

General info and overview of the course

ELEC-E5610 Acoustics and the Physics of Sound

Ville Pulkki, Georg Götz, Stefan Wirler, Vasileios Bountourakis

Department of Signal Processing and Acoustics Aalto University School of Electrical Engineering

October 24, 2023

Organizers & schedule

Course objective

Course contents

Course material

How to pass the course Lecturers: Ville Pulkki & Georg Götz & Timo Lähivaara (UEF) & Stefan Wirler & Vasileios Bountourakis

Aalto University

ELEC-E5610 Acoustics and the Physics of Sound Pulkki, Wirler Aalto SPA

ELEC-E5610 General info

Organizers & schedule

Course objective

Course contents

Course material

How to pass the course

- Lecturers: Ville Pulkki & Georg Götz & Timo Lähivaara (UEF) & Stefan Wirler & Vasileios Bountourakis
- Course Assistant: Stefan Wirler

ELEC-E5610 General info

Organizers & schedule

- Course objective
- Course contents
- Course material
- How to pass the course

- Lecturers: Ville Pulkki & Georg Götz & Timo Lähivaara (UEF) & Stefan Wirler & Vasileios Bountourakis
- Course Assistant: Stefan Wirler
- Real-Ife lectures: Tuesdays at 12:15-14:00 and Thursdays at 14:15-16:00 (12 lectures in total)

Organizers & schedule

- Course objective
- Course contents
- Course material
- How to pass the course

- Lecturers: Ville Pulkki & Georg Götz & Timo Lähivaara (UEF) & Stefan Wirler & Vasileios Bountourakis
- Course Assistant: Stefan Wirler
- Real-Ife lectures: Tuesdays at 12:15-14:00 and Thursdays at 14:15-16:00 (12 lectures in total)
- Seminars: Fridays at 9:15-11:00 (homework solutions, Q&A session)

Organizers & schedule

- Course objective
- Course contents
- Course material
- How to pass the course

- Lecturers: Ville Pulkki & Georg Götz & Timo Lähivaara (UEF) & Stefan Wirler & Vasileios Bountourakis
- Course Assistant: Stefan Wirler
- Real-Ife lectures: Tuesdays at 12:15-14:00 and Thursdays at 14:15-16:00 (12 lectures in total)
- Seminars: Fridays at 9:15-11:00 (homework solutions, Q&A session)

Organizers & schedule

Course objective

Course contents

Course material

How to pass the course Describe fundamental acoustic concepts (sound pressure, particle velocity, etc).

ELEC-E5610 General info

Organizers & schedule

Course objective

Course contents

Course material

- Describe fundamental acoustic concepts (sound pressure, particle velocity, etc).
- Interpret the wave equation and Helmholtz Equation and their solutions under different conditions.

Organizers & schedule

Course objective

Course contents

Course material

How to pass the course

- Describe fundamental acoustic concepts (sound pressure, particle velocity, etc).
- Interpret the wave equation and Helmholtz Equation and their solutions under different conditions.
- Interpret the behavior of vibrational and acoustical systems.

Organizers & schedule

Course objective

Course contents

Course material

How to pass the course

- Describe fundamental acoustic concepts (sound pressure, particle velocity, etc).
- Interpret the wave equation and Helmholtz Equation and their solutions under different conditions.
- Interpret the behavior of vibrational and acoustical systems.
- Apply analogies between the mechanical (acoustical) and electrical domains.

Organizers & schedule

Course objective

Course contents

Course material

How to pass the course

- Describe fundamental acoustic concepts (sound pressure, particle velocity, etc).
- Interpret the wave equation and Helmholtz Equation and their solutions under different conditions.
- Interpret the behavior of vibrational and acoustical systems.
- Apply analogies between the mechanical (acoustical) and electrical domains.
- Analyze wave propagation and sound radiation of simple sound sources (monopole, dipole, etc).

Course lectures

	24.10 Course introduction, Basic oscillating systems (Ville)
Organizers &	24.10 Vibrations of strings and membranes (Georg)
schedule	31.10 Waves in fluids and rectangular enclosures (Georg)
Course objective	2.11 Plane and spherical waves, intensity (Ville)
Course contents	3.11 Seminar (Stefan)
Course material	7.11 Reflection and refraction in fluid boundaries (Georg)
How to pass the	9.11 Acoustic transmission lines (part 1) (Ville)
course	10.11 Seminar (Stefan)
	14.11 Acoustic transmission lines (part 2) + Horns (Ville)
	16.11 Impedance, equivalent circuits (Stefan)
	17.11 Seminar (Stefan)
	21.11 Sound radiation from vibrating objects (Ville)
	23.11 Intro to FEM, BEM, (Timo Lähivaara, UEF)
	24.11 Seminar (Stefan)
	28.11 Introduction to COMSOL (Vasileios)
	30.11 COMSOL continued (Vasileios)

Course material

Organizers & schedule

Course objective

Course contents

Course material

How to pass the course

- T. D. Rossing and N. H. Fletcher: Principles of Vibration and Sound
- F. Fahy: Foundations of Engineering Acoustics
- J. Blauert and N. Xiang: Acoustics for Engineers
- Lecture notes

Course material

Organizers & schedule

Course objective

Course contents

Course material

How to pass the course

- T. D. Rossing and N. H. Fletcher: Principles of Vibration and Sound
- F. Fahy: Foundations of Engineering Acoustics
- J. Blauert and N. Xiang: Acoustics for Engineers
- Lecture notes

All necessary parts of textbooks + lecture notes available on MyCourses.

