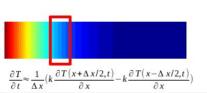


### EEN-1020 Heat transfer

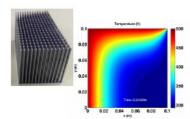
## Week 3: Convective Heat Transfer, Internal Flow and Numerical Solution in 2d

Prof. Ville Vuorinen November 7<sup>th</sup>-8<sup>th</sup> 2023 Aalto University, School of Engineering

Week 1: Energy conservation, heat equation, conduction convection Fourier/Newton



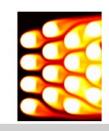
**Week 2:** Fin theory, conduction, intro to



**Week 3:** convective heat transfer – internal flow (channel)

Week 4: convective heat transfer – external flow (fin systems)

Week 5: natural convection, boiling, correlations



# On the heat transfer course, we have "5 friends" i.e. 5 main principles that are used to explain heat transfer phenomena

- 1) Energy conservation: "J/s thinking"
- 2) Fourier's law
- 3) Newton's cooling law
- 4) Energy transport equation convection/diffusion equation
- 5) Momentum transport equation Navier-Stokes equation

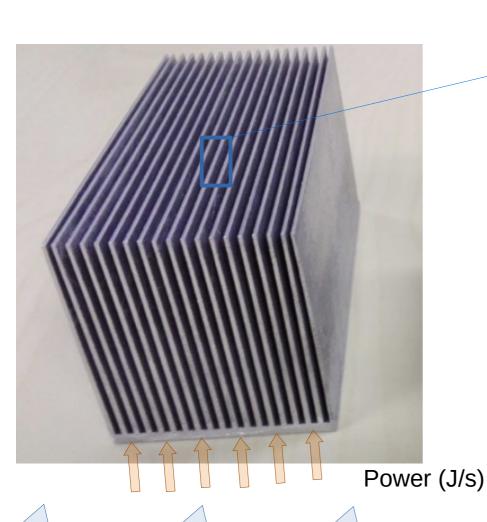


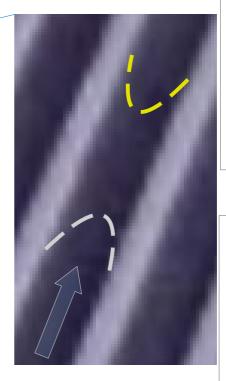
## Lecture 3.1 Theory: Flow through a fin system, governing equations and analysis

**ILO 3:** Student can write the governing equations of fluid/heat flow in a channel, estimate the energy balance and estimate temperature rise for different heating conditions. The student can confirm the channel heat transfer using generated/provided simulation data.



# Air flows between the fins. Heat transfers from the hot fin surfaces to the gas.





### Airflow Temperature

Common wall boundary conditions:

Type 1:  $T_s = known$ 

Type 2:  $q_s = known$ 

## Airflow velocity

Wall boundary condition:

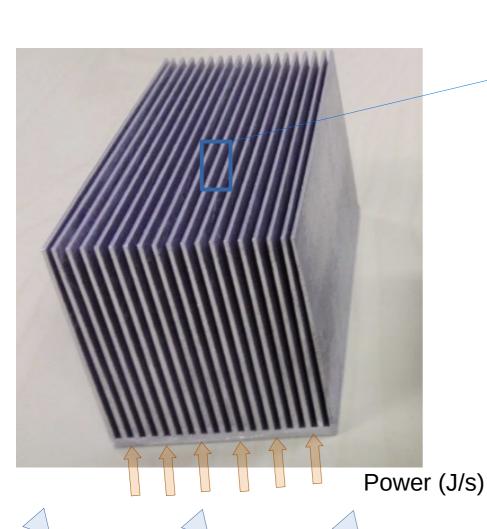
No-slip:

U=V=W=0m/s

Airflow in: U<sub>m</sub> T<sub>m</sub>



# Air flows between the fins. Heat transfers from the hot fin surfaces to the gas.





### Airflow Temperature

Common wall boundary conditions:

