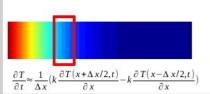


EEN-1020 Heat transfer

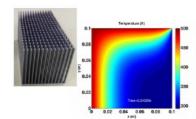
Week 2: Fins, 2d Conduction, Thermal Resistance, and Numerical Solution in 2d

Prof. Ville Vuorinen October 31st- Nov. 1st 2023 Aalto University, School of Engineering

Week 1: Energy conservation, heat equation, conduction convection Fourier/Newton



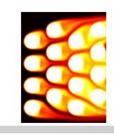
Week 2: Fin theory, conduction, intro to



Week 3: convective heat transfer – internal flow (channel)

Week 4: convective heat transfer – external flow (fin systems)

Week 5: natural convection, boiling, correlations



On the heat transfer course, we have "5 friends" i.e. 5 main principles that are used to explain heat transfer phenomena

- 1) Energy conservation: "J/s thinking"
- 2) Fourier's law
- 3) Newton's cooling law
- 4) Energy transport equation convection/diffusion equation
- 5) Momentum transport equation Navier-Stokes equation

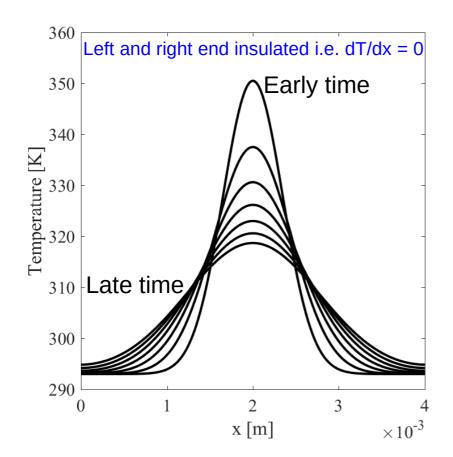
Lecture 2.1 Theory: Fins and thermal resistance

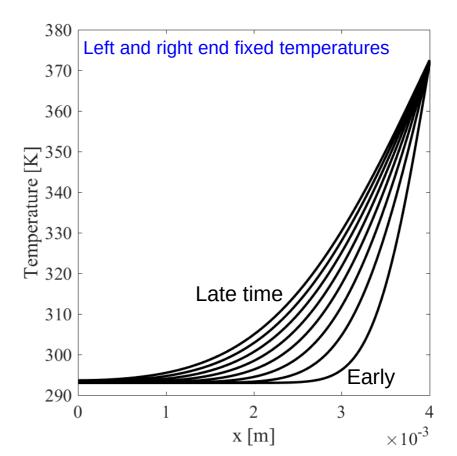
ILO 2: Student can apply Fourier's law and Newton's law in fin theory and thermal resistance context. Further, the student can analyse 2d heat transfer data in Matlab and formulate an energy balance for 2d system.

Thermal resistance

Two examples of heat diffusion in 1d

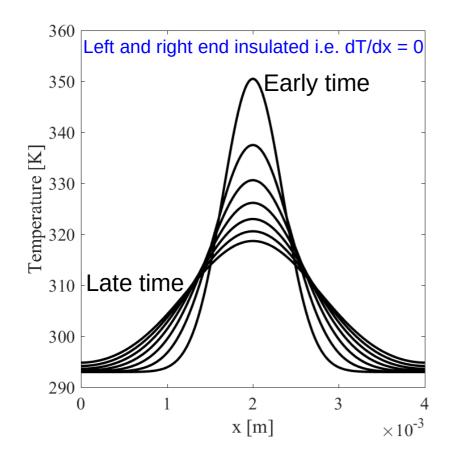
- Left: initially Gaussian temperature profile diffuses. Amplitude decreases and the distribution spreads with time. The domain ends are insulated \rightarrow heat does not escape from the domain. $q_{left} = q_{right} = 0$. Note: for fixed q bc T results.
- **Right:** initially constant temperature object is heated from right end. Temperature diffuses to the left end. Both ends are at fixed temperatures. $T_{left} = 293K$ and $T_{right} = 373K$. **Note:** for fixed T bc q results.

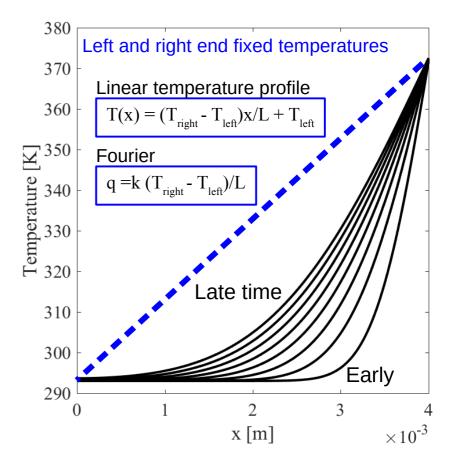




Two examples of heat diffusion in 1d

- **Left:** initially Gaussian temperature profile diffuses. Amplitude decreases and the distribution spreads with time. The domain ends are insulated \rightarrow heat does not escape from the domain. $q_{left} = q_{right} = 0$. **Note:** for fixed q bc T results.
- **Right:** initially constant temperature object is heated from right end. Temperature diffuses to the left end. Both ends are at fixed temperatures. $T_{left} = 293K$ and $T_{right} = 373K$. **Note:** for fixed T bc q results.





