob. 3.1. How large is the deflection due to its weight? How large would the 
deflection be if the same mass had a diameter of 1 em? 

3.4. Why is the (2, 0) mode the lowest mode in a circular plate with a free edge? [Why 
are there no (0, 0) and (1, 0) modes?] 

3.5. From Eq. (3.20), derive an expression for Poisson's ratio v in terms off+ and f-· 
Is measuring f+ and f- in a square aluminum plate a practical way to measure v 
in aluminum? 

3.6. Compare the frequencies of the lowest vibrational modes in a square plate with 
free edges, with simply-supported (hinged) edges, and with clamped edges. 

3.7. Using the values forE, h, a, and p following Eq. (3.24), show that the (1, 1) mode 
is raised about 0.004% by the bending stiffness ofthe membrane. How much would 
the frequency change due to bending stiffness be if the membrane were twice as 
thick? 

3.8. Verify that an elliptical plate with afb = 2 has a fundamental frequency 37% 
greater than a circular plate of the same material having the same area and 
thickness. 

Chapter 4 

4.1. Two pendulums consist of 500-g masses suspended by cords 2 m long. They are 
connected by a 30-cm spring having a spring constant K = 0.2 Nfm. 
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(a) Find the frequencies of the two normal modes of vibration. 
(b) If the system is started with pendulum A at rest and pendulum B swinging, 

how long will it be before pendulum B comes to rest? 
(c) If pendulum B is displaced 10 em and released, describe the resulting motion 

(hint: what are the amplitudes of the two normal modes?) 
(d) Would you describe this system as having strong coupling, weak coupling, or 

neither one? 
4.2. In the vibrating system in Fig. 4.6, let K = 0.2 Njm, Kc = 0.1 N/m, and mA = 

m8 = 500 g. Let a force F = 0.5 cos wt newtons be applied to mass A. 
(a) Find the frequencies of all the resonances and antiresonances. 
(b) Find the amplitudes of mass A and mass Bat the antiresonance frequency fA 

and at 2fA· 
(c) Compare the phases of mA and m8 just below and just above the second 

resonance frequency. (Which mass leads and by what phase angle?) 
4.3. In the circuit shown in Fig. 4.9, w1 = 0.8w •. What is the ratio of mutual inductance 

M to self inductance L. (assuming L. = Lb)? 
4.4. In the circuit in Fig. 4.12, let c.= 1000 pF and L. = Lb = 100 mH .. Let Cb vary 

and make a plot similar to Fig. 4.13 (logw vs.logwb) for Cc = 2C. and Cc = 4C •. 
4.5. A freely supported drum has two identical heads with the same tension. Modal 

analysis indicates two modes with frequencies of 160 and 330Hz, in which all 
parts of the batter head move in phase. 
(a) Describe the motion of the entire drum at each of these frequencies. 
(b) If the drum is placed in a bed of sand so that only the batter head can vibrate, 

what would the frequency of its lowest mode be? 
4.6. A guitar string having a mass m = 3.5 g is coupled to a soundboard having an 

effective mass M = 320 g and Q = 60 at its lowest resonance (f = 110Hz). Is this 
a case of strong coupling or weak coupling? Estimate the normal mode splitting 
from Fig. 4.18. 

Chapter 5 

5.1. Show, from a qualitative argument, that the output of a self-excited .van der Pol 
oscillator contains no even-numbered harmonics. 

5.2. Consider a single-mode system as described by Eq. (5.1) but with the spring
constant K a general weakly nonlinear function of y as in a real spring. Show 
that the nonlinearity generates harmonics of all orders, and that for small funda
mental amplitude, the amplitude of the nth harmonic is proportional to the nth 
power of the amplitude of the fundamental. [Use cos"O = 1/2"(ei8 + e-i8)" = 
1/2"-1(cosn8 + ncos(n- 2)8 + "')] 

5.3. Suppose that, in the system of Eq. (5.3), g(y,y, t) = -w~f3y3, corresponding to a 
stiffening nonlinearity in the restoring force. Calculate the dependence of the 
natural frequency w of the oscillator upon the amplitude a. 

5.4. Consider a taut string with fundamental transverse frequency w0 , damping factor 
k, and tension T0 , and suppose that T0 is varied by adding to it a small time-varying 
tension Tcos wt. Find the initial rate of growth of the amplitude a of the mode 
w0 if w = 2w0 • This system is called a parametric oscillator. 