Type 1:  $T_s = known$ 

Type 2:  $q_s = known$ 

## Airflow velocity

Wall boundary condition:

No-slip:

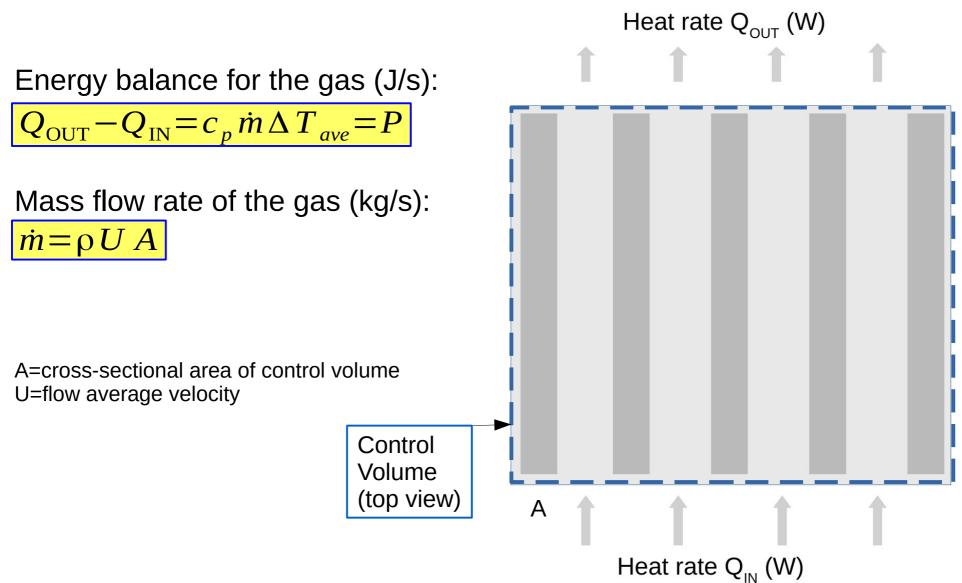
U=V=W=0m/s

Airflow in: U T

$$-k_f \left(\frac{\partial T}{\partial y}\right)_{y=wall} = h(T_s - T_{mean})$$



# Energy balance (J/s thinking) for gas flow when the gas is heated at power P (W). "Control volume" thinking.





## Fluid dynamics: Navier-Stokes equation for gases and liquids

Navier-Stokes equation (conservation of momentum)

$$\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + v \frac{\partial^2 U}{\partial x^2} + v \frac{\partial^2 U}{\partial y^2}$$

$$\frac{\partial V}{\partial t} + U \frac{\partial V}{\partial x} + V \frac{\partial V}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial y} + v \frac{\partial^2 V}{\partial x^2} + v \frac{\partial^2 V}{\partial y^2}$$

Time Convection Pressure Diffusion derivative terms gradient terms

Kinematic viscosity:  $v = \mu/\rho$ ,  $[v] = m^2/s$ 

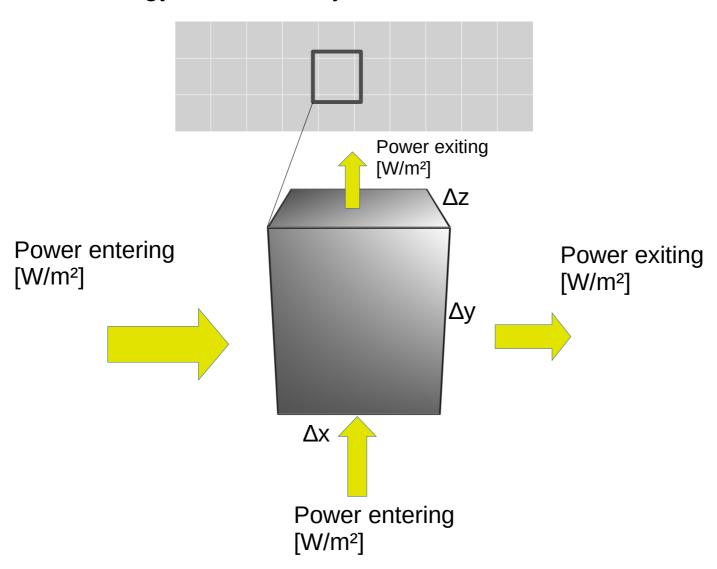
Continuity equation (conservation of mass)