Recall from last week: example → "energy efficient window"

More difficult: know surface temperatures in practice

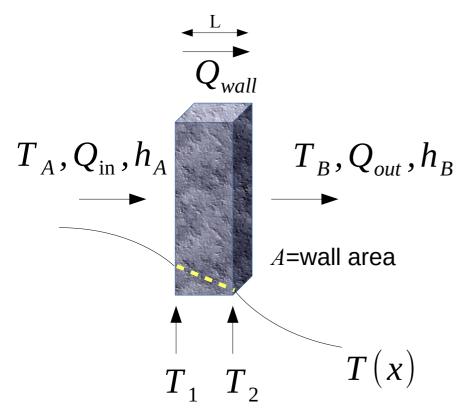
Remark 1: if we know surface temperatures T_1 and T_2 on both sides of a window it is easy to calculate escaping heat flux using Fourier's law But, in practice we seldom know those surface temperature values.

Remark 2: T_1 and T_2 do not correspond to the indoor room temperature and outdoor temperature values. Also airflow on boths sides of the windows will affect the actual surface temperature values.

Remark 3: It is easy to measure T_{room} and T_{out}

More easy: know "bulk" temperatures of working fluids.

Derivation of steady state heat rate ([Q]=W=J/s) through a wall. Convective heat transfer coeff. h (wind&indoor ventilation)



In steady state:

$$Q_{\rm in} = Q_{wall} = Q_{out} = Q$$

Newton's law:

$$Q/(h_A A) = (T_A - T_1)$$
 (1)

Fourier's law:

$$Q/(kA/L) = (T_1 - T_2)$$
 (2)

Newton's law:

$$Q/(h_B A) = (T_2 - T_B)$$
 (3)

Sum: (1) + (3) and note that T_2 - T_1 appears i.e. - (2)

$$T_A - T_B + T_2 - T_1 = Q/(h_A A) + Q/(h_B A)$$

Wall heat rate (W):

$$Q = \frac{T_A - T_B}{1/(kA/L) + 1/(h_A A) + 1/(h_B A)}$$

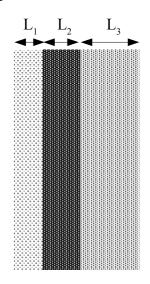
Note: If you know Q you also know T_1 and T_2 and T(x).

Thermal resistance – composite wall with multiple (i=1,2,...,N) material layers

Heat rate in analogy with Newton's cooling law:

$$Q = UA \Delta T$$
, with $\Delta T = T_A - T_B$

$$Q = \frac{A \Delta T}{\sum_{i} 1/(k_{i}/L_{i}) + 1/(h_{A}) + 1/(h_{B})}$$



Overall heat transfer coefficient ([U]=W/m²K):

$$U = \frac{1}{\sum_{i} 1/(k_{i}/L_{i}) + 1/(h_{A}) + 1/(h_{B})}$$

Thermal resistance ([R]=K/W):

$$R_{tot} = \frac{1}{U A}$$

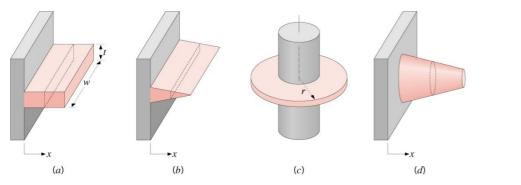
Some benefits of thermal resistance concept:

- → design of thermal insulation (buildings, clothes, combustion)
- → allows to maximize or minimize heat flux
- → allows designs to avoid hot pools of temperature from forming
- → allows to design temperature profiles (e.g. avoid condensation)

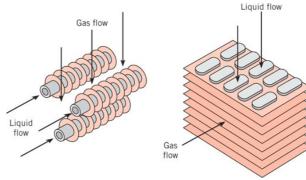
Fin theory

Fins and fin theory

- To enhance heat transfer between solid and fluid phases
- Conduction along the fin, conduction and convection outside the fin
- Temperature distribution inside the fin in crucial role.
- In many circumstances T=T(x) i.e. 1d temperature distribution
- It enables formulation of 1d energy balance i.e. heat equation for a fin
- Such 1d conduction assumption in fin context is called fin theory.



Basic fin types



Typical finned-tube heat exchangers

Fins – surface extrusions that increase area of surface to increase heat transfer

3d printed heat exchangers intended for air cooling (V.Vuorinen, K.Kukko, K.Saari)

