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1 Definition of degrees of freedom

“The smallest number of independent variables required for
describing the motion of a system”.

Examples:

electrical LC-circuit⇒ one degree of freedom (1DOF)

rectilinear motion + rotation around axis⇒ 2DOF

free motion + rotation in 3D⇒ 6DOF

A finite number of DOFs a simplification of real-world
phenomena.
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1 Systems With multiple degrees of freedom
(MDOF)

MDOF systems are more complex to analyze

motion not restricted to a path representable by a single
quantity

multiple interconnected masses

number of DOFs = number of eigenfrequencies (or
resonance peaks)

antiresonance notches between resonance peaks
example: the double pendulum
http://www.youtube.com/watch?v=d2E5oojoXjk

(two or more DOFs & nonlinearity⇒ chaotic behavior!)

ELEC-E5610 Acoustics and the Physics of Sound 4/27
Ville Pulkki
Aalto SPA ELEC-E5610 Lecture 2

http://www.youtube.com/watch?v=d2E5oojoXjk


DOFs

MDOF systems

Continuums

Simpifications

Pendulum

Resonance

Forced vibration

Eigenfrequencies

Eigenmodes

Case study

1 Systems With multiple degrees of freedom
(MDOF)

MDOF systems are more complex to analyze

motion not restricted to a path representable by a single
quantity

multiple interconnected masses

number of DOFs = number of eigenfrequencies (or
resonance peaks)

antiresonance notches between resonance peaks
example: the double pendulum
http://www.youtube.com/watch?v=d2E5oojoXjk

(two or more DOFs & nonlinearity⇒ chaotic behavior!)

ELEC-E5610 Acoustics and the Physics of Sound 4/27
Ville Pulkki
Aalto SPA ELEC-E5610 Lecture 2

http://www.youtube.com/watch?v=d2E5oojoXjk


DOFs

MDOF systems

Continuums

Simpifications

Pendulum

Resonance

Forced vibration

Eigenfrequencies

Eigenmodes

Case study

1 Systems With multiple degrees of freedom
(MDOF)

MDOF systems are more complex to analyze

motion not restricted to a path representable by a single
quantity

multiple interconnected masses

number of DOFs = number of eigenfrequencies (or
resonance peaks)

antiresonance notches between resonance peaks
example: the double pendulum
http://www.youtube.com/watch?v=d2E5oojoXjk

(two or more DOFs & nonlinearity⇒ chaotic behavior!)

ELEC-E5610 Acoustics and the Physics of Sound 4/27
Ville Pulkki
Aalto SPA ELEC-E5610 Lecture 2

http://www.youtube.com/watch?v=d2E5oojoXjk


DOFs

MDOF systems

Continuums

Simpifications

Pendulum

Resonance

Forced vibration

Eigenfrequencies

Eigenmodes

Case study

1 Systems With multiple degrees of freedom
(MDOF)

MDOF systems are more complex to analyze

motion not restricted to a path representable by a single
quantity

multiple interconnected masses

number of DOFs = number of eigenfrequencies (or
resonance peaks)

antiresonance notches between resonance peaks
example: the double pendulum
http://www.youtube.com/watch?v=d2E5oojoXjk

(two or more DOFs & nonlinearity⇒ chaotic behavior!)

ELEC-E5610 Acoustics and the Physics of Sound 4/27
Ville Pulkki
Aalto SPA ELEC-E5610 Lecture 2

http://www.youtube.com/watch?v=d2E5oojoXjk


DOFs

MDOF systems

Continuums

Simpifications

Pendulum

Resonance

Forced vibration

Eigenfrequencies

Eigenmodes

Case study

1 Systems With multiple degrees of freedom
(MDOF)

MDOF systems are more complex to analyze

motion not restricted to a path representable by a single
quantity

multiple interconnected masses

number of DOFs = number of eigenfrequencies (or
resonance peaks)

antiresonance notches between resonance peaks

example: the double pendulum
http://www.youtube.com/watch?v=d2E5oojoXjk

(two or more DOFs & nonlinearity⇒ chaotic behavior!)

ELEC-E5610 Acoustics and the Physics of Sound 4/27
Ville Pulkki
Aalto SPA ELEC-E5610 Lecture 2

http://www.youtube.com/watch?v=d2E5oojoXjk


DOFs

MDOF systems

Continuums

Simpifications

Pendulum

Resonance

Forced vibration

Eigenfrequencies

Eigenmodes

Case study

1 Systems With multiple degrees of freedom
(MDOF)

MDOF systems are more complex to analyze

motion not restricted to a path representable by a single
quantity

multiple interconnected masses

number of DOFs = number of eigenfrequencies (or
resonance peaks)

antiresonance notches between resonance peaks
example: the double pendulum
http://www.youtube.com/watch?v=d2E5oojoXjk

(two or more DOFs & nonlinearity⇒ chaotic behavior!)