$$\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} = 0$$

## Canaidan

## Thermodynamics&heat transfer:

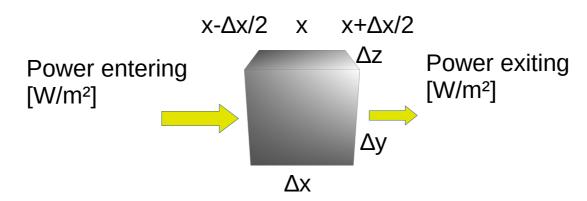
Consider heat conduction and convection in 2d or 3d **fluid (gas or liquid).**Divide the space into small (fixed) elements and carry out energy balance analysis for 1 of those elements.





### **Derivation of convection-diffusion equation:**

Next we apply energy conservation law ("J/s thinking") for a small infinitesimal volume assuming conduction only (e.g. gas flow between two fins)



Conduction: energy change of element due to heat fluxes in x-direction during  $\Delta t$  (J):

$$\Delta Q_{x} = \left[k \frac{\partial T(x + \Delta x/2, y, t)}{\partial x} - k \frac{\partial T(x - \Delta x/2, y, t)}{\partial x}\right] \Delta y \Delta z \Delta t$$

Convection: energy change of element due to velocity transporting heat in x-direction during  $\Delta t$  (J):

$$\Delta C_{x} = c_{p} \rho [-U(x + \Delta x/2, y, t) T(x + \Delta x/2, y, t) + U(x - \Delta x/2, y, t) T(x - \Delta x/2, y, t)] \Delta y \Delta z \Delta t$$

Energy change of element during  $\Delta t$  (J):

$$\rho c_p \Delta T(x,y,z,t) \Delta x \Delta y \Delta z = \Delta Q_x + \Delta Q_y + \Delta Q_z + \Delta C_x + \Delta C_y + \Delta C_z$$

**Then:** Divide both sides by  $\Delta x \Delta y \Delta z \Delta t$  and take the limit when all  $\Delta$ -variables  $\to 0 \to We$  get the convection diffusion equation.



## Convection-diffusion equation

- → Thermal energy is transported by convection (flow velocity) and diffusion (conduction).
- → The convection diffusion equation for temperature is simply energy conservation law on local level of the fluid.

$$\frac{\partial T}{\partial t} + U \frac{\partial T}{\partial x} + V \frac{\partial T}{\partial y} = \alpha \frac{\partial^2 T}{\partial x^2} + \alpha \frac{\partial^2 T}{\partial y^2}$$

T changes in time due to convection and diffusion

*T* is transported *T* is transported

in given position by velocity by thermal diffusion field (convection) (diffusion/conduction)

T=T(x,y) in steady state 2d laminar channel flow

## Air temperature distribution in a plate fin heat exchanger (cross section) - Thermal boundary layers develop on surfaces - Free boundary layers on outer surfaces Focus on single gap Figure: courtesy of P.Peltonen