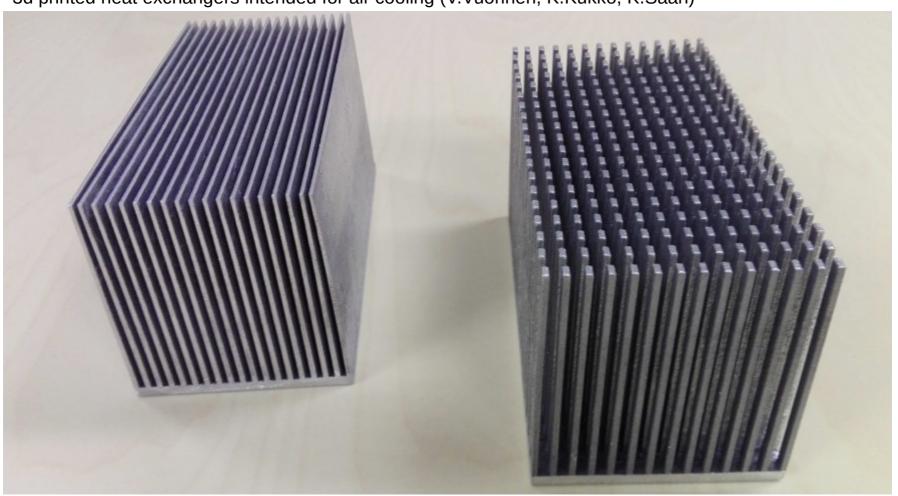


Plate fins Pin fins

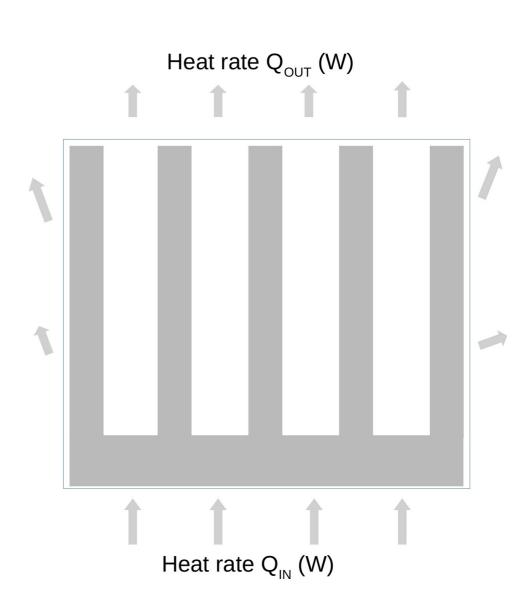
Energy balance (J/s thinking) for a heated object (mass m, specific heat c_p)

Energy balance:

$$Q_{\text{IN}} - Q_{\text{OUT}} = c_p m \frac{\Delta T_{ave}(t)}{\Delta t}$$

Steady state:

$$Q_{\text{IN}} = Q_{\text{OUT}}$$



Temperature distribution inside the fin in crucial role:

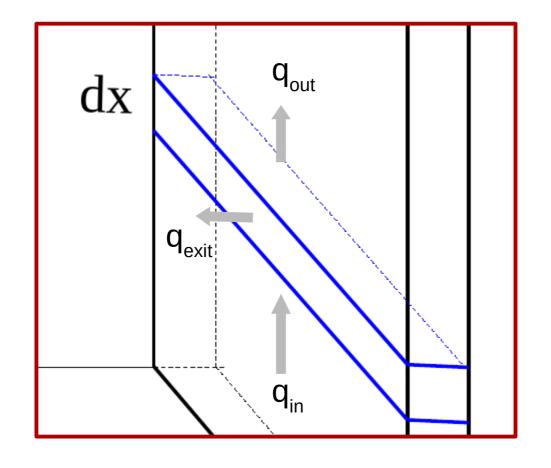
- → If we knew T=T(x) along a fin we could calculate the power which enters each fin. Also, we could try to optimize the fins & material costs to have good efficiency For heat transfer.
- \rightarrow We would then also know the entering heat flux to the fins.

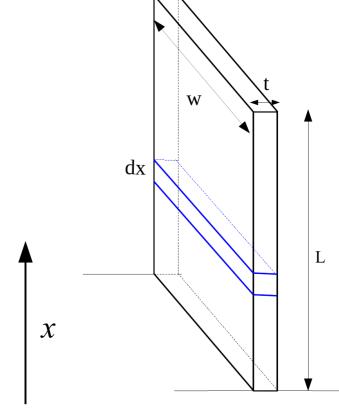
Local energy balance (J/s thinking) for a single fin

Single fin

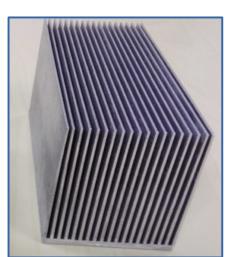
Energy balance in steady state (J/s):

$$q_{\rm in} - q_{\rm out} - q_{\rm exit} = 0$$





$$T=T(x)$$



Local energy balance (J/s thinking) for a single fin

Fourier's law:

Energy conducts (J/s) into a small volume

$$q_{\rm in} = -kA_c \frac{dT(x-dx/2)}{dx}$$

$$A_c = wt$$

Fourier's law:

Energy conducts (J/s) out of a small volume

$$q_{\text{out}} = -kA_c \frac{dT(x+dx/2)}{dx}$$

Newton's law:

Energy exits (J/s) from fin to fluid (strip of area dA_s height dx, perimeter P=2(L+d))

$$q_{exit} = hdA_s (T - T_{\infty})$$
$$dA_s = 2(w+t)dx$$

Local energy balance (J/s thinking) for a single fin

$$q_{\rm in} - q_{\rm out} - q_{\rm exit} = 0$$

$$kA_{c}\left(-\frac{dT(x-dx/2)}{dx}+\frac{dT(x+dx/2)}{dx}\right)-hdA_{s}(T-T_{\infty})=0$$

$$A_c = wt$$

$$dA_s = 2(w+t)dx = Pdx$$

When $dx \to 0$ we get the heat equation for T=T(x) in the fin but now the equation has also a heat loss term as heat escapes to the fluid:

$$\frac{d^2T}{dx^2} = \frac{hP}{kA_c}(T - T_\infty)$$

$$m^2 = \frac{hP}{kA_c}$$

Definition of derivative

$$\frac{1}{\Delta x} \left(\frac{dT(x+dx/2)}{dx} - \frac{dT(x-dx/2)}{dx} \right) = \frac{d^2 T(x)}{dx^2}, \text{ when } \Delta x \to 0$$

Incropera: 1d Temperature Distribution and Heat Loss Along a Fin

Table 3.4 Temperature distribution and heat loss for fins of uniform cross section

