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This course

▶ Focuses on methods to analyze high-throughput biological data

▶ Primary data type: sequencing data

▶ Aims to give an understanding of how, why and when these methods work

▶ Less focus on applications or implementations of methods
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What is high-throughput biological data?

▶ High-throughput technologies can be thought of as massively parallel automated methods
to carry out a large number of individual experiments/biochemical tests simultaneously

▶ Examples: a microarray or a sequencing experiment can simultaneously
▶ Measure expression (=abundance) of tens of thousands of genes in a biological sample
▶ Quantify genetic variants at millions of positions throughout a genome
→ Data are produced at a massive scale

▶ Suitable computational methods are needed to analyze and exploit these data
▶ Bioinformatic methods include: algorithmic, computational, mathematical, data mining,

statistical, machine learning, and deep learning techniques
▶ This course focuses mostly on statistical and machine/deep learning methods (or questions

that are naturally answered by these methods)

▶ Bioinformatics provides essential tools for molecular biology, genetics, biomedicine,
healthcare, drug development, evolutionary studies, synthetic biology and more
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Data growth and sequencing costs

http://learn.genetics.utah.edu/content/precision/time/

http://learn.genetics.utah.edu/content/precision/time/
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Beyond genome identification

After having sequenced the genome (e.g. human reference genome):

▶ Characterize genetic variation between individuals

▶ Identify the location of genes

▶ Analyze gene activity, functions, interactions, and regulation

▶ Quantify and analyze epigenomics

▶ Characterize dynamic properties of genome and functional genomics

▶ . . .

▶ Translate this data / knowledge for health and disease
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Statistical hypothesis testing

▶ Hypothesis testing is the main inferential statistics concept that we will use throughout
this course

▶ We will briefly review the basics of hypothesis testing
▶ We follow parts of J. Orloff’s and J. Bloom’s lecture notes “Null Hypothesis Significance

Testing” (Orloff and Bloom, 2014)
▶ You may also refer to several / any statistics book

▶ Conceptually speaking, the hypothesis testing framework asks if the observed data is
outside the region where we expect the data to be

▶ If it is, then we have evidence to reject our initial conservative hypothesis
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Null hypothesis significance testing (NHST)

Key concepts:

▶ H0: the null hypothesis. This specifies our conservative default assumptions for the model
that generates the data

▶ HA: the alternative hypothesis (also denoted as H1). We are interested in testing the null
hypothesis; if null is rejected we accept the alternative hypothesis as the best explanation
for the data

▶ T : the test statistic of our choice, computed from the observed data

▶ Null distribution: the probability density of the test statistic, assuming the null hypothesis
holds true

Typically the null hypothesis is chosen to be a simple and conservative hypothesis, which we
reject if we have sufficient amount of evidence to reject H0
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Example: coin flipping

We flip a coin N times to test whether the coin is fair or unfair

The rationale is to check whether our coin results in unexpectedly few or many heads/tails

Let θ denote the probability that the coin flipping results in a head (or tail), then:

▶ Null hypothesis: H0 =“the coin is fair”, i.e. θ = 0.5

▶ Alternative hypothesis: HA =“coin is not fair”, i.e. θ ̸= 0.5

▶ Test statistic: T = number of heads in N flips

▶ Null distribution: assuming the null hypothesis holds, the number of heads follows
binomial distribution

T ∼ Binomial(N, 0.5)

with the probability density function

P(T = k) =

(
N

k

)
θk(1− θ)N−k

for k = 0, 1, . . . ,N and θ = 0.5
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Example: coin flipping

▶ N = 20 coin flipping experiments

▶ The probabilities of obtaining any number
of heads between 0 and 20 with a fair coin
are shown on right (here X is used to
denote the test statistic, instead of T )

▶ So, is it “too unlikely” to observe e.g. as
many as 15 heads? What about observing
as few as 5 heads?

