Linear Programming Modelling

Risto Lahdelma Aalto University Energy Technology Otakaari 4, 02150 Espoo, Finland risto.lahdelma@aalto.fi

Contents

- Optimization modelling
- Mathematical programming models
- Linear programming
 - LP model
 - Formulation
 - Sample energy models
 - Graphical representation
 - Solving LP models: see additional material

Optimization modelling

- The problem is defined in *implicitly* terms of
 - an **Objective function** to minimize of maximize
 - by choosing optimal values for decision variables
 - subject to constraints
- Optimization software solves the problem automatically
 - This approach is a dramatically different from *explicit* (simulation) models where the result is obtained by applying some formulas in given order
- Most common optimization model types:
 - Linear Programming (LP) problem
 - Mixed Integer Linear Programming (MILP) problem

Optimization problem example

• Sample problem with two variables

```
\min x_1^2 + x_2^2<br/>s.t.<br/>x_1 + x_2 \ge 3
```

$$x_2 \ge 0$$

 $x_1, x_2 \in \mathbb{R}$

- In a two-dimensional case the problem can be illustrated and solved graphically
 - Constraints define the feasible region in the plane
 - Level curves of the objective function show the *height* of the terrain

Optimization problem example

- **Constraints** define the feasible region in the plane
- Level curves of the objective function show the height of the terrain

General mathematical optimization problem

Find values for *decision variables* **x** that minimize or maximize the *objective function* f(**x**) subject to *constraints*:

min f(x)(objective function)subject toh(x) = 0(vector of equality constraints) $g(x) \leq 0$ (vector of inequality constraints) $x \in \mathbb{R}^n$ (or $x \in \mathbb{N}^n$)(vector of decision variables)If domain of x is \mathbb{R}^n , it is a continuous optimization problemIf all x_i are integers, it is an integer optimization problemA mixed integer problem contains both integer and real x_i

Properties of optimization problems

- Consider general problem min (max) f(x) s.t. $x \in X$
- A particular solution $\mathbf{x} = \mathbf{x}^*$ is
 - *feasible* if it satisfies all constraints (i.e. $x^* \in X$)
 - *infeasible* if it does not satisfy all constraints
 - *optimal* if it is feasible and minimizes (maximizes) $f(\mathbf{x})$
- The *problem* is
 - *feasible* if at least one feasible solution exists
 - *infeasible* if no feasible solution exists
 - *unbounded if infinitely good feasible solutions exist*
- The problem can have
 - no optimal solutions: when the problem is infeasible or unbounded
 - one unique optimal solution
 - multiple (equally good) optimal solutions
- R. Lahdelma

Optimization model transformations

- Transformations
 - $\min f(\mathbf{x}) = -\max -f(\mathbf{x})$
 - $\max f(\mathbf{x}) = -\min -f(\mathbf{x})$
 - $g(\mathbf{x}) \le 0 \Leftrightarrow -g(\mathbf{x}) \ge 0$
 - $g(\mathbf{x}) = 0 \iff g(\mathbf{x}) \le 0 \land g(\mathbf{x}) \ge 0$
 - $g(\mathbf{x}) \le 0 \Leftrightarrow g(\mathbf{x}) + s^2 = 0 \text{ where s is an unconstrained}$ real variable
- Constrained problem can be transformed into unconstrained by augmenting objective with a penalty term, i.e. a *barrier function*

 $- \min f(\mathbf{x}) \text{ s.t. } g(\mathbf{x}) \le 0 \Leftrightarrow \min f(\mathbf{x}) + M \cdot \max\{g(\mathbf{x}), 0\}$

• M is a big positive number

Optimization model types

- Depending on the structure of the objective function and constraints, optimization models can be classified in different ways
 - Single variable and multiple variables
 - Continuous, discrete or mixed integer problems
 - Decision variables are continuous, binary (0/1), general integers, or mixed
 - Integer programming, mixed integer programming
 - Unconstrained and constrained problems
 - Convex and non-convex problems
 - Linear, quadratic and nonlinear problems
 - Single objective and multi-objective problems
 - f(x) is a vector of objective functions

