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This course

» Focuses on methods to analyze high-throughput biological data
» Primary data type: sequencing data
> Aims to give an understanding of how, why and when these methods work

» Less focus on applications or implementations of methods



What is high-throughput biological data?

» High-throughput technologies can be thought of as massively parallel automated methods
to carry out a large number of individual experiments/biochemical tests simultaneously
» Examples: a microarray or a sequencing experiment can simultaneously

> Measure expression (=abundance) of tens of thousands of genes in a biological sample
» Quantify genetic variants at millions of positions throughout a genome
— Data are produced at a massive scale
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> Measure expression (=abundance) of tens of thousands of genes in a biological sample

» Quantify genetic variants at millions of positions throughout a genome
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» Suitable computational methods are needed to analyze and exploit these data
> Bioinformatic methods include: algorithmic, computational, mathematical, data mining,
statistical, machine learning, and deep learning techniques
» This course focuses mostly on statistical and machine/deep learning methods (or questions
that are naturally answered by these methods)



What is high-throughput biological data?

» High-throughput technologies can be thought of as massively parallel automated methods
to carry out a large number of individual experiments/biochemical tests simultaneously

» Examples: a microarray or a sequencing experiment can simultaneously

> Measure expression (=abundance) of tens of thousands of genes in a biological sample
» Quantify genetic variants at millions of positions throughout a genome
— Data are produced at a massive scale

» Suitable computational methods are needed to analyze and exploit these data
> Bioinformatic methods include: algorithmic, computational, mathematical, data mining,
statistical, machine learning, and deep learning techniques
» This course focuses mostly on statistical and machine/deep learning methods (or questions
that are naturally answered by these methods)

» Bioinformatics provides essential tools for molecular biology, genetics, biomedicine,
healthcare, drug development, evolutionary studies, synthetic biology and more



Data growth and sequencing costs

DNA sequencing cost per genome
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Beyond genome identification

After having sequenced the genome (e.g. human reference genome):
» Characterize genetic variation between individuals
» Identify the location of genes
> Analyze gene activity, functions, interactions, and regulation
» Quantify and analyze epigenomics
» Characterize dynamic properties of genome and functional genomics
>
>

Translate this data / knowledge for health and disease
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Statistical hypothesis testing

» Hypothesis testing is the main inferential statistics concept that we will use throughout
this course
» We will briefly review the basics of hypothesis testing

> We follow parts of J. Orloff's and J. Bloom's lecture notes “Null Hypothesis Significance
Testing” (Orloff and Bloom, 2014)
> You may also refer to several / any statistics book



Statistical hypothesis testing

» Hypothesis testing is the main inferential statistics concept that we will use throughout
this course
» We will briefly review the basics of hypothesis testing
> We follow parts of J. Orloff's and J. Bloom's lecture notes “Null Hypothesis Significance

Testing” (Orloff and Bloom, 2014)
> You may also refer to several / any statistics book

» Conceptually speaking, the hypothesis testing framework asks if the observed data is
outside the region where we expect the data to be

» If it is, then we have evidence to reject our initial conservative hypothesis



Null hypothesis significance testing (NHST)

Key concepts:

» Hy: the null hypothesis. This specifies our conservative default assumptions for the model
that generates the data

» Hpa: the alternative hypothesis (also denoted as H;). We are interested in testing the null
hypothesis; if null is rejected we accept the alternative hypothesis as the best explanation
for the data

» T: the test statistic of our choice, computed from the observed data

» Null distribution: the probability density of the test statistic, assuming the null hypothesis
holds true

Typically the null hypothesis is chosen to be a simple and conservative hypothesis, which we
reject if we have sufficient amount of evidence to reject Hy



Example: coin flipping

We flip a coin N times to test whether the coin is fair or unfair

The rationale is to check whether our coin results in unexpectedly few or many heads/tails

Let 6 denote the probability that the coin flipping results in a head (or tail), then:

2

>
>
>

Null hypothesis: Hy = “the coin is fair”, i.e. § = 0.5
Alternative hypothesis: Hy = "coin is not fair", i.e. § # 0.5
Test statistic: T = number of heads in N flips

Null distribution: assuming the null hypothesis holds, the number of heads follows

binomial distribution
T ~ Binomial(N, 0.5)

with the probability density function

P(T = k)= (’){’) ok(1 — )Nk

fork=0,1,...,Nand § =0.5



Example: coin flipping

» N = 20 coin flipping experiments 0.2
» The probabilities of obtaining any number o}
of heads between 0 and 20 with a fair coin 0.15 | ?9
are shown on right (here X is used to
denote the test statistic, instead of T) ;:z 01l
» So, is it "too unlikely” to observe e.g. as =
many as 15 heads? What about observing 0.05 |
as few as 5 heads? T T
0600 00? ?0000 D
0 5 10 15 20

the number of heads (X)



p-value

» For a given realization T = t, the p-value is the probability of seeing test statistic value
that is at least as extreme as the observed value t

p = P("test statistic at least as extreme as t"),

where the probability is computed using the null distribution, i.e., by assuming the null
hypothesis is true



p-value

» For a given realization T = t, the p-value is the probability of seeing test statistic value
that is at least as extreme as the observed value t

p = P("test statistic at least as extreme as t"),

where the probability is computed using the null distribution, i.e., by assuming the null
hypothesis is true
> “At least as extreme as” depends on the application (i.e., hypothesis test, test statistic,
experimental design)
» Standard hypothesis tests are either one-sided or two-sided:
» One-sided: the test statistic can have significantly low values or high values (but not both)
» One-sided test has directionality
> Two-sided: the test statistic can have both significantly low values and high values
> E.g. the coin flipping test is two-sided



Example: coin flipping cont'd

» The probability of observing T smaller » In the “acceptance” region we do not have
than 6 or larger than 14 is enough evidence to reject Hy

» In the “acceptance” region we do not make

P(T <5or T 215)~0.0414 any decision based on data

» p-value of smaller than 0.05 is a 02
commonly used threshold

» By choosing a p-value (here 0.05) we get 015 | OB Re
the rejection region formed by the extreme

[ d
values (red) ol

p(XI6)

» If the test statistic falls in the rejection
region, then we consider to have enough
evidence to reject the null hypothesis and

accept the alternative hypothesis T T
. 050000? ?000
» The typical values (blue) form the 0 5 10 15

“acceptance” region the number of heads (X)

0.05

720



Types of null hypothesis

» Simple hypothesis: a null hypothesis that specifies the null distribution exactly
» E.g. data is sampled from a given normal distribution with known mean and variance

» Composite hypothesis: a null hypothesis that does not specify the null distribution
completely

> E.g. data is sampled from a given normal distribution with known mean but unknown
variance



Types

of null hypothesis

Simple hypothesis: a null hypothesis that specifies the null distribution exactly
» E.g. data is sampled from a given normal distribution with known mean and variance

Composite hypothesis: a null hypothesis that does not specify the null distribution
completely

> E.g. data is sampled from a given normal distribution with known mean but unknown
variance

Exact hypothesis: a null hypothesis that specifies an exact parameter value, e.g., mean = 0

Inexact hypothesis: a null hypothesis that specifies a range of parameter values, e.g.,
mean < 0

Our coin flipping example has a null hypothesis that is simple and exact



t-test

» In many applications data is assumed to be normally distributed

» Two-sample t-test can be applied to test the means of two samples which are assumed to
be drawn from two normal distributions (we assume the same variance here)
2
Xly-eoyXn N(Mlaa)
2
Yiyeo s Ym N(M27U)