C ase	Tip Condition $(x = L)$	Temperature Distribution $\theta/\theta_{ m b}$	Fin Heat Transfer Rate q	
A	Convection heat transfer: $h\theta(L) = -kd\theta/dx _{x=L}$	$\frac{\cosh m(L-x) + (h/mk) \sinh m(L-x)}{\cosh mL + (h/mk) \sinh mL}$ (3.70)	$M \frac{\sinh mL + (h/mk) \cosh mL}{\cosh mL + (h/mk) \sinh mL}$ (3.72)	
В	A diabatic $d\theta/dx _{x=L}=0$	$\frac{\cosh m(L - x)}{\cosh mL}$ (3.75)	M tanh mL (3.76)	
С	Prescribed temperature: $\theta(L) = \theta_L$	$\frac{(\theta_{L}/\theta_{b}) \sinh mx + \sinh m(L - x)}{\sinh mL}$	M $\frac{(\cosh mL - \theta_L/\theta_b)}{\sinh mL}$	
		(3.77)	(3.78)	
D	Infinite fin $(L \rightarrow \infty)$: $\theta(L) = 0$	e^{-mx} (3.79)	M (3.80)	
	T_{∞} $m^2 = hP/kA_c$ = $T_b - T_{\infty}$ $M = \sqrt{hPkA_c}\theta_b$			

$$\frac{d^2T}{dx^2} = \frac{hP}{kA_c}(T - T_\infty)$$

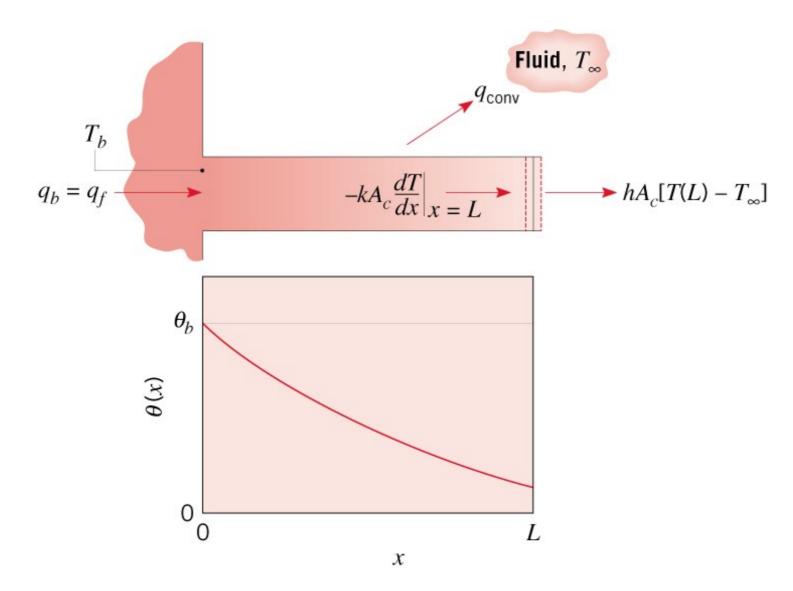


Figure 3.18 (Incropera): Conduction and convection in a fin of uniform cross section.

Example: Find temperature distribution and heat rate in a very long copper rod (diameter D=5mm) with T_b =373K and T_{∞} = 298K and convection coefficient due to airflow h=100W/m²K

Table 3.4: For long fins →

Temperature distribution

$$T(x) \approx T_{\infty} + (T_b - T_{\infty})e^{-mx}$$

Estimate thermal conductivity at average temperature = 335K from the Appendix (Incropera)

$$k = 398 W/mK$$

Estimate m:

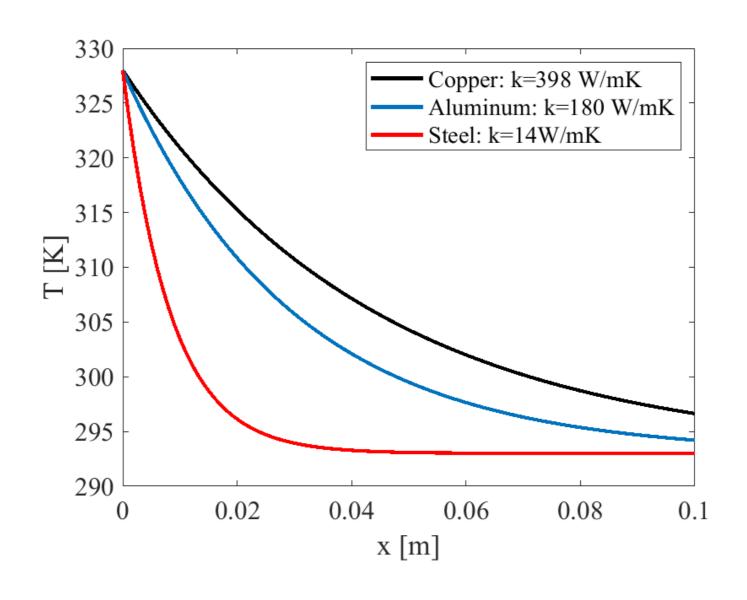
$$m = \sqrt{\frac{hP}{kA_c}} = \sqrt{\frac{4h}{kD}} \approx 14.2 \, m^{-1}$$

Table 3.4: Heat rate →

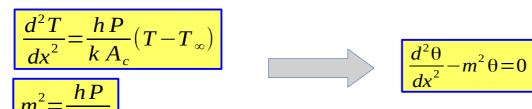
$$q_f = \sqrt{hPkA_c} \theta_b = 8.3 W$$