ELEC-E5610 Acoustics and the Physics of Sound 4/27
Ville Pulkki
Aalto SPA ELEC-E5610 Lecture 2

http://www.youtube.com/watch?v=d2E5oojoXjk


DOFs

MDOF systems

Continuums

Simpifications

Pendulum

Resonance

Forced vibration

Eigenfrequencies

Eigenmodes

Case study

1 Continuums

In reality, physical objects are not point-like, but distributed
systems (at least in classical mechanics), i. e. their
coordinate systems are continuous functions.

fluids, bars, plates, membranes, strings ...

finite systems (e. g. a finite string) have countably
infinite degrees of freedom

infinite systems have non-countably infinite degrees of
freedom
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1 Practical simplifications

Typically, some practical simplifications are made:

Number of DOFs : 1DOF systems are sufficiently accurate
approximations of real systems, if

the bandwidth is limited
the eigenfrequencies are well separated in
frequency

Linearity : it is assumed that the frequency and
waveform of the vibration do not depend on
amplitude
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1 Practical simplifications II

Deterministicity : it is possible to determine the future state
of a system using a “snapshot” of a previous
state
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1 A simple pendulum

A simple pendulum

small angles: period is t =
√

l/g, l is string length, g is
acceleration of gravity

planar motion: easily predictable motion as a function of
time

free motion: difficult to control the transversal motion,
external excitation⇒ chaotic motion

large angles: period depends on amplitude
(nonlinearity)
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1 Forced vibration at resonance frequency

Forced vibration at the resonance frequency (R&F p.3-21):

the relation between the magnitudes of response and
excitation is in its local frequency maximum

displacement, velocity, and acceleration typically are in
different phases
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1 Eigenfrequencies

The set of frequencies that the system can freely vibrate in
are called eigenfrequencies of the system (Germ. “eigen”,
own)

corresponds to the eigenvalues of the set of equations
that determine the system’s behavior

eigenfrequency 6= resonance frequency !

number of DOFs = number of eigenfrequencies

After a transient excitation, a system will vibrate at its
eigenfrequencies.
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1 Eigenmodes

Each eigenfrequency corresponds to a certain shape of
vibration, called eigenmode.

Figure: Vibrational modes of a plucked string, R&F p. 39
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1 Case study: 1DOF system

Let’s study a mass-spring oscillator.
Two forces acting on the mass are:

spring force (Hooke):
Fk = −Kx

inertia (Newton): Fm = mẍ ,

where K is the spring constant, x is displacement, and ẍ is
acceleration. The forces must be equal:

mẍ + Kx = 0 ⇒ ẍ + ω2
0x = 0, where ω0 =

√
K/m. (1)

A general solution to the motion equation (1) is
x = A cos(ω0t + φ), where ω0 is the eigenfrequency (rad/s).
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Complex representation
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Complex
representation

1DOF

Why complex
numbers?

2 Complex exponential representation
FF appendix 1

Harmonic vibration has the general form:

f (t) = A cos(ωt + φ), (2)

where A is amplitude, t is time, ω is angular frequency, and φ
is angle.

Let’s remind us of Euler’s formula:

eix = cos x + i sin x ,

and interpret Eq. (2) as the real part of an exponential
function:

f (t) = Re{Aei(ωt+φ)} = Re{Aeiφeiωt}. (3)
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Complex
representation

1DOF

Why complex
numbers?

Next, we will define a complex amplitude Ã = Aeiφ

, so that
harmonic vibration can be given as

f (t) = Re{Ãei(ωt)}. (4)

Graphic representation is a rotating phasor:
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Interpretation:
the projection of this rotating vector on the real axis
denotes the state at each time instant
Java-applet: https://ngsir.netfirms.com/j/Eng/
springSHM/springSHM_js.htm

superposition of harmonic signals by summing the
phasors (http://tinyurl.com/2bo7bcj):
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2 Complex representation of a 1DOF oscillator

For the 1DOF mass-spring oscillator, the solution for the
motion equation can be given using the complex notation:

x̃ = Ãeiω0t (5)

for the displacement.

By differentiating Eq. (5) w. r. t. time,
we obtain the complex velocity

ṽ = ˙̃x = iω0Ãeiω0t

and acceleration

ã = ˙̃v = ¨̃x = −ω2
0Ãeiω0t
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2 Why complex numbers?