» Unknowns: ui, p2, and o2
» This is a composite null hypothesis

v

The null hypothesis Hy: 11 = o

v

The alternative hypothesis Ha: 1 # o



t-test

» Notation: T is a random variable, t is a particular realization of T

» The test statistic T for the t-test: o
X—Yy
t= ,

s

x =151 . v—=15" . 2
wh<_are X=X andy = =3%"",y are the sample means, and s* is the pooled
variance

n—=1s2+(m—-1)s2 /1 1 1 <
52:( s+ ( )y (+) and s2= Z(X/—Y)z

n+m-—2 n m x nfli_1

» The null distribution: p(T|Ho) can be shown to be the t-distribution with n +m — 2
degrees of freedom



t-test

» t-distribution for different degrees of freedom

t-distribution
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t-test

» One-sided p-value (right side): p= P(T >t | Hp)
» One-sided p-value (left side): p= P(T < t| Hp)
> Two-sided p-value: p= P(|T| > |t| | Ho)



t-test: example

> An example: let us assume that we are interested in quantifying whether a gene of interest

is differentially expressed between two groups A and B (say, between healthy and diseased
individuals)

» Measured gene expression values are

Group A:  32,25,36,27,28
Group B:  29,48,39,37,39



t-test: example

» We can explore the data by plotting estimated normal densities for both groups:

N(fin,s?) and N (7ig, s2)

0.12

017

0.08 1

0.06

0.04 ¢

Group A

0.02 ¢ Group B

0 N
10 20 30 40 50 60
Gene expression



t-test: example

» For quantitative inference, we can use the

t-test
» The value of the t-statistic for our data is
—2.4388
4 t-distribution
0. ~
v=4
v=28
0.3} v =98
o2
o
0.1+t
0 : : \
-4 -2 0 2 4



t-test: example

» For quantitative inference, we can use the » In general, we may not know whether our
t-test gene can be up- or down-regulated and we

» The value of the t-statistic for our data is need to apply two-sided test, which results
—2.4388 in a p-value of 0.0406

» If we know that the gene expression value

t-distribution in group B can only be higher we can

0.4
P apply one-sided test (left side), which
v=8 results in a p-value of 0.0203
03} rv=98| 1
Xoz2l
o
N / \K
0 ‘ ‘ :
-4 -2 0 2 4



Contents

» Introduction

» Statistical hypothesis testing
» Types of error

» Multiple testing



Types of error
Two types of errors can be made in a hypothesis testing

Type | error:
» Null hypothesis Hy is true but we reject that in favour of H
» This incorrect decision results in a false positive

Type Il error:
» Null hypothesis Hy is false but we do not reject Hy
» This incorrect decision results in a false negative



Types of error
Two types of errors can be made in a hypothesis testing

Type | error:
» Null hypothesis Hy is true but we reject that in favour of H
» This incorrect decision results in a false positive

Type Il error:
» Null hypothesis Hy is false but we do not reject Hy
» This incorrect decision results in a false negative

Null hypothesis (Hy) is

Table of error types
Valid/True Invalid/False

Type | error Correct inference

Reject . -
(False Positive) (True Positive)

Judgment of Null Hypothesis (Hg)
Correct inference Type Il error

Accept . ;
(True Negative) | (False Negative)

Type-1 = True Hy but reject it (False Positive)

Type-2 = False H; but accept it (False Negative)

Figure from (Wikipedia)



Significance of a test

» Significance level of a test (often called «) is defined to be the probability that we
incorrectly reject Hy

Significance level = P(reject Ho|Ho) = P(type | error)

» Significance level of a = 0.05 is commonly used in practise

» In other words, if the computed p-value is smaller than «, then we reject the null
hypothesis

» When we reject the null hypothesis, we say the result is statistically significant at level «

» Note: rejecting the null hypothesis with level o does not mean that the alternative
hypothesis is correct with probability of 0.95



Power of a test
» Power of a test is defined to be the probability that we correctly reject Hy