## Fluid dynamical and heat transfer conditions



Reynolds number: 
$$Re = \frac{UL}{V}$$

Kinematic viscosity

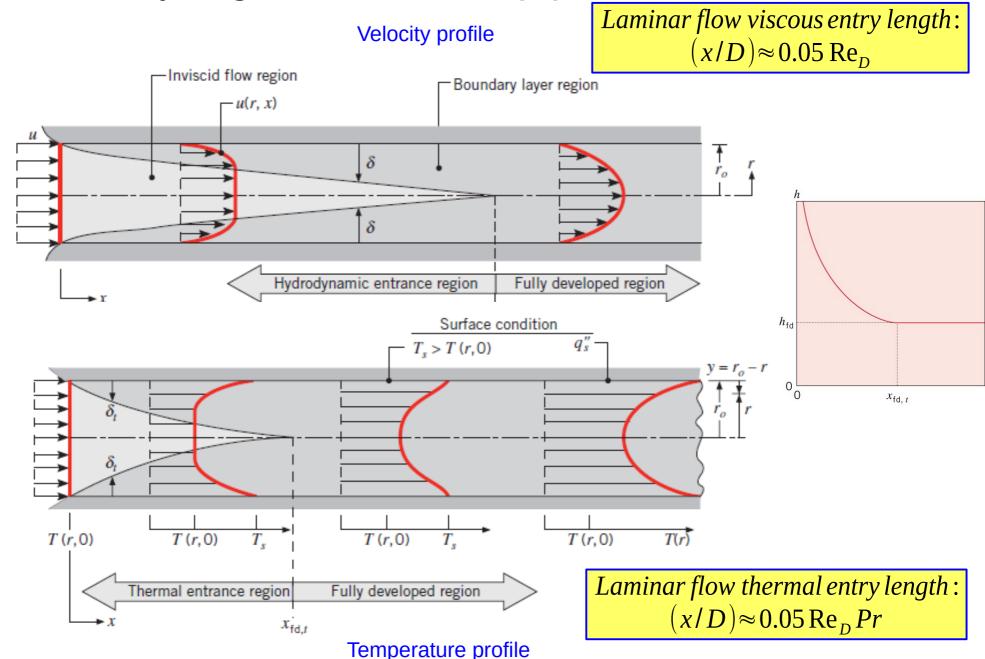
Prandtl number: 
$$Pr = \frac{v}{\alpha} = \frac{Viscous \ diffusion}{Thermal \ diffusion} = \frac{\mu/\rho}{k/(c_p \rho)}$$

Heat transfer coeff. Reference length scale

Nusselt number: Nu = 
$$\frac{hL}{k}$$
 =  $\frac{\text{Total heat transfer}}{\text{Conductive heat transfer}}$ 



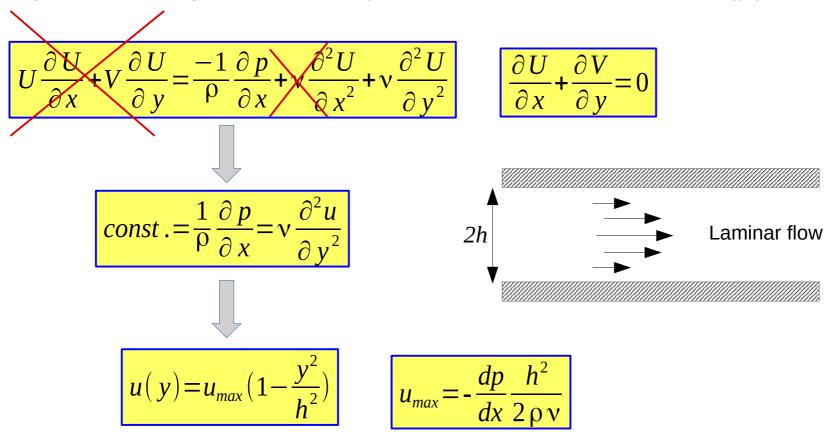
## Entry region in laminar pipe/channel flow





Channel flow velocity between two fins can be analytically solved assuming

1) steady state i.e. does not change in time, 2) fully developed laminar flow (Re<2000) with constant pressure gradient, 3) flow is only in x-direction i.e. U=U(y), V=0



**Wall boundary conditions** 

Velocity: No-slip wall u(+h) = u(-h) = 0



**Practical question 1:** two parallel plates are heated. How long distance should the fluid travel between the plates to reach a target temperature?