5.5. This is a project, rather than a simple problem! Write a computer program to 
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simulate the behavior of the system described by Eq. (5.1) for the case in which 
the spring constant K is nonlinear, of the form K = K 0 (1 + cty + {3y2 ), and the 
forcing function F(t) is sinusoidal and of frequency w. [Hint: Break the second
order DE into two first-order DEs by writing dyjdt = z. Integrate these two 
equations simultaneously.] Plot the output on the screen as 
(a) an orbit in phase space (y, z) with t as a parameter; 
(b) a Poincare section in phase space, by plotting only one (y, z) point for each 

cycle of F(t); 
(c) a time series y(t). 
An interesting region to investigate has w close to the resonance frequency (Kjm) 112 

or close to twice this frequency, Rjm ::::; 0.02, ct = 0.3, {3 = 0.1, and F jm in the range 
10 to 25. Examples of simple orbits, multiple orbits, and chaotic behavior can be 
found. Display (b) will show the strange attractor for the chaotic case. 

Chapter 6 

Note: In these problems, assume the temperature to be 20°C unless told otherwise. 
6.1. Calculate the amplitude of motion ofthe air near the threshold of human hearing 

for a sound of frequency 1000Hz (taking this as 0 dB re 20 JIPa rms). Repeat this 
near the threshold of discomfort at 120 dB. 

6.2. Using Eqs. (6.33) and (6.20), find the intensity of a sound wave having an rms 
sound pressure of 20 JIPa at ooc. Compare this to the reference level /0 for sound 
intensity. At what temperature does LP = L, for a plane progressive wave? 

6.3. The "ultimate" sound wave would be one that causes the total pressure to drop 
to zero during a rarefaction. Assuming the acoustic wave equations remain linear 
at such large amplitudes (they don't, of course), what would be the sound pressure 
level for such a wave? 

6.4. The fact that the temperature in a sound wave is greater where the air is 
compressed than where it is expanded suggests that compressions propagate 
slightly faster than do rarefactions. Sketch pressure waveforms for waves of low, 
medium, and high amplitude to illustrate how this leads to steep pressure 
gradients at the leading edges of an intense sound wave (and eventually to the 
formation of shock waves). 

6.5. (a) From the density (1000 kg m- 3 ) and bulk modulus (2.2 x 109 N m- 2 } of 
water, calculate the velocity of sound in water and the wave impedance of 
water. 

(b) Calculate, in decibels, the transmission coefficient for a sound wave normally 
incident from air on a water surface. 

6.6. A loudspeaker is specified as producing 93 dB per watt on-axis at 1 meter. What 
is its efficiency, assuming that its radiation is confined to a solid angle of 3 
steradians? 

6.7. The sound from an amplified outdoor concert is annoying (SPL = 60 dB) at a 
distance of 1 km in still air at night. Calculate the approximate acoustic power 
being radiated, and estimate the power output of the amplifiers being used. 
(Neglect atmospheric absorption.) 

6.8. A concert hall is 20 m wide, 60 m long, and 10 m high. The side walls and ceiling 
have an acoustic absorption coefficient of 0.2, the stage wall 0.1, and the rear 



316 Problems 

wall 0.5. When empty, the carpeted floor has IX = 0.3. What is the empty reverber
ation time? If the hall seats 1500 people, each of whom contributes an effective 
absorbance of 0.2 m2, what is the reverberation time when the hall is full? 
Comment on the results from a practical viewpoint. 

6.9. A Helmholtz resonator consists of a spherical cavity of radius 2 em with a neck 
of diameter 1 em. How long must the neck be to give a resonance frequency of 
500Hz? 

6.10. What is the impedance, in acoustic ohms at 1 kHz, of the following: 
(a) an open cylindrical pipe of length 3 em and diameter 5 mm; 
(b) a cavity of volume 20 cm3; 

(c) a plug of cotton wool that allows a steady flow of 1 liter of air per minute 
when the over-pressure is 1 em water gauge (100 Pa)? 

Chapter 7 

7.1. A simple source of sound radiates spherical waves with an acoustic power of 5 
m W at 300 Hz. Calculate the intensity and the amplitudes of acoustic pressure, 
acoustic particle velocity, acoustic displacement, and acoustic condensation at a 
distance of 0.5 m from the source. 

7.2. Calculate ka for the following cases, and comment on the relative magnitudes of 
acoustic resistance Rand acoustic reactance X: 
(a) a drumhead 66 em in diameter vibrating at 140Hz; 
(b) a loudspeaker 20 em in diameter vibrating at 100Hz; 
(c) a tone hole in a clarinet radiating A4 (f =440Hz). 

