CS-E5875 High-Throughput Bioinformatics Introduction, hypothesis testing, multiple testing

Harri Lähdesmäki

Department of Computer Science
Aalto University
October 24, 2023

Contents

- Introduction
- Statistical hypothesis testing
- Types of error
- Multiple testing

This course

- Focuses on methods to analyze high-throughput biological data
- Primary data type: sequencing data
- Aims to give an understanding of how, why and when these methods work
- Less focus on applications or implementations of methods

What is high-throughput biological data?

- High-throughput technologies can be thought of as massively parallel automated methods to carry out a large number of individual experiments/biochemical tests simultaneously
- Examples: a microarray or a sequencing experiment can simultaneously
- Measure expression (=abundance) of tens of thousands of genes in a biological sample
- Quantify genetic variants at millions of positions throughout a genome
\rightarrow Data are produced at a massive scale

What is high-throughput biological data?

- High-throughput technologies can be thought of as massively parallel automated methods to carry out a large number of individual experiments/biochemical tests simultaneously
- Examples: a microarray or a sequencing experiment can simultaneously
- Measure expression (=abundance) of tens of thousands of genes in a biological sample
- Quantify genetic variants at millions of positions throughout a genome
\rightarrow Data are produced at a massive scale
- Suitable computational methods are needed to analyze and exploit these data
- Bioinformatic methods include: algorithmic, computational, mathematical, data mining, statistical, machine learning, and deep learning techniques
- This course focuses mostly on statistical and machine/deep learning methods (or questions that are naturally answered by these methods)

What is high-throughput biological data?

- High-throughput technologies can be thought of as massively parallel automated methods to carry out a large number of individual experiments/biochemical tests simultaneously
- Examples: a microarray or a sequencing experiment can simultaneously
- Measure expression (=abundance) of tens of thousands of genes in a biological sample
- Quantify genetic variants at millions of positions throughout a genome
\rightarrow Data are produced at a massive scale
- Suitable computational methods are needed to analyze and exploit these data
- Bioinformatic methods include: algorithmic, computational, mathematical, data mining, statistical, machine learning, and deep learning techniques
- This course focuses mostly on statistical and machine/deep learning methods (or questions that are naturally answered by these methods)
- Bioinformatics provides essential tools for molecular biology, genetics, biomedicine, healthcare, drug development, evolutionary studies, synthetic biology and more

Data growth and sequencing costs

http://learn.genetics.utah.edu/content/precision/time/

Beyond genome identification

After having sequenced the genome (e.g. human reference genome):

- Characterize genetic variation between individuals
- Identify the location of genes
- Analyze gene activity, functions, interactions, and regulation
- Quantify and analyze epigenomics
- Characterize dynamic properties of genome and functional genomics
- Translate this data / knowledge for health and disease

Contents

- Introduction
- Statistical hypothesis testing
- Types of error
- Multiple testing

Statistical hypothesis testing

- Hypothesis testing is the main inferential statistics concept that we will use throughout this course
- We will briefly review the basics of hypothesis testing
- We follow parts of J. Orloff's and J. Bloom's lecture notes "Null Hypothesis Significance Testing" (Orloff and Bloom, 2014)
- You may also refer to several / any statistics book

Statistical hypothesis testing

- Hypothesis testing is the main inferential statistics concept that we will use throughout this course
- We will briefly review the basics of hypothesis testing
- We follow parts of J. Orloff's and J. Bloom's lecture notes "Null Hypothesis Significance Testing" (Orloff and Bloom, 2014)
- You may also refer to several / any statistics book
- Conceptually speaking, the hypothesis testing framework asks if the observed data is outside the region where we expect the data to be
- If it is, then we have evidence to reject our initial conservative hypothesis

Null hypothesis significance testing (NHST)

Key concepts:

- H_{0} : the null hypothesis. This specifies our conservative default assumptions for the model that generates the data
- H_{A} : the alternative hypothesis (also denoted as H_{1}). We are interested in testing the null hypothesis; if null is rejected we accept the alternative hypothesis as the best explanation for the data
- T : the test statistic of our choice, computed from the observed data
- Null distribution: the probability density of the test statistic, assuming the null hypothesis holds true
Typically the null hypothesis is chosen to be a simple and conservative hypothesis, which we reject if we have sufficient amount of evidence to reject H_{0}

Example: coin flipping

We flip a coin N times to test whether the coin is fair or unfair
The rationale is to check whether our coin results in unexpectedly few or many heads/tails
Let θ denote the probability that the coin flipping results in a head (or tail), then:

- Null hypothesis: $H_{0}=$ "the coin is fair", i.e. $\theta=0.5$
- Alternative hypothesis: $H_{A}=$ "coin is not fair", i.e. $\theta \neq 0.5$
- Test statistic: $T=$ number of heads in N flips
- Null distribution: assuming the null hypothesis holds, the number of heads follows binomial distribution

$$
T \sim \operatorname{Binomial}(N, 0.5)
$$

with the probability density function

$$
P(T=k)=\binom{N}{k} \theta^{k}(1-\theta)^{N-k}
$$

$$
\text { for } k=0,1, \ldots, N \text { and } \theta=0.5
$$

Example: coin flipping

- $N=20$ coin flipping experiments
- The probabilities of obtaining any number of heads between 0 and 20 with a fair coin are shown on right (here X is used to denote the test statistic, instead of T)
- So, is it "too unlikely" to observe e.g. as many as 15 heads? What about observing as few as 5 heads?

p-value

- For a given realization $T=t$, the p-value is the probability of seeing test statistic value that is at least as extreme as the observed value t

$$
p=P(\text { "test statistic at least as extreme as } t \text { "), }
$$

where the probability is computed using the null distribution, i.e., by assuming the null hypothesis is true

p-value

- For a given realization $T=t$, the p-value is the probability of seeing test statistic value that is at least as extreme as the observed value t

$$
p=P(\text { "test statistic at least as extreme as } t \text { "), }
$$

where the probability is computed using the null distribution, i.e., by assuming the null hypothesis is true

- "At least as extreme as" depends on the application (i.e., hypothesis test, test statistic, experimental design)
- Standard hypothesis tests are either one-sided or two-sided:
- One-sided: the test statistic can have significantly low values or high values (but not both)
- One-sided test has directionality
- Two-sided: the test statistic can have both significantly low values and high values
- E.g. the coin flipping test is two-sided

Example: coin flipping cont'd

- The probability of observing T smaller than 6 or larger than 14 is

$$
P(T \leq 5 \text { or } T \geq 15) \approx 0.0414
$$

- p-value of smaller than 0.05 is a commonly used threshold
- By choosing a p-value (here 0.05) we get the rejection region formed by the extreme values (red)
- If the test statistic falls in the rejection region, then we consider to have enough evidence to reject the null hypothesis and accept the alternative hypothesis
- The typical values (blue) form the "acceptance" region
- In the "acceptance" region we do not have enough evidence to reject H_{0}
- In the "acceptance" region we do not make any decision based on data

Types of null hypothesis

- Simple hypothesis: a null hypothesis that specifies the null distribution exactly
- E.g. data is sampled from a given normal distribution with known mean and variance
- Composite hypothesis: a null hypothesis that does not specify the null distribution completely
- E.g. data is sampled from a given normal distribution with known mean but unknown variance

Types of null hypothesis

- Simple hypothesis: a null hypothesis that specifies the null distribution exactly
- E.g. data is sampled from a given normal distribution with known mean and variance
- Composite hypothesis: a null hypothesis that does not specify the null distribution completely
- E.g. data is sampled from a given normal distribution with known mean but unknown variance
- Exact hypothesis: a null hypothesis that specifies an exact parameter value, e.g., mean $=0$
- Inexact hypothesis: a null hypothesis that specifies a range of parameter values, e.g., mean ≤ 0
- Our coin flipping example has a null hypothesis that is simple and exact

t-test

- In many applications data is assumed to be normally distributed
- Two-sample t-test can be applied to test the means of two samples which are assumed to be drawn from two normal distributions (we assume the same variance here)

$$
\begin{aligned}
x_{1}, \ldots, x_{n} & \sim N\left(\mu_{1}, \sigma^{2}\right) \\
y_{1}, \ldots, y_{m} & \sim N\left(\mu_{2}, \sigma^{2}\right)
\end{aligned}
$$

- Unknowns: μ_{1}, μ_{2}, and σ^{2}
- This is a composite null hypothesis
- The null hypothesis $H_{0}: \mu_{1}=\mu_{2}$
- The alternative hypothesis $H_{A}: \mu_{1} \neq \mu_{2}$

t-test

- Notation: T is a random variable, t is a particular realization of T
- The test statistic T for the t-test:

$$
t=\frac{\bar{x}-\bar{y}}{s}
$$

where $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ and $\bar{y}=\frac{1}{m} \sum_{i=1}^{m} y_{i}$ are the sample means, and s^{2} is the pooled variance

$$
s^{2}=\frac{(n-1) s_{x}^{2}+(m-1) s_{y}^{2}}{n+m-2}\left(\frac{1}{n}+\frac{1}{m}\right) \quad \text { and } \quad s_{x}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