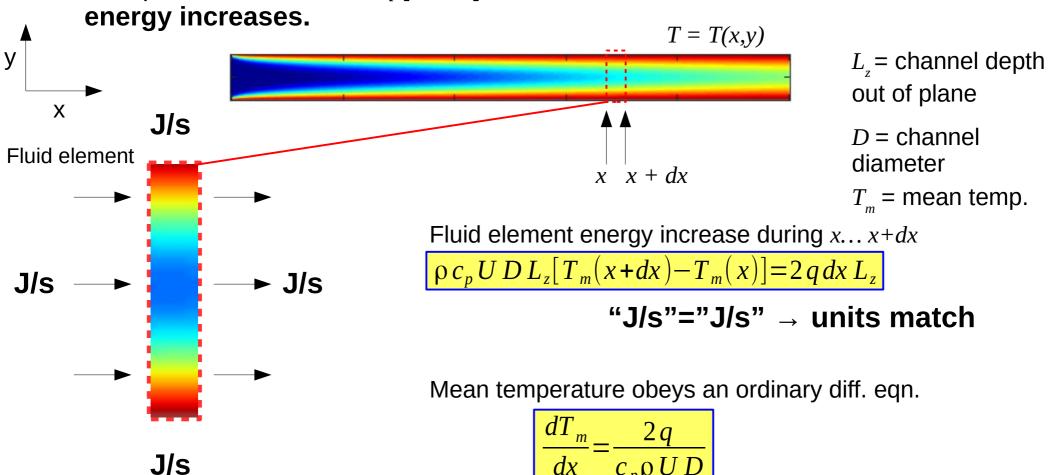
 $\rightarrow$  Need to find  $T_m(x)$ 



## Energy balance for a fluid element between heated parallel plates

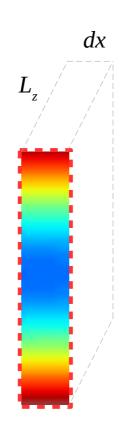
(relevance: finding mean temperature in streamwise direction)

Wall provides a heat flux q [W/m<sup>2</sup>] to the fluid so that a fluid element thermal energy increases.





## Note that the length of the surface element in z-direction cancels out

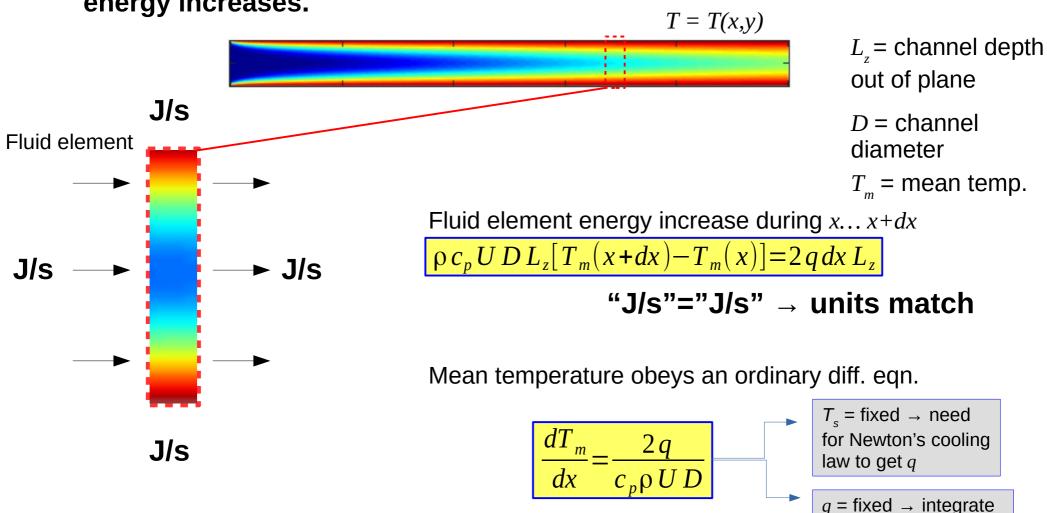


Power escaping through top and bottom plates =  $2 q dx L_z$ 



# Energy balance for a fluid element between heated parallel plates (relevance: finding mean temperature in streamwise direction)

Wall provides a heat flux q [W/m<sup>2</sup>] to the fluid so that a fluid element thermal energy increases.