7.3. A small loudspeaker set in the wall of a closed box produces a sound pressure 
level of70 dB at 100Hz at a point on its axis at a distance of 10m. What reduction 
in the sound level do you expect if the back is taken off the speaker box, the depth 
of the box being 15 em? 

7.4. A small constant-flow (high impedance) source produces a sound pressure level 
at 200 Hz of 70 dB at a distance of 5 m in free air. What level do you expect at 
this distance if the source is placed just in front of a large brick wall? What level 
do you expect if it is placed in a corner where three mutually perpendicular walls 
meet? 

7.5. From Eq. (7.30) and a table of Bessel functions, find, in terms of ka, the angle at 
which the intensity radiated by a circular piston of radius a set in a plane bafile 
is less than the on-axis value by 3 dB. 

7.6. The loudspeaker in a small radio has a diameter of 5 em. How large must be its 
vibration amplitude if it is to produce an output power of 1 mW at 100 Hz, 
assuming that the radio is sealed at the back? Comment on the design of small 
radios. 

7.7. A guitar string has a diameter of 1 mm and vibrates with an amplitude of 2 mm 
when the note A4 (440Hz) is played loudly. If the string length is 60 em, what is 
the power radiated directly from the string? How does this compare with the 
power radiated by the guitar body, ifthe sound pressure level measured at 1m is 
80dB? 
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Chapter 8 

8.1. What is the characteristic impedance of an infinite cylindrical pipe of radius 1 em? 
8.2. From Eq. (8. 7) calculate the phase velocity and group velocity of a higher mode, 

specified by its value of qmn• in a duct. Sketch the behavior of these two velocities 
as the frequency approaches the mode cutoff frequency from above. 

8.3. The probe tube of a microphone has diameter 1 mm and length 10 em. Assuming 
the tube to be matched to the microphone so that there are no reflections, calculate 
the tube attenuation in decibels at 100Hz, 1kHz, and 10kHz. 

8.4. An organ pipe has a length of 2 m and a diameter of 20 em. Using the results 
shown in Fig. 8.9, calculate the percentage inharmonicity of its first five resonances 
due to variation of the open end correction. [In practice the variation of the 
correction at the mouth end of the pipe is much more important.] 

8.5. Show that the expressions (8.24) and (8.25) for rigidly stopped and ideally open 
pipes reduce to the expressions (9.5) and (9.3) respectively when the pipe is short 
compared with the wavelength of sound considered. 

8.6. An exponential horn has a throat diameter of 2 em, a mouth diameter of 60 em, 
and a length of 1 m. Calculate its cutoff frequency. How can we lower this 
frequency and still achieve the same horn gain? 

8. 7. What is the cutoff frequency for the (1, 0) mode in: 
(a) an automobile exhaust tailpipe with a diameter of 50 mm; 
(b) a trumpet bore with a diameter of 11 mm; 
(c) a heating duct with a diameter of 30 em? 
Comment on whether you would expect to find acoustic waves other than plane 
waves in these tubes. 

Chapter 9 

9.1. What is the acoustic impedance of an infinite air-filled pipe of diameter 30 mm 
and of a ventilation duct 50 em x 30 em? 

9.2. What is the acoustic impedance at 1 kHz of a freely moving solid piston of 
thickness 1 mm and density 2000 kg m - 3 placed in each of the ducts of example 
1? Does the piston effectively block the tube or duct (a) at 1000Hz, (b) at 100Hz, 
(c) at 10Hz? 

9.3. A loudspeaker cone has diameter 200 mm, mass 50 g, and resonance frequency 
100 Hz. What will be its resonance frequency when it is mounted in one side of 
an otherwise closed box of volume 0.05 m3? 

9.4. A loudspeaker having a cone with acoustic impedance Zc is mounted in a bass
reflex enclose with cavity impedance Zv and port impedance ZP. Find an equation 
from which the two lowest bass resonance frequencies can be calculated. 

9.5. Find an expression from which can be calculated the resonance frequencies for a 
pipe of length I and cross section S closed at one end by a slack diaphragm of 
mass m (equivalent to a free piston). Show that this goes to the expected limits for 
very light and for very heavy diaphragms. 

9.6. [This is more a project than a simple problem.] Write a computer program to 
evaluate and plot as a function of frequency the input impedance p/U given by 
(9.17) for the Helmholtz resonator shown in Fig. 9.6, assuming reasonable values 
for the physical dimensions and neglecting losses in compression of the air in the 
cavity. 
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Chapter 11 

11.1. An auditorium has dimensions 40 m x 20m and a ceiling height of 15m. The 
front and back walls are covered with plywood paneling; the side walls and 
ceiling are plaster. The floor is wood. There are 1100 wooden seats. Estimate 
the reverberation time (500Hz) when 
(a) The hall is empty; 
(b) Half the seats are filled; 
(c) All the seats are occupied. 