- The null distribution: $p\left(T \mid H_{0}\right)$ can be shown to be the t-distribution with $n+m-2$ degrees of freedom

t-test

- t-distribution for different degrees of freedom

t-test

- One-sided p-value (right side): $p=P\left(T \geq t \mid H_{0}\right)$
- One-sided p-value (left side): $p=P\left(T \leq t \mid H_{0}\right)$
- Two-sided p-value: $p=P\left(|T| \geq|t| \mid H_{0}\right)$

t-test: example

- An example: let us assume that we are interested in quantifying whether a gene of interest is differentially expressed between two groups A and B (say, between healthy and diseased individuals)
- Measured gene expression values are

$$
\begin{array}{ll}
\text { Group } A: & 32,25,36,27,28 \\
\text { Group } B: & 29,48,39,37,39
\end{array}
$$

t-test: example

- We can explore the data by plotting estimated normal densities for both groups: $\mathcal{N}\left(\bar{\mu}_{A}, s^{2}\right)$ and $\mathcal{N}\left(\bar{\mu}_{B}, s^{2}\right)$

t-test: example

- For quantitative inference, we can use the t-test
- The value of the t-statistic for our data is -2.4388

t-test: example

- For quantitative inference, we can use the t-test
- The value of the t-statistic for our data is -2.4388

- In general, we may not know whether our gene can be up- or down-regulated and we need to apply two-sided test, which results in a p-value of 0.0406
- If we know that the gene expression value in group B can only be higher we can apply one-sided test (left side), which results in a p-value of 0.0203

Contents

- Introduction
- Statistical hypothesis testing
- Types of error
- Multiple testing

Types of error

Two types of errors can be made in a hypothesis testing
Type I error:

- Null hypothesis H_{0} is true but we reject that in favour of H_{1}
- This incorrect decision results in a false positive

Type II error:

- Null hypothesis H_{0} is false but we do not reject H_{0}
- This incorrect decision results in a false negative

Types of error

Two types of errors can be made in a hypothesis testing

Type I error:

- Null hypothesis H_{0} is true but we reject that in favour of H_{1}
- This incorrect decision results in a false positive

Type II error:

- Null hypothesis H_{0} is false but we do not reject H_{0}
- This incorrect decision results in a false negative

Table of error types		Null hypothesis $\left(H_{0}\right)$ is			
Judgment of Null Hypothesis $\left(H_{0}\right)$	Reject	Valid/True Type I error (False Positive)	Correct inference (True Positive)		
	Accept	Correct inference (True Negative)	Type II error (False Negative)		Type-1 = True $\mathbf{H}_{\mathbf{0}}$ but reject it (False Positive)
:---					
Type-2 $=$ False $\mathbf{H}_{\mathbf{0}}$ but accept it (False Negative)					

Significance of a test

- Significance level of a test (often called α) is defined to be the probability that we incorrectly reject H_{0}

$$
\text { Significance level }=P\left(\text { reject } H_{0} \mid H_{0}\right)=P(\text { type I error })
$$

- Significance level of $\alpha=0.05$ is commonly used in practise
- In other words, if the computed p-value is smaller than α, then we reject the null hypothesis
- When we reject the null hypothesis, we say the result is statistically significant at level α
- Note: rejecting the null hypothesis with level α does not mean that the alternative hypothesis is correct with probability of 0.95

Power of a test

- Power of a test is defined to be the probability that we correctly reject H_{0}

$$
\begin{aligned}
\text { Power } & =P\left(\text { reject } H_{0} \mid H_{A}\right) \\
& =1-P\left(\text { do not reject } H_{0} \mid H_{A}\right) \\
& =1-P(\text { type II error })
\end{aligned}
$$

Illustration of the significance and power of a test

Figure from (Orloff and Bloom, 2014) illustrates the concepts of significance and power

- Red shaded area below $f\left(x \mid H_{0}\right)$ represents the significance
- Violet shaded area below $f\left(x \mid H_{A}\right)$ represents the power: the probability that the test statistic is in the rejection region of H_{0} when H_{A} is true
- Note that the null hypothesis significance testing works without caring about $f\left(x \mid H_{A}\right)$