Optimization model types – Exampes

- Sizing of ground source heat pump
 - Single objective (minimize life-cycle costs)
 - Single continuous variable (size of pump)
 - Constrained non-linear convex problem
- Unit commitment of power plants
 - Single objective (maximize profit)
 - Multiple variables of mixed types
 - Constrained non-convex problem
- Investment in new production technology
 - Multiple objectives (economic, environmental, policy, ...)
 - Multiple discrete (binary) variables
 - Constrained or unconstrained problem

Solving optimization problems

- To solve problems it is necessary to understand the different problem types and their properties
 - There is no universal way to find the optimum or even a feasible solution to an arbitrary problem
 - Different solution algorithms are required for different problem types
- Most important is to determine if the optimization problem is convex or not!
 - Convex problem = minimize convex objective function in a convex region
 - Convex problem: relatively easy
 - Non-convex problem: potentially very hard

Impossible to solve non-convex model

- Consider max/min f(x)=sin(x)*sin(ax)
 - Each factor has max/min at +1/-1
 - If the peaks and valleys coincide then f(x) = +1 or -1
 - If a is chosen properly, peaks and valleys never meet
 - No optimum, values approaching +1/-1

Real-life optimization problems

- A real-life model differs from theoretical models in several aspects
 - Normally the problem is never unbounded
 - The existence of a feasible solution can often be verified intuitively
 - Often many model parameters are uncertain or imprecise
 - It is not necessary to find the true optimum a nearoptimal solution and sometimes even a reasonably good solution may suffice

LP and MILP modelling

 Linear Programming and Mixed Integer Linear Programming are most commonly used approaches for practical problems because

– the modelling techniques are very versatile and flexible

– efficient and reliable solvers exist for these problems

- Arbitrary convex optimization problems can be approximated by LP models
- Many non-convex optimization problems can be approximated by MILP models

LP modelling

- By far, the most commonly used optimization modelling technique
 - Applicable for a wide class of different problems
 - Easy to formulate
 - Easy to understand
 - Very large models can be solved efficiently
 - Interpretation of results and various sensitivity analyses are (relatively) easy
- Many energy optimization problems can be represented as LP models

– Why can LP modelling not always be used?

Applicability of LP models

- LP models work only in convex problems – The minimization problem is convex when:
 - The minimized objective function is convex
 - The feasible region is **convex**

– The maximization problem is convex when:

- The maximized objective function is concave
- The feasible region is **convex**
- An LP model is a piecewise linear convex model
- How can non-convex problems be modelled?

Convex optimization problem

- A convex optimization problem is of form min f(x); s.t. x ∈X
 - where f() is a convex function and
 - X is a convex set
- Similarly max f(x) s.t. x∈X where f() is a concave function is a convex optimization problem
- The feasible region X is a convex set when
 - functions in inequality constraints g(x)≤0 are convex and
 - functions in equality constraints $h(\mathbf{x})=0$ are linear.

Convex and concave functions

 A function f(x) is convex if linear interpolation between any two points x and y does not yield a lower value than the function

• Mathematically $f(\alpha x+(1-\alpha)y) \le \alpha f(x)+(1-\alpha)f(y)$ for all x, y and $\alpha \in [0,1]$ A function f(x) is **concave** if linear interpolation between any two points x and y does not yield a higher value than the function

• Mathematically $f(\alpha x+(1-\alpha)y) \ge \alpha f(x)+(1-\alpha)f(y)$ for all x, y and $\alpha \in [0,1]$

Convex and concave functions

• Which functions are convex and which are concave?