0 5 10 15 20
the number of heads (X)

0

0.05

0.1

0.15

0.2

p(
X|
3
)
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p-value

▶ For a given realization T = t, the p-value is the probability of seeing test statistic value
that is at least as extreme as the observed value t

p = P(“test statistic at least as extreme as t”),

where the probability is computed using the null distribution, i.e., by assuming the null
hypothesis is true

▶ “At least as extreme as”depends on the application (i.e., hypothesis test, test statistic,
experimental design)

▶ Standard hypothesis tests are either one-sided or two-sided:
▶ One-sided: the test statistic can have significantly low values or high values (but not both)

▶ One-sided test has directionality
▶ Two-sided: the test statistic can have both significantly low values and high values

▶ E.g. the coin flipping test is two-sided
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Example: coin flipping cont’d

▶ The probability of observing T smaller
than 6 or larger than 14 is

P(T ≤ 5 or T ≥ 15) ≈ 0.0414

▶ p-value of smaller than 0.05 is a
commonly used threshold

▶ By choosing a p-value (here 0.05) we get
the rejection region formed by the extreme
values (red)

▶ If the test statistic falls in the rejection
region, then we consider to have enough
evidence to reject the null hypothesis and
accept the alternative hypothesis

▶ The typical values (blue) form the
“acceptance” region

▶ In the“acceptance” region we do not have
enough evidence to reject H0

▶ In the“acceptance” region we do not make
any decision based on data

0 5 10 15 20
the number of heads (X)

0

0.05

0.1

0.15

0.2

p(
X|
3
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Types of null hypothesis

▶ Simple hypothesis: a null hypothesis that specifies the null distribution exactly
▶ E.g. data is sampled from a given normal distribution with known mean and variance

▶ Composite hypothesis: a null hypothesis that does not specify the null distribution
completely
▶ E.g. data is sampled from a given normal distribution with known mean but unknown

variance

▶ Exact hypothesis: a null hypothesis that specifies an exact parameter value, e.g., mean = 0

▶ Inexact hypothesis: a null hypothesis that specifies a range of parameter values, e.g.,
mean ≤ 0

▶ Our coin flipping example has a null hypothesis that is simple and exact
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t-test

▶ In many applications data is assumed to be normally distributed

▶ Two-sample t-test can be applied to test the means of two samples which are assumed to
be drawn from two normal distributions (we assume the same variance here)

x1, . . . , xn ∼ N(µ1, σ
2)

y1, . . . , ym ∼ N(µ2, σ
2)

▶ Unknowns: µ1, µ2, and σ2

▶ This is a composite null hypothesis

▶ The null hypothesis H0: µ1 = µ2

▶ The alternative hypothesis HA: µ1 ̸= µ2
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t-test

▶ Notation: T is a random variable, t is a particular realization of T

▶ The test statistic T for the t-test:

t =
x − y

s
,

where x = 1
n

∑n
i=1 xi and y = 1

m

∑m
i=1 yi are the sample means, and s2 is the pooled

variance

s2 =
(n − 1)s2x + (m − 1)s2y

n +m − 2

(
1

n
+

1

m

)
and s2x =

1

n − 1

n∑
i=1

(xi − x)2

▶ The null distribution: p(T |H0) can be shown to be the t-distribution with n +m − 2
degrees of freedom
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t-test

▶ t-distribution for different degrees of freedom

-4 -2 0 2 4
x

0

0.1

0.2

0.3

0.4

p(
x)

t-distribution

8 = 4
8 = 8
8 = 98
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t-test

▶ One-sided p-value (right side): p = P(T ≥ t | H0)

▶ One-sided p-value (left side): p = P(T ≤ t | H0)

▶ Two-sided p-value: p = P(|T | ≥ |t| | H0)
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t-test: example

▶ An example: let us assume that we are interested in quantifying whether a gene of interest
is differentially expressed between two groups A and B (say, between healthy and diseased
individuals)

▶ Measured gene expression values are

Group A : 32, 25, 36, 27, 28

Group B : 29, 48, 39, 37, 39
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t-test: example

▶ We can explore the data by plotting estimated normal densities for both groups:
N (µA, s

2) and N (µB , s
2)

10 20 30 40 50 60
Gene expression

0

0.02

0.04

0.06

0.08

0.1

0.12

Group A
Group B
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t-test: example

▶ For quantitative inference, we can use the
t-test

▶ The value of the t-statistic for our data is
−2.4388

-4 -2 0 2 4
x

0

0.1

0.2

0.3

0.4

p(
x)

t-distribution

8 = 4
8 = 8
8 = 98

▶ In general, we may not know whether our
gene can be up- or down-regulated and we
need to apply two-sided test, which results
in a p-value of 0.0406

▶ If we know that the gene expression value
in group B can only be higher we can
apply one-sided test (left side), which
results in a p-value of 0.0203
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Types of error

Two types of errors can be made in a hypothesis testing

Type I error:
▶ Null hypothesis H0 is true but we reject that in favour of H1

▶ This incorrect decision results in a false positive

Type II error:
▶ Null hypothesis H0 is false but we do not reject H0

▶ This incorrect decision results in a false negative

Figure from (Wikipedia)
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Significance of a test