NHST steps

- Choose a null hypothesis H_{0}
- Choose a test statistic
- Decide if your alternative hypothesis is one-sided or two-sided
- Choose a significance level
- Perform the hypothesis test

Contents

- Introduction
- Statistical hypothesis testing
- Types of error
- Multiple testing

Multiple testing

- Multiple testing problem occurs when a statistical analysis and decision making involves multiple simultaneous statistical hypothesis tests
- The p-values (i.e., confidence levels) described above are valid for a single test
- Consider the previous example of comparing gene expression (for gene x_{1}) between Groups A and B
- If 5% confidence level is used for a single test, then there is only 0.05 probability that null hypothesis is rejected incorrectly
- If the test is applied to 100 genes ($x_{i}, i \in\{1, \ldots 100\}$) for which the null hypothesis holds (i.e., they are not differentially expressed) independently, then the expected number of genes for which the null hypothesis is rejected incorrectly is 5

Multiple testing

- Multiple testing problem occurs when a statistical analysis and decision making involves multiple simultaneous statistical hypothesis tests
- The p-values (i.e., confidence levels) described above are valid for a single test
- Consider the previous example of comparing gene expression (for gene x_{1}) between Groups A and B
- If 5% confidence level is used for a single test, then there is only 0.05 probability that null hypothesis is rejected incorrectly
- If the test is applied to 100 genes $\left(x_{i}, i \in\{1, \ldots 100\}\right)$ for which the null hypothesis holds (i.e., they are not differentially expressed) independently, then the expected number of genes for which the null hypothesis is rejected incorrectly is 5
\rightarrow Hypothesis testing will lead to many false positives if the p-values are not corrected for multiple testing
- Multiple testing is a real challenge in most bioinformatics applications
- Differential gene expression analysis
- Detecting disease associated genomic variant
- Detection of protein binding sites along whole genome from ChIP-seq

Multiple testing problem ${ }^{1}$

- Lets assume we have m independent hypothesis $H_{0}^{(1)}, \ldots, H_{0}^{(m)}$ and lets assume we know already beforehand that the null hypothesis holds for every one of them (that's a boring assumption to start with, but lets continue with that assumption anyways)
- If we make m independent tests with significance level α, then each of the m tests will be significant with probability α
- Now the total number of false positives X will have a distribution

$$
X \sim \operatorname{Binomial}(m, \alpha)
$$

(recall the coin flipping, now with a biased coin)

- The expectation of a binomial distribution is $E(X)=m \alpha$
- Once again, if we want to carry out a test e.g. for all approx. 20000 human genes, then the expected number of false positives (assuming we know that null hypothesis holds for all) is $20000 \cdot 0.05=1000$

[^0]
Family-wise error rate

- Recall the type I error
- Null hypothesis H_{0} is true but it is rejected in favour of H_{1}
- Assuming again m independent tests for which we know that the null hypothesis is true, then the probability that any of the hypothesis will be rejected with significance level α is

$$
\bar{\alpha}=1-(1-\alpha)^{m}
$$

i.e., the probability of making one or more type I errors

- This is also called the family-wise error rate (FWER)
- FWER for $m \in\{0, \ldots, 100\}$ tests with $\alpha=0.05$

- Note: for $m=1$, FWR $=\alpha$
- FWER is independent of the type of a test or tests

Bonferroni correction

- Let $H_{0}^{(1)}, \ldots, H_{0}^{(m)}$ be a collection of hypotheses and p_{1}, \ldots, p_{m} the corresponding p-values
- Let $I_{0} \subseteq\{1, \ldots, m\}$ be the (unknown) subset of the true null hypotheses, $m_{0}=\left|I_{0}\right| \leq m$
- Bonferroni correction is defined as follows:
- Given the original significance level α and the number of statistical tests m, then Bonferroni correction will reject only those null hypothesis i for which $p_{i} \leq \alpha / m$
- Equivalently, the multiple testing corrected p-value for the $i^{\text {th }}$ test is $\min \left\{m p_{i}, 1\right\}$