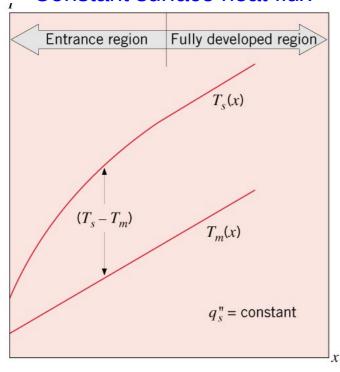


directly

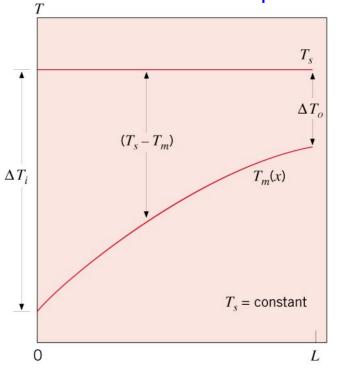


## Axial mean temperature in a pipe or channel

#### Constant surface heat flux



### Constant surface temperature





### For constant surface heat flux

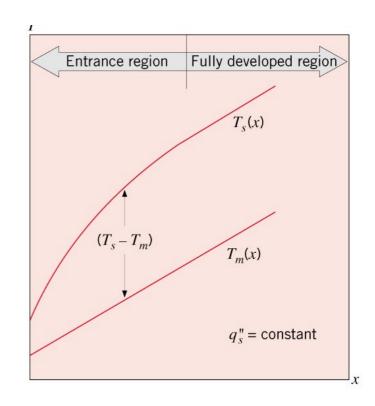
#### **Notes:**

- 1) q is const.  $\rightarrow$  Surface temperature  $T_s$  follows.
- 2) Surface temperature  $T_s = T_s(x)$ . If the surface is heated then  $T_s$  must increase along the channel when  $T_m(x)$  increases.
- 3) Newton's Cooling law states:  $T_s(x) T_m(x) = const.$

$$\frac{dT_m}{dx} = \frac{2q}{c_p \rho U D} = \text{constant}$$

$$\int_{x=0}^{x} \frac{dT_m}{dx} dx = \int_{x=0}^{x} \frac{2q}{c_p \rho U D} dx$$

$$T_m(x) = T_m^{\text{in}} + \frac{2q}{c_p \rho U D} x$$



→ Linear increase in mean temperature



## For constant surface temperature: at fully developed conditions when *h*=*const.*

After thermal entry region

$$Nu = \frac{hD}{k_{fluid}} \approx 7.52$$

$$\frac{dT_m}{dx} = \frac{2q(x)}{c_p \rho U D} = \frac{2h(T_s - T_m)}{c_p \rho U D}$$

$$\int_{T_m = T_{in}}^{T_m(x)} \frac{dT_m}{T_s - T_m} = \int_{x=0}^{x} \frac{2h}{c_p \rho U D} dx$$

$$\log \frac{T_m(x) - T_s}{T_{in} - T_s} = \frac{-2h}{c_p \rho U D} x$$

$$\frac{T_m(x) - T_s}{T_{in} - T_s} = \exp\left(\frac{-2h}{c_p \rho U D}x\right)$$

- → Mean temperature increases according to exp function
- Total heat flux can be calculated based on log mean temperature  $q_{tot} = h A \Delta T_{lm}$

### The main points:

- 0) We do not know  $q_{tot}$  because when  $T_s$  fixed then heat flux follows.
- 1)  $T_s$ - $T_m(x)$  is not constant i.e. q=q(x).
- 2) Thus, one can not use the average of inlet and outlet temperature in Newton's law directly because mean temp. increases non-linearly.
- 3) Need for log-mean temperature concept.

See: Incropera Ch. 8 Eqn. (8.43)



Practical question 2: two parallel plates are heated.

The plate thickness is d and the temperature outside the plates is known. How long distance should the fluid travel to reach a target temperature?