Example temperature profiles for another infinitely long fin assuming

$$T_b = 328K, T_{\infty} = 293K$$

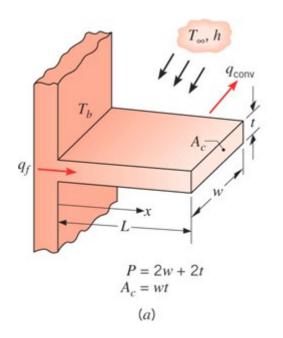


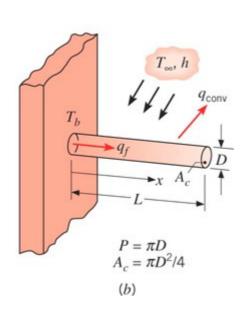
Origin of table 3.4? Write the fin heat conduction equation in more compact form and note the general solution with BC's.



 → General solution (hyperbolic functions are linear comb. of exp. functions)

$$\theta = C_1 e^{mx} + C_2 e^{-mx}$$





- \rightarrow For different boundary conditions, we can always solve the temperature distribution T(x).
- \rightarrow When we know T(x), we can calculate the heat transfer rate in two different ways.
- 1) Fourier's law
- 2) Newton's cooling law

Fin effectiveness

Fin effectiveness: (heat transfer rate with fin) / (heat transfer rate without fin)

$$\epsilon_f = \frac{q_f}{hA_{c,b}\theta_b}$$

Usage of fins typically justified if > 2

Common assumption (not reality but useful)

 \rightarrow assume that h is unaffected by 1) spatial position, and 2) presence of fins

Fin effectiveness (for infinitely long fin) reads (Table 3.4):

$$\epsilon_f = \left(\frac{kP}{hA_c}\right)^{1/2}$$

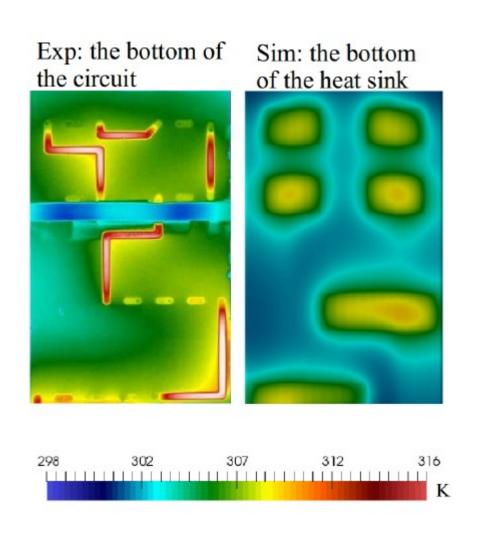
Heat transfer enhancement if:

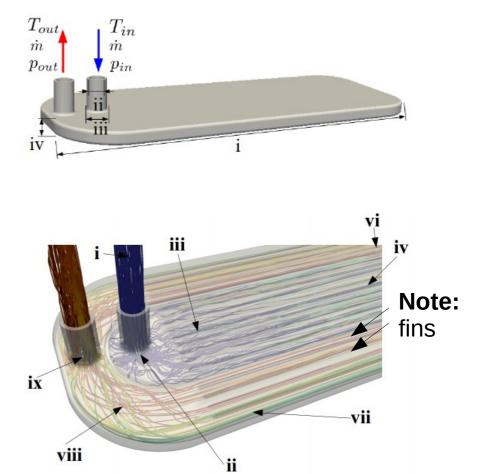
- \rightarrow perimeter to the area increased \rightarrow prefer thin, closely spaced fins but not too close to not impede flow (e.g. laminarization/stagnation) between fins
- \rightarrow if k/h is "small" then more need for fins (e.g. natural convection)
- → if fluid is gas then more need for fins

Example: automobile radiator (fins on the air flow side, hot water in the inside)

A few examples from our own research

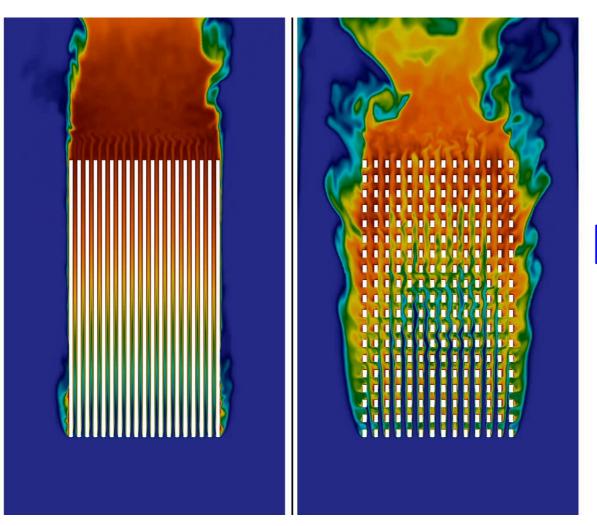
Example: liquid cooling an electric circuit by placing a cooling plate with 3d printed finned microchannels on top of the circuit





Example: heat exchanger and air cooling for two fin types.