Bonferroni correction

- Let $H_{0}^{(1)}, \ldots, H_{0}^{(m)}$ be a collection of hypotheses and p_{1}, \ldots, p_{m} the corresponding p-values
- Let $I_{0} \subseteq\{1, \ldots, m\}$ be the (unknown) subset of the true null hypotheses, $m_{0}=\left|I_{0}\right| \leq m$
- Bonferroni correction is defined as follows:
- Given the original significance level α and the number of statistical tests m, then Bonferroni correction will reject only those null hypothesis i for which $p_{i} \leq \alpha / m$
- Equivalently, the multiple testing corrected p-value for the $i^{\text {th }}$ test is $\min \left\{m p_{i}, 1\right\}$
- For the Bonferroni correction method, FWER $\leq \alpha$ because

$$
\text { FWER }=P\left(\bigcup_{i \in I_{0}}\left\{p_{i} \leq \frac{\alpha}{m}\right\}\right) \leq \sum_{i \in l_{0}} P\left(\left\{p_{i} \leq \frac{\alpha}{m}\right\}\right)=\sum_{i \in I_{0}} \frac{\alpha}{m}=m_{0} \frac{\alpha}{m} \leq=\alpha
$$

(Note: each $\left\{p_{i} \leq \frac{\alpha}{m}\right\}$ is considered as an event, and the inequality follows from the union bound)

- The Bonferroni correction is conservative

False discovery rate

- False discovery rate (FDR) is the proportion of false positives among all positives

$$
\mathrm{FDR}=\frac{\# \text { false positives }}{\# \text { false positives }+\# \text { true positives }} \in[0,1]
$$

- Formally FDR is defined as the expectation of the above quantity
- FDR of 0.05 means that 5% of the rejected null hypothesis are false
- However, on the other hand, FDR of 0.05 means that 95% of the rejected hypothesis are true findings (i.e., tests for which H_{A} holds)
- A small fraction of false positives are often accepted as long as majority of the results are true
- In bioinformatics applications, FDR is typically more useful than FWER

False discovery rate

- Lets again assume that we have m tests with p-values p_{1}, \ldots, p_{m}
- We can order the p-values in increasing order $p_{(1)} \leq p_{(2)} \leq \ldots \leq p_{(m)}$
- The choice of significance level α is equivalent to deciding how many of the smallest p-values are considered significant
- Lets denote that number (a positive integer) by ℓ
- Because a significance level α corresponds to a particular cutoff ℓ, we can denote that by explicitly writing $\ell(\alpha)$ (although generally we do not that mapping)
- Thus, α gives a list of significant p-values, $p_{(1)}, p_{(2)}, \ldots, p_{(\ell(\alpha))}$
- A small α results in a short list (small ℓ)
- A larger α results in a longer list (larger ℓ)
- $\ell(\alpha)$ is monotonically increasing in α
- As noted above, we do not know this mapping

False discovery rate

- Lets assume that the number of true positives (for which the null hypothesis does not hold) is small compared to the total number of tests m
- Thus, similarly as above, the number of false positives is still approximatively binomially distributed as $X \sim \operatorname{Binomial}(m, \alpha)$
- Thus, the FDR is (assuming $\ell(\alpha) \geq X$)

$$
\mathrm{FDR} \approx \frac{X}{\ell(\alpha)} \text { and } E(\mathrm{FDR}) \approx \frac{E(X)}{\ell(\alpha)}=\frac{m \alpha}{\ell(\alpha)}
$$

False discovery rate

- Lets assume that the number of true positives (for which the null hypothesis does not hold) is small compared to the total number of tests m
- Thus, similarly as above, the number of false positives is still approximatively binomially distributed as $X \sim \operatorname{Binomial}(m, \alpha)$
- Thus, the FDR is (assuming $\ell(\alpha) \geq X$)

$$
\mathrm{FDR} \approx \frac{X}{\ell(\alpha)} \text { and } E(\mathrm{FDR}) \approx \frac{E(X)}{\ell(\alpha)}=\frac{m \alpha}{\ell(\alpha)}
$$

- Generally we want to limit the fraction of false positive findings (i.e., FDR) by a value q, thus

$$
\frac{m \alpha}{\ell(\alpha)} \leq q \quad \Leftrightarrow \quad \alpha \leq \frac{q \ell(\alpha)}{m}
$$

- One needs to choose a small enough α so that the above inequality holds
- This is little tricky because $\ell(\alpha)$ depends on α too