▶ Significance level of a test (often called α) is defined to be the probability that we
incorrectly reject H0

Significance level = P(reject H0|H0) = P(type I error)

▶ Significance level of α = 0.05 is commonly used in practise

▶ In other words, if the computed p-value is smaller than α, then we reject the null
hypothesis

▶ When we reject the null hypothesis, we say the result is statistically significant at level α

▶ Note: rejecting the null hypothesis with level α does not mean that the alternative
hypothesis is correct with probability of 0.95
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Power of a test

▶ Power of a test is defined to be the probability that we correctly reject H0

Power = P(reject H0|HA)

= 1− P(do not reject H0|HA)

= 1− P(type II error)
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Illustration of the significance and power of a test

Figure from (Orloff and Bloom, 2014) illustrates the concepts of significance and power
▶ Red shaded area below f (x |H0) represents the significance
▶ Violet shaded area below f (x |HA) represents the power: the probability that the test

statistic is in the rejection region of H0 when HA is true
▶ Note that the null hypothesis significance testing works without caring about f (x |HA)
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NHST steps

▶ Choose a null hypothesis H0

▶ Choose a test statistic

▶ Decide if your alternative hypothesis is one-sided or two-sided

▶ Choose a significance level

▶ Perform the hypothesis test
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Multiple testing

▶ Multiple testing problem occurs when a statistical analysis and decision making involves
multiple simultaneous statistical hypothesis tests

▶ The p-values (i.e., confidence levels) described above are valid for a single test

▶ Consider the previous example of comparing gene expression (for gene x1) between Groups
A and B
▶ If 5% confidence level is used for a single test, then there is only 0.05 probability that null

hypothesis is rejected incorrectly
▶ If the test is applied to 100 genes (xi , i ∈ {1, . . . 100}) for which the null hypothesis holds

(i.e., they are not differentially expressed) independently, then the expected number of genes
for which the null hypothesis is rejected incorrectly is 5

→ Hypothesis testing will lead to many false positives if the p-values are not corrected for
multiple testing

▶ Multiple testing is a real challenge in most bioinformatics applications
▶ Differential gene expression analysis
▶ Detecting disease associated genomic variant
▶ Detection of protein binding sites along whole genome from ChIP-seq
▶ . . .
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Multiple testing problem1

▶ Lets assume we have m independent hypothesis H
(1)
0 , . . . ,H

(m)
0 and lets assume we know

already beforehand that the null hypothesis holds for every one of them (that’s a boring
assumption to start with, but lets continue with that assumption anyways)

▶ If we make m independent tests with significance level α, then each of the m tests will be
significant with probability α

▶ Now the total number of false positives X will have a distribution

X ∼ Binomial(m, α)

(recall the coin flipping, now with a biased coin)

▶ The expectation of a binomial distribution is E (X ) = mα

▶ Once again, if we want to carry out a test e.g. for all approx. 20000 human genes, then
the expected number of false positives (assuming we know that null hypothesis holds for
all) is 20000 · 0.05 = 1000

1From here onwards, parts of the slides follow Sections 7.2.2–7.2.4 from (Wilkinson, 2017). You can also
check Section 18.7 from (Hastie et al., 2017)
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Family-wise error rate

▶ Recall the type I error
▶ Null hypothesis H0 is true but it is

rejected in favour of H1

▶ Assuming again m independent tests for
which we know that the null hypothesis is
true, then the probability that any of the
hypothesis will be rejected with
significance level α is

α = 1− (1− α)m

i.e., the probability of making one or more
type I errors

▶ This is also called the family-wise error
rate (FWER)

▶ FWER for m ∈ {0, . . . , 100} tests with
α = 0.05

0 20 40 60 80 100
The number of tests

0

0.2

0.4

0.6

0.8

1

FW
ER

▶ Note: for m = 1, FWR = α

▶ FWER is independent of the type of a test
or tests
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Bonferroni correction

▶ Let H
(1)
0 , . . . ,H

(m)
0 be a collection of hypotheses and p1, . . . , pm the corresponding p-values

▶ Let I0 ⊆ {1, . . . ,m} be the (unknown) subset of the true null hypotheses, m0 = |I0| ≤ m

▶ Bonferroni correction is defined as follows:
▶ Given the original significance level α and the number of statistical tests m, then Bonferroni

correction will reject only those null hypothesis i for which pi ≤ α/m
▶ Equivalently, the multiple testing corrected p-value for the i th test is min{mpi , 1}