11.2. Estimate the time delay t1 of the first reflected sound for a person seated near 
the center of the auditorium described in Problem 11.1. Does the first reflection 
arrive from the side or from overhead? 

11.3. If the ceiling in this auditorium were covered with acoustical tile, by how much 
would the reverberation time be decreased? 

11.4. Find the reverberation time at 8000 Hz for a very live room having a volume 
of 1000 m3 when the temperature is 20°C and the relative humidity is 30%. 
Assume that absorption by the walls in negligibly small. Would your answer be 
different if V = 100m3 instead? 

11.5. Calculate the frequencies of the first three resonances of a room with di
mensions 5 m x 10m x 2.5 m. Do they have any significance acoustically? 

11.6. Design a perforated panel absorber that would have a resonance frequency at 
500Hz. 

11.7. Estimate the number of modes between 0 and 100 Hz in a room 10 m x 
8mx3m. 

11.8. Find the Schroeder cutoff frequency in the auditorium given in Problem 11.1 
and also in the room in 11.7 if the reverberation time is 1 second. 

Chapter 12 

12.1. A noise source and a listener are both 1 m above a hard surface and 20 m 
apart. At what frequencies will the first two maxima and minima in sound level 
occur at the receiver? 

12.2. What is the cutoff frequency at a source-to-receiver distance of 40 mover grass
covered ground? 

12.3. By what percentage does the sound velocity fluctuate when the temperature 
fluctuates by 5°C? 

12.4. Far more people are affected by truck noise than by airplane noise. Why are 
there fewer comlaints, citizens, protest groups, etc. directed against highway 
noise? 

12.5. (a) If an automobile traveling at 60 mi/hr emits 0.01 W of acoustical power, 
estimate the average continuous power from 100 million automobiles, each of 
which travels 10,000 mi per year. (b) Make an estimate of the peak acoustical 
power. (How many automobiles might be traveling at a peak hour of the day?) 

12.6. Calculate the total force on a wall of a typical house due to an overpressure of 
20 N/m2 in a sonic boom. 



Problems 319 

Chapter 13 

13.1. A simple echo sounder receives an echo 20 s after the transmitted pulse. At 
what distance is the target? 

13.2. Show by direct substitution that 12.4 is a solution of equation 12.3. 
13.3. If the impedance of the sea bed is 3 times as great as that of sea water, what is 

the reflection coefficient for sound at the bottom? 
13.4. (a) Estimate the frequency of the lowest mode of oscillation in the water in a 

coffee cup assuming longitudinal wave propagation in a column of water 7 em 
long with one open and one closed end. 
(b) Assume that adding instant coffee produces a foam that is 50% air, what 
frequency would the lowest mode of oscillation have? 



Answers to Selected Problems 

1.1. t = 0: x = 1 em, v = -21.8 cmjs, a= -157 cmfs2 

t = 2: x = 0.98 em, v = -21.9 cm/s, a= -155 cmjs2• 

1.3. (a)¢>= 7t; (b)¢>= ±2nf3. 

1.7. fd = 9.99 Hz; x = Ae-31 cos(62.76 t + 7t/2). 

1.9. D = 0.015 m. 

1.13. 4f, 0.25/, 0, 0.5/, 0.75!; 3.18 cycles. 

2.1. 144 m/s. 

2.4. 3.03 x w-3 J, 1.99 x w-3 J, 8.84 x w-4 J, 1.90 x w-4 J, o, 8.46 x w-s J. 
2.5. 3.48 Ns/m, 0.216 Ns/m. 

2.7. 206 + 3.3 X 10-3 Hz; 2.7 X 10-3 % greater. 

2.9. (a) 395 Hz, 1089 Hz, 2135 Hz. 
(b) 7202 Hz, 14,404 Hz, 21,606 Hz. 
(c) 2208Hz, 4416Hz, 6624Hz. 

2.11. (a) fJ = 9.26 x 10-3,/2 = 55.5 Hz. 
(b) fJ = 0.0104, f 2 = 889.7 Hz. 

2.13. T = 1.53 x 105 N; far greater than the breaking force. 

3.1. 144Hz, 229Hz, 307Hz, 330Hz. 

3.3. 17 mm, 20.5 mm. 

!1-f! 
3.5. v = 1.388 J2 J2 

+ + -
3.7. About 0.02%. 