Power = P(reject Ho|Ha)
= 1— P(do not reject Ho|Ha)
1 — P(type Il error)



lllustration of the significance and power of a test

Figure from (Orloff and Bloom, 2014) illustrates the concepts of significance and power
» Red shaded area below f(x|Hp) represents the significance
» Violet shaded area below f(x|Ha) represents the power: the probability that the test

statistic is in the rejection region of Hy when Hp is true
» Note that the null hypothesis significance testing works without caring about f(x|Ha)

fla|HaA) f(z|Ho)

T -4 EA 0 %
reject Ho region——- ———————accept Hy region

High power test

flz|Hy)  f(|Hp)

E]

2 04 0 73
ol accept Hy regiop———

)
———————————eject H; region
Low power test



NHST steps

» Choose a null hypothesis Hy

» Choose a test statistic

» Decide if your alternative hypothesis is one-sided or two-sided
» Choose a significance level

>

Perform the hypothesis test
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Multiple testing

» Multiple testing problem occurs when a statistical analysis and decision making involves
multiple simultaneous statistical hypothesis tests
» The p-values (i.e., confidence levels) described above are valid for a single test

» Consider the previous example of comparing gene expression (for gene x;) between Groups
A and B
> If 5% confidence level is used for a single test, then there is only 0.05 probability that null

hypothesis is rejected incorrectly

> If the test is applied to 100 genes (x;, i € {1,...100}) for which the null hypothesis holds
(i.e., they are not differentially expressed) independently, then the expected number of genes
for which the null hypothesis is rejected incorrectly is 5



Multiple testing

>

>
>

Multiple testing problem occurs when a statistical analysis and decision making involves
multiple simultaneous statistical hypothesis tests
The p-values (i.e., confidence levels) described above are valid for a single test
Consider the previous example of comparing gene expression (for gene x;) between Groups
A and B
> If 5% confidence level is used for a single test, then there is only 0.05 probability that null
hypothesis is rejected incorrectly
> If the test is applied to 100 genes (x;, i € {1,...100}) for which the null hypothesis holds
(i.e., they are not differentially expressed) independently, then the expected number of genes
for which the null hypothesis is rejected incorrectly is 5
Hypothesis testing will lead to many false positives if the p-values are not corrected for
multiple testing

Multiple testing is a real challenge in most bioinformatics applications

> Differential gene expression analysis

» Detecting disease associated genomic variant

» Detection of protein binding sites along whole genome from ChlP-seq
>



Multiple testing problem?

» Lets assume we have m independent hypothesis H((,l), ceey Hém) and lets assume we know
already beforehand that the null hypothesis holds for every one of them (that's a boring
assumption to start with, but lets continue with that assumption anyways)

» If we make m independent tests with significance level «, then each of the m tests will be
significant with probability «

» Now the total number of false positives X will have a distribution
X ~ Binomial(m, &)

(recall the coin flipping, now with a biased coin)
» The expectation of a binomial distribution is E(X) = ma

» Once again, if we want to carry out a test e.g. for all approx. 20000 human genes, then
the expected number of false positives (assuming we know that null hypothesis holds for
all) is 20000 - 0.05 = 1000

LFrom here onwards, parts of the slides follow Sections 7.2.2-7.2.4 from (Wilkinson, 2017). You can also
check Section 18.7 from (Hastie et al., 2017)



Family-wise error rate

» Recall the type | error
» Null hypothesis Hp is true but it is
rejected in favour of H

» Assuming again m independent tests for
which we know that the null hypothesis is
true, then the probability that any of the
hypothesis will be rejected with
significance level « is

a=1-(1-a)"

i.e., the probability of making one or more
type | errors

» This is also called the family-wise error
rate (FWER)