▶ For the Bonferroni correction method, FWER ≤ α because

FWER = P

(⋃
i∈I0

{
pi ≤

α

m

})
≤
∑
i∈I0

P
({

pi ≤
α

m

})
=
∑
i∈I0

α

m
= m0

α

m
≤= α

(Note: each
{
pi ≤ α

m

}
is considered as an event, and the inequality follows from the union

bound)

▶ The Bonferroni correction is conservative
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False discovery rate

▶ False discovery rate (FDR) is the proportion of false positives among all positives

FDR =
#false positives

#false positives+#true positives
∈ [0, 1]

▶ Formally FDR is defined as the expectation of the above quantity

▶ FDR of 0.05 means that 5% of the rejected null hypothesis are false

▶ However, on the other hand, FDR of 0.05 means that 95% of the rejected hypothesis are
true findings (i.e., tests for which HA holds)

▶ A small fraction of false positives are often accepted as long as majority of the results are
true

▶ In bioinformatics applications, FDR is typically more useful than FWER
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False discovery rate

▶ Lets again assume that we have m tests with p-values p1, . . . , pm
▶ We can order the p-values in increasing order p(1) ≤ p(2) ≤ . . . ≤ p(m)

▶ The choice of significance level α is equivalent to deciding how many of the smallest
p-values are considered significant
▶ Lets denote that number (a positive integer) by ℓ

▶ Because a significance level α corresponds to a particular cutoff ℓ, we can denote that by
explicitly writing ℓ(α) (although generally we do not that mapping)

▶ Thus, α gives a list of significant p-values, p(1), p(2), . . . , p(ℓ(α))
▶ A small α results in a short list (small ℓ)
▶ A larger α results in a longer list (larger ℓ)
▶ ℓ(α) is monotonically increasing in α
▶ As noted above, we do not know this mapping
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False discovery rate

▶ Lets assume that the number of true positives (for which the null hypothesis does not
hold) is small compared to the total number of tests m

▶ Thus, similarly as above, the number of false positives is still approximatively binomially
distributed as X ∼ Binomial(m, α)

▶ Thus, the FDR is (assuming ℓ(α) ≥ X )

FDR ≈ X

ℓ(α)
and E (FDR) ≈ E (X )

ℓ(α)
=

mα

ℓ(α)

▶ Generally we want to limit the fraction of false positive findings (i.e., FDR) by a value q,
thus

mα

ℓ(α)
≤ q ⇔ α ≤ qℓ(α)

m

▶ One needs to choose a small enough α so that the above inequality holds
▶ This is little tricky because ℓ(α) depends on α too
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False discovery rate

▶ To solve the inequality on the previous page, hypothetically assume we have inverted the
function ℓ(·) : [0, 1] → {1, . . . ,m} as α(·) : {1, . . . ,m} → [0, 1]

▶ We can write

α(ℓ) ≤ qℓ

m

▶ Notice that the significance level (or the p-value threshold) that gives a list of length ℓ is
p(ℓ), thus we have

p(ℓ) ≤
qℓ

m

▶ Thus, to guarantee FDR ≤ q, we just need to run through all possible values of ℓ, from 0
to m, in order to find the largest value of ℓ that satisfies p(ℓ) ≤ qℓ

m and to find the
corresponding p(ℓ)

→ The null hypothesis is then rejected for those tests that give the ℓ smallest p-values
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Benjamini-Hochberg correction

▶ The Benjamini-Hochberg (BH) step-up procedure is commonly used in bioinformatics
applications

▶ Let q ∈ [0, 1] be given and p(1) ≤ p(2) ≤ · · · ≤ p(m) be the ordered list of the m p-values,
then the BH procedure works as follows

1. Find the largest k such that p(k) ≤ k
m
q

2. Then reject all H(i) for i = 1, . . . , k

▶ For BH, the probability of expected proportion of false positives ≤ q

▶ The FDR value qk for each test k can be obtained from mapping

min
{m
k
p(k), 1

}
(and by guaranteeing that FDR values do not decrease as k increases)
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False discovery rate

▶ An example: Following the above example with one gene, let us now assume that we
measure the expression of 100 genes for two groups, A and B. We assume to have five
replicate measurements from both groups (for each of the 100 genes).