CFD simulation of air temperature from a cross-section of heat exchanger under forced convection: P.Peltonen (2017)



 $c_p \dot{m} \Delta T = Power$

Plate fins

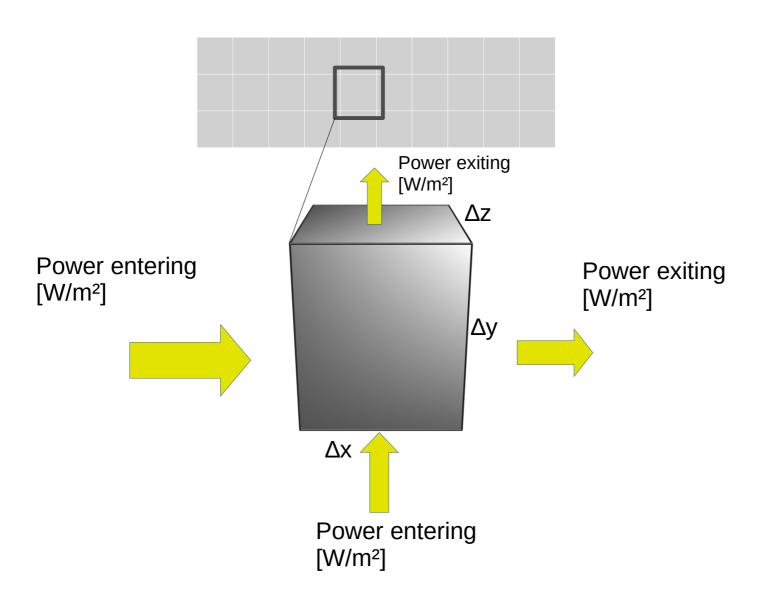
Pin fins

Lecture 2.2 Numerical approach: a Matlab solver for the 2d heat equation

ILO 2: Student can apply Fourier's law and Newton's law in fin theory and thermal resistance context. <u>Further, the student can analyse 2d heat transfer data in Matlab and formulate an energy balance for 2d system</u>.

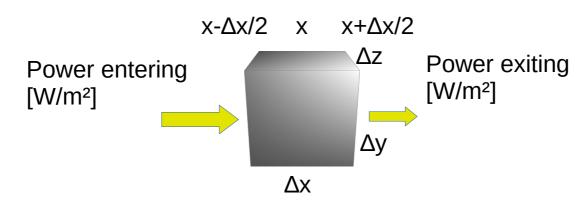
Consider heat conduction in 2d or 3d object (e.g. metal plate).

Divide the object into small elements and carry out energy balance analysis for 1 of those elements. Assume: no heat losses.



Derivation of heat equation:

Next we apply energy conservation law ("J/s thinking") for a small infinitesimal volume assuming conduction only (e.g.1d metal rod)



Energy increase of element due to heat fluxes in x-direction during Δt (J):

$$\Delta Q_{x} = \left[k \frac{\partial T(x + \Delta x/2, y, t)}{\partial x} - k \frac{\partial T(x - \Delta x/2, y, t)}{\partial x}\right] \Delta y \Delta z \Delta t$$

Energy increase of element due to heat fluxes in y-direction during Δt (J):

$$\Delta Q_{y} = \left[k \frac{\partial T(x, y + \Delta y/2, t)}{\partial y} - k \frac{\partial T(x, y - \Delta y/2, t)}{\partial y}\right] \Delta x \Delta z \Delta t$$

Energy increase of element during Δt (J):

$$\rho c_p \Delta T(x,t) \Delta x \Delta y \Delta z = \Delta Q_x + \Delta Q_y + \Delta Q_z$$

Then: Divide both sides by $\Delta x \Delta y \Delta z \Delta t$ and take the limit when all Δ -variables $\to 0 \to We$ get the heat equation.

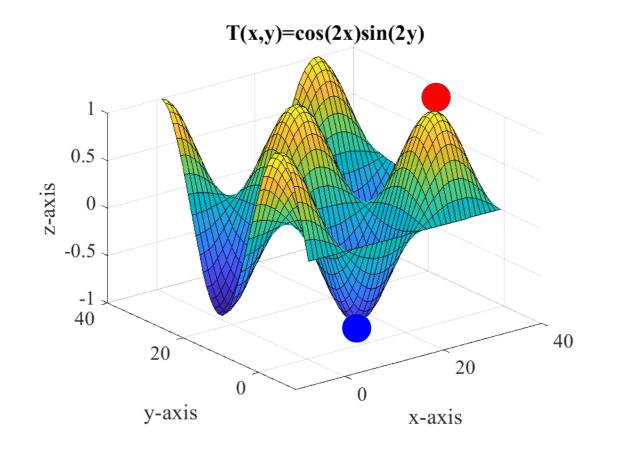
Heat equation in 2d. Well, it is just thermal energy conservation law.

General form

$$\frac{\partial T}{\partial t} = \nabla \cdot \alpha \nabla T$$

Terms opened in 2d (assume α = constant)

$$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2} + \alpha \frac{\partial^2 T}{\partial y^2}$$



What do the partial derivatives represent? Mathematical interpretation?

General form

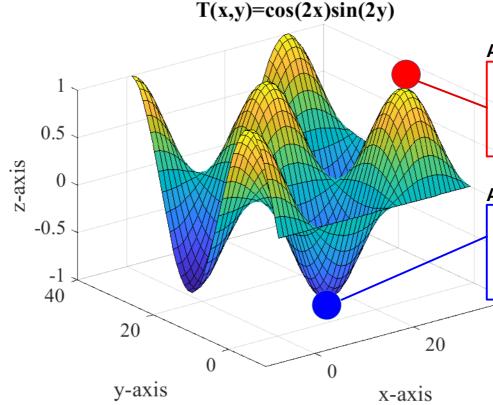
$$\frac{\partial T}{\partial t} = \nabla \cdot \alpha \nabla T$$

Terms opened in 2d (assume α = constant)

$$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2} + \alpha \frac{\partial^2 T}{\partial y^2}$$

 $\frac{\partial T}{\partial t} < 0$

In conduction problems heat conducts (diffuses) from hot to cold.