» FWER for m € {0,...,100} tests with
o = 0.05
1

0.8
o 0.6
[1N)
=
L o4

0.2

0

0 20 40 60 80 100
The number of tests

» Note: form=1, FWR = «

» FWER is independent of the type of a test
or tests



Bonferroni correction

> Let H(()l), ey Hém) be a collection of hypotheses and ps, ..., pm the corresponding p-values
> Let Iy C {1,..., m} be the (unknown) subset of the true null hypotheses, mg = |lp| < m

» Bonferroni correction is defined as follows:

> Given the original significance level o and the number of statistical tests m, then Bonferroni
correction will reject only those null hypothesis i for which p; < a/m
> Equivalently, the multiple testing corrected p-value for the i* test is min{mp;, 1}



Bonferroni correction

> Let H(()l), ey Hém) be a collection of hypotheses and ps, ..., pm the corresponding p-values
» Let Iy C {1,...,m} be the (unknown) subset of the true null hypotheses, mg = |lh| < m
» Bonferroni correction is defined as follows:

> Given the original significance level o and the number of statistical tests m, then Bonferroni
correction will reject only those null hypothesis i for which p; < a/m
> Equivalently, the multiple testing corrected p-value for the i* test is min{mp;, 1}

» For the Bonferroni correction method, FWER < « because
« o « «
wen=p(Ufo<5}) <Xr(fo 5)) - X o - mp <o
i€ly i€ly i€l

(Note: each {p,- < %} is considered as an event, and the inequality follows from the union
bound)

» The Bonferroni correction is conservative



False discovery rate

>

v

False discovery rate (FDR) is the proportion of false positives among all positives

FDR — #false positives

€[0,1]

Formally FDR is defined as the expectation of the above quantity
FDR of 0.05 means that 5% of the rejected null hypothesis are false

However, on the other hand, FDR of 0.05 means that 95% of the rejected hypothesis are
true findings (i.e., tests for which Ha holds)

#false positives + #true positives

A small fraction of false positives are often accepted as long as majority of the results are
true

In bioinformatics applications, FDR is typically more useful than FWER



False discovery rate

P Lets again assume that we have m tests with p-values p1,..., pm
» We can order the p-values in increasing order p1) < pi2) < ... < pim)
» The choice of significance level « is equivalent to deciding how many of the smallest
p-values are considered significant
> Lets denote that number (a positive integer) by ¢
» Because a significance level a corresponds to a particular cutoff ¢, we can denote that by
explicitly writing £(«) (although generally we do not that mapping)
» Thus, « gives a list of significant p-values, p(1), p2); - - - s P(¢(a))
> A small «a results in a short list (small £)
> A larger « results in a longer list (larger £)

» /() is monotonically increasing in «
> As noted above, we do not know this mapping



False discovery rate

> Lets assume that the number of true positives (for which the null hypothesis does not
hold) is small compared to the total number of tests m

» Thus, similarly as above, the number of false positives is still approximatively binomially
distributed as X ~ Binomial(m, «)

» Thus, the FDR is (assuming ¢(a) > X)

FDR ~ - and E(FDR)~ S0 _ M2
()



False discovery rate

>

>

Lets assume that the number of true positives (for which the null hypothesis does not
hold) is small compared to the total number of tests m

Thus, similarly as above, the number of false positives is still approximatively binomially
distributed as X ~ Binomial(m, «)

Thus, the FDR is (assuming ¢(a) > X)
X E(X) mao
FDR~ — and E(FDR)~ —/—% = —
i) *" FPR= G0y = )
Generally we want to limit the fraction of false positive findings (i.e., FDR) by a value g,
thus /(o)
mao gl(x
— < = <
o) — 9 ="
One needs to choose a small enough « so that the above inequality holds

» This is little tricky because ¢(a) depends on « too



False discovery rate

>

>

To solve the inequality on the previous page, hypothetically assume we have inverted the
function £(-) : [0,1] = {1,...,m} as a(-) : {1,..., m} = [0, 1]
We can write

ql
< —
a(l) < -

Notice that the significance level (or the p-value threshold) that gives a list of length £ is
P(e), thus we have
ql
< —
Py = m