▶ For each gene, expression values are normally distributed with means µA and µB and
standard deviations σA = σB .
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False discovery rate

▶ If µA = µB = 0 (and σA = σB = 1), the null hypothesis holds for all genes and in the ideal
case we should not detect any differentially expressed genes

▶ However, the histogram of the obtained p-values look as follows (histogram on right)

-3 -2 -1 0 1 2 3
Gene expression

0

0.2

0.4

0.6

0.8
gene #1

Group A
Group B

histogram for 100 genes

0 0.2 0.4 0.6 0.8 1
p-value

0

2

4

6

8

10

co
un

t/f
re

qu
en

cy

▶ We detect 6 genes with the significance level of 0.05 (all false positives)
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False discovery rate

▶ If we correct the p-values for multiple testing using the Benjamini-Hochberg methods
described above, we detect no genes that are statistically significantly differentially
expressed.

histogram for 100 genes
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False discovery rate

▶ Let us then see how FDR correction works if we have 90 non-differentially expressed genes
and 10 truely differentially expressed genes with µA = 0 and µB = 2 (and σA = σB = 1)
for the differentially expressed genes.
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▶ We would now detect 10 genes with the significance level of 0.05: 7 true positives and 3
false positives
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False discovery rate

▶ If we correct the p-values for multiple testing using the Benjamini-Hochberg methods
described above, we detect 4 genes that are statistically significantly differentially
expressed (all true positives)
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False discovery rate

▶ Consider an example from (Wilkinson, 2017): use t-test to identify genes differentially
expressed in melanoma compared to healthy skin cells

▶ 6830 genes, i.e., m = 6830

▶ If we assumed that the null hypothesis holds for all genes, then the expected number of
false positives would be 6830 · 0.05 = 341.5

▶ Using the nominal (non-corrected) p-values results in 1377 significantly differentially
expressed genes, indicating that the data may contain a considerable number of truly
differential genes

▶ The use of Bonferroni correction would give us only six genes that meet the stringent
criterion of p ≤ 0.05/6830 ≈ 0.0000073

▶ BH correction method would give us 186 differentially expressed genes with a FDR
threshold of 0.05
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False discovery rate

▶ The figures below show
▶ Ordered p-values (red)
▶ The 0.05 uncorrected p-value

cutoff (green)
▶ The Bonferroni-corrected

threshold (cyan)
▶ The FDR threshold (dark blue)
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Figure 7.3: Ordered p-values for the nci microarray data.

plot(1:500,pval.sort[1:500],type="l",col=2)
abline(0.05/6830,0,col=5)
abline(0,0.05/6830,col=4)

We still can’t see exactly where the p-values cross the Bonferroni threshold, but we
know see that the p-values cross the FDR threshold at around 180 (in fact, it first exceeds
at 187), and so we will choose to look at the smallest 186 p-values (corresponding to a
significance threshold of around 0.0014), if we are only prepared to tolerate a FDR of 5%.

An alternative way to view the solution to the problem, which is also informative, is to
rewrite the inequality as

p(l)m

l
< ↵0.

Then defining
f(l) =

p(l)m

l
,

we want to find the largest l such that

f(l) < ↵0.

So if we plot f(l) against l, we look for the (last) crossing of the ↵0 threshold, from below.
Consequently, we can think informally of f(l) as representing the expected FDR associated
with the lth ordered p-value. This is closely related to (but not quite the same as) the
concept of a q-value, which is also a kind of FDR-corrected p-value. Further examination
of such concepts is beyond the scope of this course.

Example: microarray data

We can plot f(l) for 500 most significant microarray genes using the following commands,
leading to the plot shown in Figure 7.5.
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Figure 7.4: First 500 ordered p-values for the nci microarray data.

fdr=6830*pval.sort/1:6830
plot(1:500,fdr[1:500],type="l",col=2)
abline(0.05,0,col=3)

Notice that this function is not monotonic in l, and this why it is not quite right to interpret
f(l) as an FDR-corrected p-value, but it is close enough for our purposes.

Before leaving this example, it is worth emphasising that when working with FDR,
people often work with thresholds above the 0.05 often used in classical statistical testing.
A threshold of 0.1 is very often used (tolerating 1 in 10 false positives), and thresholds of
0.15 are also used sometimes. We can see from Figure 7.5 that if we were to increase
our FDR threshold to 0.1, we would get a list containing around 400 genes, and most
scientists would consider that to be a more appropriate compromise.

See section 18.7 (p.683) of [ESL] for further details of multiple testing problems.

Figures from (Wilkinson, 2017)
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