 $\rightarrow$  Need to find  $T_m(x)$ 



# Let's think that the fluid in the channel is warm and outside cooler. Thus the flowing fluid cools in the channel. $(T_m(x) = ?)$

### We can express the lost heat (J/s):

(1) Warm fluid to surface (W):

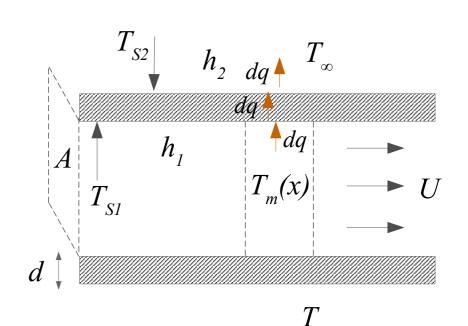
$$dq = h_1(T_m - T_{S1})dA$$

(2) Through the solid (W):

$$dq = k \frac{T_{S1} - T_{S2}}{d} dA$$

(3) From solid outer surface to ambient (W):

$$dq = h_2(T_{S2} - T_{\infty})dA$$



## Total heat transfer coefficient h<sub>tot</sub> (W/m<sup>2</sup>K) can be easily solved from (1)-(3):

$$h_{tot} = \frac{1}{\frac{1}{h_1} + \frac{1}{h_2} + \frac{d}{k}}$$

#### **Energy balance for the cooling fluid element:**

$$\rho U A c_p dT_m = \rho U L_z D c_p dT_m = -2 h_{tot} (T_m(x) - T_\infty) L_z dx$$

$$\frac{dT_m}{dx} = \frac{-2h_{tot}}{\rho U D c_p} (T_m(x) - T_\infty)$$

$$\frac{T_m(x) - T_s}{T_{in} - T_s} = \exp\left(\frac{-2h_{tot}}{c_p \rho U D}x\right)$$



# In HW you need to use cylindrical coordinates to understand how the total heat transfer coefficient is then formed. (Sec. 3.3/Incropera)

Steady state heat eqn in cylindrical coordinates (BC's  $T_{s1}$  and  $T_{s2}$ ):

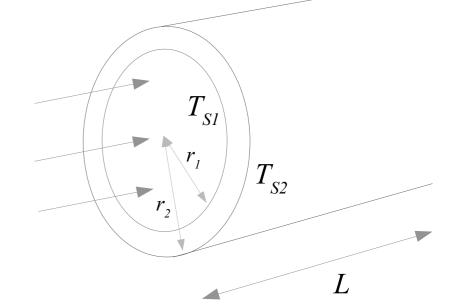
$$\frac{1}{r}\frac{d}{dr}(kr\frac{dT}{dr}) = 0$$

Heat rate across a cylindrical surface

$$q_r = -k \left(2\pi r L\right) \frac{dT}{dr}$$



$$T(r) = \frac{T_{S1} - T_{S2}}{\ln(r_1/r_2)} \ln(\frac{r}{r_2}) + T_{S2}$$



#### → Heat transfer rate (W):

$$q_r = (2 \pi L k) \frac{(T_{S1} - T_{S2})}{\ln(r_2/r_1)}$$

#### Thermal resistance:

$$R_{cond} = \frac{\ln (r_2/r_1)}{2 \pi L k}$$

Please see Sec. 3.3 for more help wrt HW.

The table below illustrates Nusselt numbers (non-dim.heat trans.coefficient) for different channel types with different boundary conditions.  $D_h = hydraulic diameter$ .

| C ross Section      |               | $Nu_D = \frac{hD_h}{k}$    |                           |                   |
|---------------------|---------------|----------------------------|---------------------------|-------------------|
|                     | $\frac{b}{a}$ | (Uniform q <sub>s</sub> ") | (Uniform T <sub>s</sub> ) | f Re <sub>D</sub> |
|                     | -             | 4.36                       | 3.66                      | 64                |
| a h                 | 1.0           | 3.61                       | 2.98                      | 57                |
| a                   | 1.43          | 3.73                       | 3.08                      | 59                |
| a b                 | 2.0           | 4.12                       | 3.39                      | 62                |
| ab                  | 3.0           | 4.79                       | 3.96                      | 69                |
| a                   | 4.0           | 5.33                       | 4.44                      | 73                |
| b                   | 8.0           | 6.49                       | 5.60                      | 82                |
|                     | ∞             | 8.23                       | 7.54                      | 96                |
| Heated<br>Insulated | ∞             | 5.39                       | 4.86                      | 96                |
| $\triangle$         | 1-1           | 3.11                       | 2.49                      | 53                |

In HW3 we want to check if we can get the value Nu = 7.54 from numerical simulation.