- Some functions are neither convex nor concave
- If f(x) is convex, then -f(x) is concave and vice versa
- Only linear functions are both convex and concave

Convex set

• A set X is **convex** if the line segment connecting any two points x and y of the set is in the set

Mathematically

- If $\mathbf{x}, \mathbf{y} \in \mathbf{X}$, then $\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in \mathbf{X}$ for all $\alpha \in [0, 1]$

- A constraint $g(\mathbf{x}) \le 0$ defines a convex set if $g(\mathbf{x})$ is a convex function.
- The intersection of convex sets is a convex set
 - Thus multiple constraints $g_i(\mathbf{x}) \le 0$ with convex functions $g_i(\mathbf{x})$ define a convex set

Convex optimization problems

- Convex optimization problems are relatively easy to solve because
 - A local optimum is also a global optimum
 - They can be solved using hill-climbing strategy: starting from any feasible point move in a direction where f(x) improves while maintaining feasibility
 - If the functions f(), g(), h() are smooth (first derivatives are continuous), various gradient-based methods can be used to identify improving directions
- Non-convex problems are difficult, because a local optimum is not in the general case a global optimum

Linear programming (LP) models

• An LP model has a linear objective function f(x) and linear constraints g_i(x):

min (max) $c_1 x_1 + c_2 x_2 + \dots c_n x_n$ s.t.

```
a_{11}x_1 + a_{12}x_2 + \dots a_{1n}x_n \le b_1
a_{21}x_1 + a_{22}x_2 + \dots a_{2n}x_n \le b_2
```

•••

 $a_{m1}x_1 + a_{m2}x_2 + \dots a_{mn}x_n \le b_m$

- Typical matrix representation: min (max) cx
 s.t.
 Ax ≤ b
 - $x \ge 0$ // traditionally variables are non-negative

Linear programming (LP) models

- Special case of convex problems
 - $f(\mathbf{x}), \mathbf{g}(\mathbf{x})$ and $\mathbf{h}(\mathbf{x})$ are linear functions of \mathbf{x}
 - The constraints are (hyper-) planes in *n* dimensions
 - The feasible area is an *n*-dimensional polyhedron
 - The optimum is at a corner point at the intersection between some constraint planes
- Very efficient solution algorithms for LP models exist
 - The Simplex algorithm can solve LP models with millions of variables and constraints
- Non-linear convex problems can be approximated by LP models with arbitrarily good accuracy
- Non-convex problems cannot be represented as LP models

How to define an LP model?

- 1. Write down a verbal explanation of what is the goal or purpose of the model
 - E.g. to minimize costs or maximize profit of some specific operation or activity
- 2. Define the **decision variables** (and parameters)
 - Use as descriptive or generic names as you like: x1, x2, fuel, …
 - Give short description for them
 - Also specify the unit (MWh, GJ, €/kg, m3/s, ...)
- 3. Define the **objective function** to minimize or maximize as a *linear function* of the variables
- 4. Define the **constraints** as *linear* inequality or equality constraints for the variables

LP example: Dual fuel condensing power plant

- Boiler can use two different fuels simultaneously in any proportion
- Boiler produces high pressure steam for a turbine driving a generator to produce electricity
- After turbine, steam is condensed back into water
- Fuels have different prices and consumption ratios
- Produced power is sold to market
- Typical objective is to maximize profit = revenue from selling power minus fuel costs

Dual fuel condensing power plant

LP example: Dual fuel condensing power plant

- Maximize profit during each hour of operation
- Decision variables
 - x1, x2 fuel consumption (MWh)
 - p power output (MWh)
- Parameters
 - r1, r2 consumption ratios for fuels (1)
 - c1, c2, c price for fuels and power (€/MWh)
 - x1^{max}, x2^{max}
- upper bounds for fuel consumption (MWh) hourly maximal production capacity (MWh)

b

LP example: Dual fuel condensing power plant

- Objective function max c*p - c1*x1 - c2*x2 // power sales minus fuel costs
- Constraints

p = x1/r1 + x2/r2// power depends on fuel use $p \le b$ // capacity limit $x1 \le x1^{max}, x2 \le x2^{max}, x1, x2 \ge 0$

• Substitute expression for p to eliminate third variable $\max (c/r1-c1)*x1 + (c/r2 - c2)*x2$ $x1/r1 + x2/r2 \le b$ // capacity limit $x1 \le x1^{\max}, x2 \le x2^{\max}, x1, x2 \ge 0$

LP example:

Dual fuel condensing power plant, numerical

- Parameters
 - Fuel consumption ratios (r1, r2) = (3.33, 2.5)
 - Fuel & power prices (c1, c2, c) = (20, 25, 80)€/MWh
 - Upper bounds for fuels $(x1^{max}, x2^{max}) = (150,100)$ MWh
 - Production capacity b = 60 MWh

```
\max (80/3.33-20)*x1 + (80/2.5-25)*x2 = 4*x1 + 7*x2

0.3*x1 + 0.4*x2 \le 60

x1 \le 150

x2 \le 100

x1, x2 \ge 0
```

Graphical representation of LP models

- Models with two variables can be represented and solved graphically
 - Linear constraints are drawn as lines
 - The feasible region appears as a polygon
 - The feasible region may be unbounded in some direction
 - If the constraints are contradictory, the feasible region is empty and the model is infeasible
 - Level curves of objective function f(x) = K = constantare draw as dotted lines
 - Optimum is where a level curve touches the feasible region with with maximal or minimal K
 - This happens at some corner
 - If two corners yield optimal value, all points on the connecting edge are optimal (infinite number of optima)

Properties of LP models

- Similar to a general optimization problem, an LP problem can be
 - **Feasible**, if one or more feasible solutions exist
 - Infeasible, if no feasible solutions exist, i.e. constraints are conflicting
 - Example: min 0 s.t. $x \ge 1$, $x \le 0$
 - Unbounded, if infinitely good solutions exist
 - Example: max x s.t. $x \ge 0$
- An LP problem has infinite number of optima if two or more corner solutions yield optimal value
 - Then all convex combinations of optimal corner solutions are optimal

LP example: DH boiler

- A dual fuel boiler to produce district heat
 - Goal to meet demand (MWh) as cheaply as possible
 - Decision variables
 - x1, x2 fuel consumption (MWh)
 - Parameters
 - r1, r2 consumption ratios for fuels (1)
 - c1, c2 prices for fuels (€/MWh)
 - $x1^{max}$, $x2^{max}$ upper bounds for fuel consumption (MWh)
 - b demand of heat

 $\begin{array}{ll} \min c1^*x1 + c2^*x2\\ x1/r1 + x2/r2 \ge b \\ x1 \le x1^{\max}, x2 \le x2^{\max}, x1, x2 \ge 0 \end{array}$

LP example: DH boiler, numerical example

– Parameters

- Fuel consumption ratios (r1, r2) = (1.25, 1.11)
- Fuel prices $(c1, c2) = (20, 25) \in /MWh$
- Upper bounds for fuels $(x1^{max}, x2^{max}) = (150,100)$ MWh

```
• Heat demand b = 120
min 20*x1 + 25*x2;
0.8*x1 + 0.9*x2 \ge 120;
x1 \le 150;
x2 \le 100;
x1, x2 \ge 0;
```

Review questions

- Please review lecture material and see that you can answer the review
 - 1. Is the optimization problem max $x^2 + y^2$ s.t. $x, y \ge 0$ feasible, infeasible or unbounded? Why?
 - 2. Give a feasible solution to the above problem.
 - 3. How many optimal solutions does the problem max x^2 s.t. $-5 \le x \le 5$ have?
 - 4. Transform max x s.t. $x \le 5$ replacing inequality constraint by equality constraint.
 - 5. Transform max x s.t. $x \le 5$ into an unconstrained optimization problem.
 - 6. Why is classification of optimization problems important?
 - 7. Classify the following optimization problem: min $x^2 + y^2$ s.t. $x, y \ge 0, x \in \mathbb{R}, y \in \mathbb{N}$
 - 8. Why is LP modelling so common?
 - 9. Why are convex optimization problems relatively easy to solve?
 - 10. Give an example of an optimization problem which is difficult or impossible to solve.
 - 11. Does LP apply to non-linear problems? Why, or why not?
 - 12. When can an LP problem have infinite number of optimal solutions?
 - 13. Give an example of an infeasible LP problem
 - 14. Give an examle of a feasible LP problem without optimal solution
 - 15. Give an example of an LP problem with infinite number of optima