Thus, to guarantee FDR < g, we just need to run through all possible values of ¢, from 0
to m, in order to find the largest value of £ that satisfies py) < q—nf and to find the
corresponding p()

The null hypothesis is then rejected for those tests that give the £ smallest p-values



Benjamini-Hochberg correction

» The Benjamini-Hochberg (BH) step-up procedure is commonly used in bioinformatics
applications

> Let g € [0,1] be given and p1) < p2y < -+ < p(m) be the ordered list of the m p-values,
then the BH procedure works as follows

1. Find the largest k such that p() < %q
2. Then reject all Hy for i =1,...,k

» For BH, the probability of expected proportion of false positives < g
» The FDR value gi for each test k can be obtained from mapping

min {%p(k), 1}

(and by guaranteeing that FDR values do not decrease as k increases)



False discovery rate

» An example: Following the above example with one gene, let us now assume that we
measure the expression of 100 genes for two groups, A and B. We assume to have five
replicate measurements from both groups (for each of the 100 genes).

» For each gene, expression values are normally distributed with means p4 and ppg and
standard deviations g4 = 0p.



False discovery rate

» If ua = ug =0 (and o4 = og = 1), the null hypothesis holds for all genes and in the ideal
case we should not detect any differentially expressed genes

> However, the histogram of the obtained p-values look as follows (histogram on right)

gene #1 histogram for 100 genes
0.8 10
0.6 2
=
(]
=
0.4 5}
s
c
3
0.2 3
Group A
Group B
0
-3 -2 -1 0 1 2 3 0 02 04 06 08 1
Gene expression p-value

» We detect 6 genes with the significance level of 0.05 (all false positives)



False discovery rate

» If we correct the p-values for multiple testing using the Benjamini-Hochberg methods
described above, we detect no genes that are statistically significantly differentially
expressed.

histogram for 100 genes

count/frequency
B
o

FDR



False discovery rate

» Let us then see how FDR correction works if we have 90 non-differentially expressed genes
and 10 truely differentially expressed genes with 4 =0 and ug =2 (and 04 = o5 = 1)
for the differentially expressed genes.

ene #1 histogram for 100 genes
0.8 9 10 9 9
0.6 >
o
c
[}
=
0.4 5}
s
c
=
0.2 8
Group A
Group B
0
-3 2 -1 0 1 2 3 0 02 04 06 08 1
Gene expression p-value

» We would now detect 10 genes with the significance level of 0.05: 7 true positives and 3
false positives



False discovery rate

> If we correct the p-values for multiple testing using the Benjamini-Hochberg methods
described above, we detect 4 genes that are statistically significantly differentially
expressed (all true positives)

histogram for 100 genes

n (] B o
o o o o

count/frequency

o

o

FDR



False discovery rate

>

Consider an example from (Wilkinson, 2017): use t-test to identify genes differentially
expressed in melanoma compared to healthy skin cells

6830 genes, i.e., m = 6830
If we assumed that the null hypothesis holds for all genes, then the expected number of
false positives would be 6830 - 0.05 = 341.5

Using the nominal (non-corrected) p-values results in 1377 significantly differentially
expressed genes, indicating that the data may contain a considerable number of truly
differential genes

The use of Bonferroni correction would give us only six genes that meet the stringent
criterion of p < 0.05/6830 ~ 0.0000073

BH correction method would give us 186 differentially expressed genes with a FDR
threshold of 0.05



False discovery rate

» The figures below show

> Ordered p-values (red)

» The 0.05 uncorrected p-value
cutoff (green)

» The Bonferroni-corrected
threshold (cyan)

» The FDR threshold (dark blue)

pval.sort

pval.sort[1:500]

0.0 02 04 06 08 1.0

0.004 0.008

0.000

T T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000

T T T T T T
0 100 200 300 400 500

Figures from (Wilkinson, 2017)
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