Table 8.1 from Incropera, de Witt (Principles of Heat and Mass Transfer)



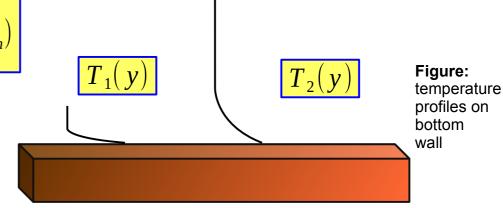
### **Strong relevance to HW3** - Heat flux balance at the surface:

Fourier's law (physics) equals to Newton's law (engineering)

Diffusive heat flux (Fourier) immediately at the wall on the fluid side = Heat flux from Newton's law of cooling

$$-k_f \left(\frac{\partial T}{\partial y}\right)_{y=wall} = h(T_s - T_{mean})$$

If temperature gradient in wall-normal direction would be known at each x location  $\rightarrow$  we could calculate h (W/m<sup>2</sup>K) every single surface point



#### Note:

even in convective heat transfer the heat first diffuses i.e. conducts near the wall because  $u,v \rightarrow 0$  next to the wall

$$h = \frac{-k_f \left(\frac{\partial T}{\partial y}\right)_{y = wall}}{T_s - T_{mean}}$$

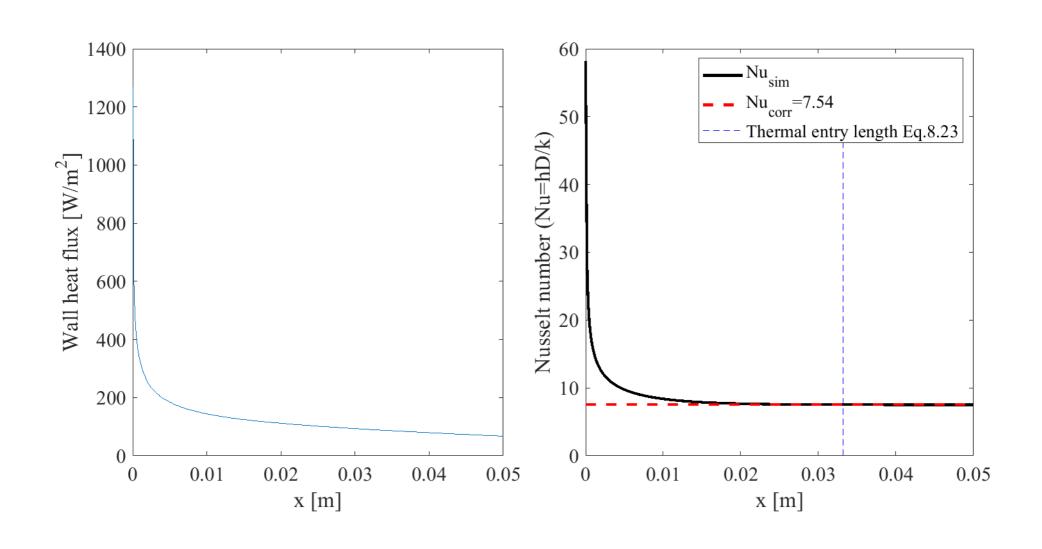
$$[h]=W/m^2K$$

#### **Think:**

How can we maximize *h* ? How do *h* and heat flux vary in the flow direction ?



## For constant wall temperature BC some example results using code heat2d.m





# Lecture 3.2 Numerical approach: a Matlab solver for the 2d convection-diffusion equation to describe temperature transport

**ILO 3:** Student can write the governing equations of fluid/heat flow in a channel, estimate the energy balance and <u>estimate</u> temperature rise for different heating conditions. The student can confirm the channel heat transfer using generated/provided simulation data.