At a local maximum of a function:

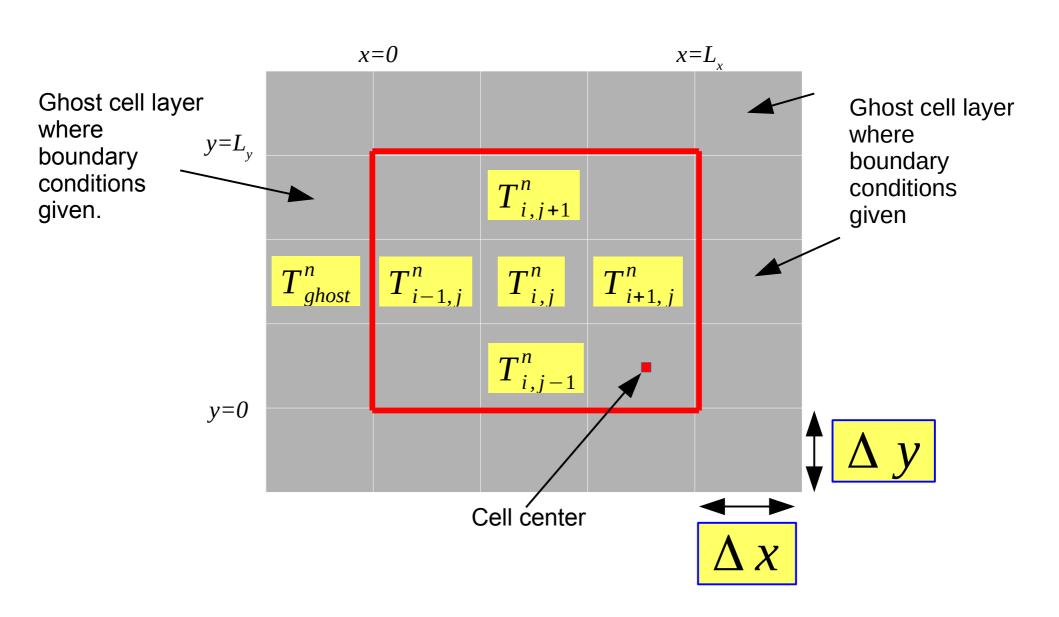
$$\frac{\partial^2 T}{\partial x^2} < 0$$
 and $\frac{\partial^2 T}{\partial y^2} < 0$

At a local minimum of a function:

$$\frac{\partial^2 T}{\partial x^2} > 0$$
 and $\frac{\partial^2 T}{\partial y^2} > 0$

$$\frac{\partial T}{\partial t} > 0$$

On computers, we can solve heat equation by finite difference methods. We discretize a 2d domain into small elements.



Finite difference discretizations

X:

General form of heat equation

$$\frac{\partial T}{\partial t} = \nabla \cdot \alpha \nabla T$$

Time derivative in cell (i, j) at timestep n

$$\left| \left(\frac{\partial T}{\partial t} \right)_{i,j}^{n} \approx \frac{T_{i,j}^{n+1} - T_{i,j}^{n}}{\Delta t} \right|$$

Terms opened in 2d

$$\frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \alpha \frac{\partial T}{\partial x} + \frac{\partial}{\partial y} \alpha \frac{\partial T}{\partial y}$$

Second space derivatives at cell (i,j)

$$\left(\frac{\partial^2 T}{\partial x^2}\right)_{i,j}^n \approx \frac{T_{i+1,j}^n - 2T_{i,j}^n + T_{i-1,j}^n}{\Delta x^2}$$

y:
$$\left| \left(\frac{\partial^2 T}{\partial y^2} \right)_{i,j}^n \approx \frac{T_{i,j+1}^n - 2T_{i,j}^n + T_{i,j-1}^n}{\Delta y^2} \right|$$

Update Formula by Explicit Euler Method

Explicit Euler timestepping for 2d heat equation:

$$CFL = \frac{\alpha \Delta t}{\Delta x^2}$$

$$T_{i,j}^{n+1} = T_{i,j}^{n} + \Delta t \alpha \frac{T_{i+1,j}^{n} - 2T_{i,j}^{n} + T_{i-1,j}^{n}}{\Delta x^{2}} + \Delta t \alpha \frac{T_{i,j+1}^{n} - 2T_{i,j}^{n} + T_{i,j-1}^{n}}{\Delta y^{2}}$$

Which is equal to the "delta" form:

$$\Delta T_{i,j}^{n} = \Delta t \alpha \frac{T_{i+1,j}^{n} - 2T_{i,j}^{n} + T_{i-1,j}^{n}}{\Delta x^{2}} + \Delta t \alpha \frac{T_{i,j+1}^{n} - 2T_{i,j}^{n} + T_{i,j-1}^{n}}{\Delta y^{2}}$$

Where:

$$\Delta T_{i,j}^{n} = T_{i,j}^{n+1} - T_{i,j}^{n}$$

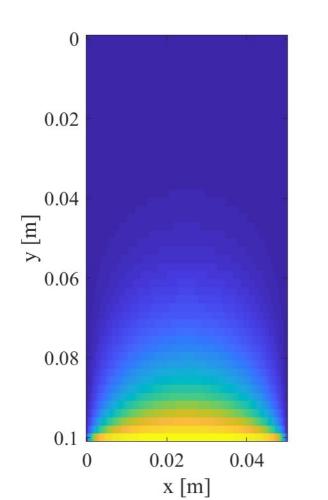
Numerical solution of temperature distribution in a heated 2d metal plate