4.1. (a) 0.352 Hz, 0.380 Hz. 
(b) 17.9 s 
(c) XA = 0.05(cosw1t- COSW2t); XB = 0.05(COSW!t + COSW2t). 

4.3. 0.5625. 
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4.5. (b) 259Hz. 

5.3. w0 ( 1 + ~ Pa2) 

5.4. a = [ :~:- k} 
6.1. l.l X 10-11 m; 1.1 X 10- 5 m. 

6.3. 191 dB. 

6.5. 1480 mjs; 1.48 x 106 ray!; -29 dB. 

6.7. 6 W acoustic into a hemisphere; about 1 kW unless high-efficiency speakers are 
used. 

6.9. 2.1 em when 3 mm end correction is allowed at each end of the neck. 

7.1. 1.6 x 10-3 W/m2 ; 1.15 Pa; 2.8 x 10-3 m/s; 1.5 x 10-6 m; 1.1 x 10- 5 (amplitudes 
are peak, not rms). 

7.3. 5 dB 

7.5. 1.62/ka 

7.7. 12.7 x IQ-7 W or 30 dB less than that radiated by the body. 

8.1. 1.32 x 106 acoustic ohms. 

8.3. 0.5 dB; 1.6 dB; 5.2 dB. 

8.6. 185Hz. 

8.7. 4kHz, no?; 18kHz, no; 670Hz, yes. 

9.1. 5.9 x 105 and 2770 acoustic ohms (Pa sjm3 ), respectively. 

9.3. 107Hz 

wl peS 
9.5. wcot~ = --

c m 
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Sabine equation 153 
Salmon horns 193 
self-excited systems 133-134 
shells 

nonlinear vibration 88 
shallow spherical 86-89 

simple harmonic motion 
described by complex variables 6-7 
of mass-spring system 4-5 
superposition of more than one 

7-9 
slowly-varying parameters 126-130 
Snell's law 149 
softening spring system 27, 129-130 
sonar 297-300 

active 298 
Doppler 300 
multibeam 298 
passive 299 

sonic boom 291--292 
sonoluminescence 306 
sound diffusers 269-270 
sound field in rooms 251-275 
sound pressure level 145-146 
sound sources 

arrays of 162-164 
dipole 158-159 
monopole 157-158 
pairs of 160-162 
quadrupole 159-160 

specific acoustic impedance 143-144 
See also wave impedance 

speed of sound 
in free air 142 
iri pipes 180 
in water 294-296 

spherical waves 143-144 
stiffness 118 

ofbars 55 
of membranes 70 
of plates 71-72 

strings 
bowed 45-47 
coupled by a bridge 114-11 7 
coupled to sound board 112-114 
d'Alembert's solution to wave 

equation 36 
damping 50-53 
energy 39 
impedance 4 7-48 

Subject Index 329 

longitudinal waves 53-54 
mass-loaded 61-63 
motion of end supports 48-50 
plucked 39-42 
standing waves on 38 
stiff 61-63 
struck 42-44 
transverse wave equation 35-36 
wave reflection 36-37 

studios, small rooms 267-271 
surface waves 282-283 
systems 

high frequency 216-226 
low-frequency 209-215 
multi-port 224-226 
auditory 139, 224 

thermal conductivity 
and attenuation in free air 153 
and wall losses 179, 219 

time-domain calculations 203-206 
transducers 229-249 

accelerometers 248-249 
force 248-249 
hydrophones 246-247 
sound pressure (microphones) 229-

242 
ultrasonic 247-248 

transmission loss 273-275 
transmission of sound 

through panels 150 
in solids 149-150 
normal incidence 14 7-148 
oblique incidence 148-150 

two-port elements 216 

ultrasonic transducers 247-248 
underwater sound 294-306 

van der Pol equation 130-131 
velocity of sound 

in air 142 
in pipe 180 
variation with temperature 142 

vibrations 
linear array of oscillators 33-34 
of strings 35-53 



330 Subject Index 

viscosity 
and wave attenuation 153 
and wall losses I 79 

wall impedance 154 
wall losses 

in cavities 154 
in pipes 178-181 
in rooms 153 

wave equation 139-143, 154 
in cylinders 176 
in horns 189-192 
in one dimension 142 
in polar coordinates 144 
in three dimensions 143-144 

wave impedance 
and reflection 14 7-150 
and transmission 14 7-150 
for spherical wave 144 
of air as function of temperature 

143 
wave propagation 

in free air 139-145 
in horns 189-194 
inpipes 175-181 

waves 
plane 139-143 
longitudinal 139 
spherical 143-145 

waves, surface 282-283 
Webster equation 191 