“What do you mean? How can velocity be complex?”

remember: the physical values are obtained as the real
parts of these complex numbers

it’s more convenient to calculate using the complex
notation (compared to trigonometry)
if only linear operations are used, the real part may be
taken only from the final result

otherwise the real parts should be taken at each step

the Re{}-operator is often left unwritten in the literature
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3 Modelling of losses

Accurate modelling of real losses is difficult.

simplification: consider only viscous losses
remember the motion equation (1) for the mass-spring
oscillator
viscous losses result in an additional
velocity-dependent term in the motion equation
next, define α = Rm

2m (in addition to ω0 =
√

K/m)
⇒ the motion equation of a damped 1DOF oscillator

mẍ + Rmẋ + Kx = 0

⇒ ẍ + 2αẋ + ω2
0x = 0

(6)
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3 Modelling of losses

Accurate modelling of real losses is difficult.
simplification: consider only viscous losses
remember the motion equation (1) for the mass-spring
oscillator

viscous losses result in an additional
velocity-dependent term in the motion equation
next, define α = Rm

2m (in addition to ω0 =
√

K/m)
⇒ the motion equation of a damped 1DOF oscillator

mẍ + Kx = 0

⇒ ẍ + 2αẋ + ω2
0x = 0
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mẍ + Rmẋ + Kx = 0
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3 Solution to the lossy equation of motion

The solution to Eq. (6) for displacement (R&F p.10-11):

x = e−αt cos(ωdt + φ) (7)

e−αt denotes the damping oscillation

cos(ωdt + φ) denotes the continuous oscillation

ωd =
√
ω2

0 − α2 is the eigenfrequency for the damped
system
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3 Plot of the solution

Figure: Plot of the damped oscillator vibration with different values
of α R&F p.11.

α = 0 ⇒ eternal vibration
0 < α/ω0 < 1 ⇒ attenuating vibration
α/ω0 = 1 ⇒ critical attenuation (no vibration)
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3 Time constant and quality factor

Two important numbers for damped oscillators:

time constant τ = 1/α = 2m/Rm is the time it takes for
the oscillation to attenuate to 1/e relative to the
initial state

quality factor Q = K
Rmω0

= ω0
2α denotes the sharpness of

the resonance peak. The higher the Q, the
sharper the resonance.
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3 Forced vibration in 1DOF system

Let’s add an external excitation force to the motion equation
of the oscillator and study the response.

Recall Eq. (6) and
add f (t) to the RHS.

mẍ + Rmẋ + Kx = f (t)

if the excitation is sinusoidal f (t) = Re{F̃} = Re{Feiωt}:

x̃ =
F̃/m

ω2
0 − ω2 + iω2α

(R&F:(1.60))

ṽ =
F̃ω/m

2ωα+ i(ω2 − ω2
0)

(R&F:(1.61))
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mẍ + Rmẋ + Kx = f (t)

if the excitation is sinusoidal f (t) = Re{F̃} = Re{Feiωt}:

x̃ =
F̃/m

ω2
0 − ω2 + iω2α

(R&F:(1.60))
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By dividing Eqs. (R&F:(1.60) and (1.61)) with F̃ and taking
the absolute value, one obtains the response of
displacement and velocity for a constant force excitation as a
function of frequency:

|x̃ |
|F̃ |

=
1√

(K − ω2m)2 + (ωR)2

|ṽ |
|F̃ |

=
1√

(ωm − K/ω)2 + R2)

...these may be interpreted as the transfer functions
between input force and resulting displacement (or
velocity)!

ELEC-E5610 Acoustics and the Physics of Sound 25/27
Ville Pulkki
Aalto SPA ELEC-E5610 Lecture 2



Modelling of losses

Solution

Plot of the solution

Time constant and Q

Forced vibration in
1DOF system

Graphic interpretation

Combinations of
springs and masses

By dividing Eqs. (R&F:(1.60) and (1.61)) with F̃ and taking
the absolute value, one obtains the response of
displacement and velocity for a constant force excitation as a
function of frequency:

|x̃ |
|F̃ |

=
1√

(K − ω2m)2 + (ωR)2

|ṽ |
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3 Graphic interpretation

Transfer functions for force input as a function of frequency:
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K -controlledR-controlled m-controlled

⇒ |x̃ |
|F̃ |

=
1√

(ω2
0m − ω2m)2 + (ωR)2

,

|x̃ |
|F̃ |
≈


1
K if ω << ω0,
1
ωR if ω ≈ ω0,

1
ω2m if ω >> ω0
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