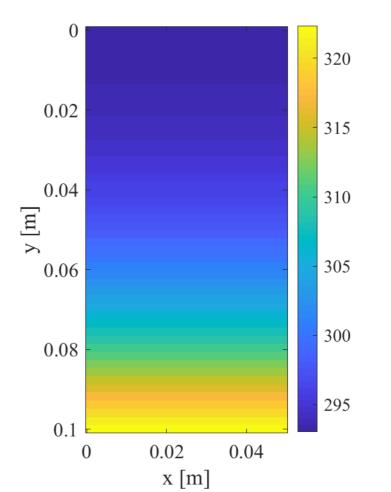
BC 1:

- Cool sides and top
- Hot base
- $\rightarrow T=T(x,y,t)$ (2d)

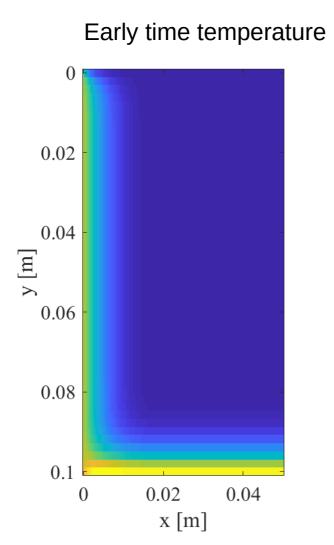
BC 2:

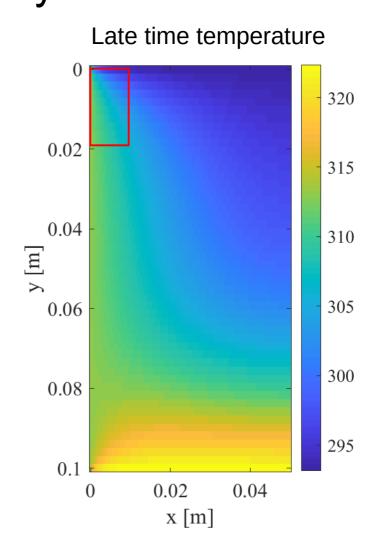
- Insulated sides
- Cool top and hot base
- $\rightarrow T = T(y,t) (1d)$





Numerical solution of temperature distribution with two hot, one cold, and one insulated boundary







Zoom to plate upper left corner

ans = **269.8795** 276.1205 280.3794 283.3261 285.3968 **316.1205** 309.8795 305.6206 302.6739 300.6032 **314.0774** 311.9226 309.8685 308.0042 306.3579 **313.6455** 312.3545 311.0793 309.8467 308.6758 **313**.4649 312.5351 311.6104 310.7006 309.8141 **313.3662** 312.6338 311.9038 311.1806 310.4685 **313.3043** 312.6957 312.0882 311.4845 310.8868 **313.2623** 312.7377 312.2138 311.6922 311.1742 **313.2321** 312.7679 312.3041 311.8418 311.3820 **313.2095** 312.7905 312.3717 311.9540 311.5380 **313.1921** 312.8079 312.4239 312.0406 311.6586 **313.1784** 312.8216 312.4651 312.1091 311.7541 **313.1673** 312.8327 312.4984 312.1645 311.8312 **313.1581** 312.8419 312.5257 312.2100 311.8948 **313.1505** 312.8495 312.5486 312.2481 311.9479 **313.1440** 312.8560 312.5681 312.2805 311.9932 **313.1384** 312.8616 312.5850 312.3086 312.0325 **313.1334** 312.8666 312.5999 312.3334 312.0672 **313.1289** 312.8711 312.6133 312.3557 312.0984 **313.1248** 312.8752 312.6256 312.3762 312.1270

ans =

Ghost cell row of the top side BC

The corner cell is redundant

host coll

Ghost cell column of the left side BC

269.8795	276.1205	280.3794	283.3261	285.3968
316.1205	309.8795	305.6206	302.6739	300.6032
314.0774	311.9226	309.8685	308.0042	306.3579
313.6455	312.3545	311.0793	309.8467	308.6758
313.4649	312.5351	311.6104	310.7006	309.8141
313.3662	312.6338	311.9038	311.1806	310.4685
313.3043	312.6957	312.0882	311.4845	310.8868
313.2623	312.7377	312.2138	311.6922	311.1742
313.2321	312.7679	312.3041	311.8418	311.3820
313.2095	312.7905	312.3717	311.9540	311.5380
313.1921	312.8079	312.4239	312.0406	311.6586
313.1784	312.8216	312.4651	312.1091	311.7541
313.1673	312.8327	312.4984	312.1645	311.8312
313.1581	312.8419	312.5257	312.2100	311.8948
313.1505	312.8495	312.5486	312.2481	311.9479
313.1440	312.8560	312.5681	312.2805	311.9932
313.1384	312.8616	312.5850	312.3086	312.0325
313.1334	312.8666	312.5999	312.3334	312.0672
313.1289	312.8711	312.6133	312.3557	312.0984

313.1248 312.8752 312.6256 312.3762 312.1270

Note:

- 1) the two values are different → not insulated Boundary
- 2) the average of the two values is const.
- \rightarrow fixed $T_{top} = 293K$