False discovery rate

- To solve the inequality on the previous page, hypothetically assume we have inverted the function $\ell(\cdot):[0,1] \rightarrow\{1, \ldots, m\}$ as $\alpha(\cdot):\{1, \ldots, m\} \rightarrow[0,1]$
- We can write

$$
\alpha(\ell) \leq \frac{q \ell}{m}
$$

- Notice that the significance level (or the p-value threshold) that gives a list of length ℓ is $p_{(\ell)}$, thus we have

$$
p_{(\ell)} \leq \frac{q \ell}{m}
$$

- Thus, to guarantee FDR $\leq q$, we just need to run through all possible values of ℓ, from 0 to m, in order to find the largest value of ℓ that satisfies $p_{(\ell)} \leq \frac{q \ell}{m}$ and to find the corresponding $p_{(\ell)}$
\rightarrow The null hypothesis is then rejected for those tests that give the ℓ smallest p-values

Benjamini-Hochberg correction

- The Benjamini-Hochberg (BH) step-up procedure is commonly used in bioinformatics applications
- Let $q \in[0,1]$ be given and $p_{(1)} \leq p_{(2)} \leq \cdots \leq p_{(m)}$ be the ordered list of the $m p$-values, then the BH procedure works as follows

1. Find the largest k such that $p_{(k)} \leq \frac{k}{m} q$
2. Then reject all $H_{(i)}$ for $i=1, \ldots, k$

- For BH, the probability of expected proportion of false positives $\leq q$
- The FDR value q_{k} for each test k can be obtained from mapping

$$
\min \left\{\frac{m}{k} p_{(k)}, 1\right\}
$$

(and by guaranteeing that FDR values do not decrease as k increases)

False discovery rate

- An example: Following the above example with one gene, let us now assume that we measure the expression of 100 genes for two groups, A and B. We assume to have five replicate measurements from both groups (for each of the 100 genes).
- For each gene, expression values are normally distributed with means μ_{A} and μ_{B} and standard deviations $\sigma_{A}=\sigma_{B}$.

False discovery rate

- If $\mu_{A}=\mu_{B}=0$ (and $\sigma_{A}=\sigma_{B}=1$), the null hypothesis holds for all genes and in the ideal case we should not detect any differentially expressed genes
- However, the histogram of the obtained p-values look as follows (histogram on right)

- We detect 6 genes with the significance level of 0.05 (all false positives)

False discovery rate

- If we correct the p-values for multiple testing using the Benjamini-Hochberg methods described above, we detect no genes that are statistically significantly differentially expressed.

False discovery rate

- Let us then see how FDR correction works if we have 90 non-differentially expressed genes and 10 truely differentially expressed genes with $\mu_{A}=0$ and $\mu_{B}=2\left(\right.$ and $\left.\sigma_{A}=\sigma_{B}=1\right)$ for the differentially expressed genes.

- We would now detect 10 genes with the significance level of 0.05: 7 true positives and 3 false positives

False discovery rate

- If we correct the p-values for multiple testing using the Benjamini-Hochberg methods described above, we detect 4 genes that are statistically significantly differentially expressed (all true positives)

False discovery rate

- Consider an example from (Wilkinson, 2017): use t-test to identify genes differentially expressed in melanoma compared to healthy skin cells
- 6830 genes, i.e., $m=6830$
- If we assumed that the null hypothesis holds for all genes, then the expected number of false positives would be $6830 \cdot 0.05=341.5$
- Using the nominal (non-corrected) p-values results in 1377 significantly differentially expressed genes, indicating that the data may contain a considerable number of truly differential genes
- The use of Bonferroni correction would give us only six genes that meet the stringent criterion of $p \leq 0.05 / 6830 \approx 0.0000073$
- BH correction method would give us 186 differentially expressed genes with a FDR threshold of 0.05

False discovery rate

- The figures below show
- Ordered p-values (red)
- The 0.05 uncorrected p-value cutoff (green)
- The Bonferroni-corrected threshold (cyan)
- The FDR threshold (dark blue)

References

- Hastie T, Tibshirani R, Friedman J, The Elements of Statistical Learning, Springer, 2009.
- Jeremy Orloff and Jonathan Bloom. "Null Hypothesis Significance Testing" I Class 17, 18.05, Spring 2014 (http://ocw.mit.edu/courses/mathematics/ 18-05-introduction-to-probability-and-statistics-spring-2014/readings/ MIT18_05S14_Reading17b.pdf)
- Wilkinson DJ, Statistics for Big data Part 2: Multivariate Data Analysis using R (Lecture notes) available at
https://www.staff.ncl.ac.uk/d.j.wilkinson/teaching/mas8381/notes14.pdf, November 19, 2017

[^0]: ${ }^{1}$ From here onwards, parts of the slides follow Sections 7.2.2-7.2.4 from (Wilkinson, 2017). You can also check Section 18.7 from (Hastie et al., 2017)