Course material

Organizers & schedule

Course objective

Course contents

Course material

How to pass the course

- T. D. Rossing and N. H. Fletcher: Principles of Vibration and Sound
- F. Fahy: Foundations of Engineering Acoustics
- J. Blauert and N. Xiang: Acoustics for Engineers
- Lecture notes

All necessary parts of textbooks + lecture notes available on MyCourses.

Equation notation on the lecture slides:

- R&F p. 102 = Rossing and Fletcher's book, page 102
- FF 1.09 = Fahy's book, Equation (1.09)
- B&X 8.48 = Blauert and Xiang's book, Equation (8.48)

Do the 4 homework:

3 problems (20 pts) + 1 bonus (5 pts)

max total 20 pts per homework

Organizers & schedule

Course objective

Course contents

Course material

How to pass the course

ELEC-E5610 Acoustics and the Physics of Sound Pulkki, Wirler Aalto SPA

Do the 4 homework:

3 problems (20 pts) + 1 bonus (5 pts)

- max total 20 pts per homework
- Do the COMSOL homework: 20 pts
- Use the LaTeX template provided on MyCourses

6/12

Organizers & schedule

Course objective

Course contents

Course material

Do the 4 homework:

3 problems (20 pts) + 1 bonus (5 pts)

- max total 20 pts per homework
- Do the COMSOL homework: 20 pts
- Use the LaTeX template provided on MyCourses

6/12

Organizers & schedule

Course objective

Course contents

Course material

- Do the 4 homework:
 - 3 problems (20 pts) + 1 bonus (5 pts)
 - max total 20 pts per homework
- Do the COMSOL homework: 20 pts
- Use the LaTeX template provided on MyCourses
- If you have to solve an equation in a problem, do it analytically

Organizers & schedule

Course objective

Course contents

Course material

- Do the 4 homework:
 - 3 problems (20 pts) + 1 bonus (5 pts)
 - max total 20 pts per homework

- Course objective Course contents
- Course material

Organizers &

schedule

- Do the COMSOL homework: 20 pts
- Use the LaTeX template provided on MyCourses
- If you have to solve an equation in a problem, do it analytically
- Allocate sufficient time to complete each homework

- Do the 4 homework:
 - 3 problems (20 pts) + 1 bonus (5 pts)
 - max total 20 pts per homework
- Do the COMSOL homework: 20 pts
- Use the LaTeX template provided on MyCourses
- If you have to solve an equation in a problem, do it analytically
- Allocate sufficient time to complete each homework
- Reserve at least one day (>8 hours) per week to work on the homework!!!

Organizers &

Course objective

Course contents

How to pass the

schedule

Week N Thursday: Homework uploaded

Organizers & schedule

Course objective

Course contents

Course material

How to pass the course

ELEC-E5610 Acoustics and the Physics of Sound Pulkki, Wirler Aalto SPA

Week N Thursday: Homework uploaded

Organizers & schedule

Course objective

Course contents

Course material

How to pass the course

Week N Thursday — Week N + 1 Thursday: Try to solve the homework

ELEC-E5610 Acoustics and the Physics of Sound Pulkki, Wirler Aalto SPA

ELEC-E5610 General info

- Week N Thursday: Homework uploaded
- Week N Thursday Week N + 1 Thursday: Try to solve the homework
 - Week N + 1 Friday: Questions & Answers session by course assistant

Organizers &

Course objective

Course material

How to pass the course

schedule

- Organizers & schedule
- Course objective
- Course contents
- Course material
- How to pass the course

Week N Thursday — Week N + 1 Thursday: Try to solve the homework

Week N Thursday: Homework uploaded

- Week N + 1 Friday: Questions & Answers session by course assistant
- Week N + 2 Thursday evening: Deadline for homework

Week N Thursday: Homework uploaded

- Organizers & schedule
- Course objective
- Course contents
- Course material
- How to pass the course

- Week N Thursday Week N + 1 Thursday: Try to solve the homework
- Week N + 1 Friday: Questions & Answers session by course assistant
- Week *N* + 2 Thursday evening: Deadline for homework
- Week *N* + 2 Friday: Solutions session

- Week N Thursday: Homework uploaded
- **Organizers &** Week N Thursday — Week N + 1 Thursday: Try to solve the homework Course objective
 - Week *N* + 1 Friday: Questions & Answers session by course assistant
 - Week N + 2 Thursday evening: Deadline for homework
 - Week N + 2 Friday: Solutions session
 - Course assistant will not generally answer to email questions: Q&A session and Zulip channel are the place for it

schedule

Course contents

Course material

- Week N Thursday: Homework uploaded
- Week N Thursday Week N + 1 Thursday: Try to solve the homework
 - Week N + 1 Friday: Questions & Answers session by course assistant
 - Week *N* + 2 Thursday evening: Deadline for homework
 - Week N + 2 Friday: Solutions session
 - Course assistant will not generally answer to email questions: Q&A session and Zulip channel are the place for it
 - Fair for everybody in the course, the work load of the assistant also controlled

Organizers &

Course objective

Course material

How to pass the

schedule

Organizers & schedule

Course objective

Course contents

Course material

How to pass the course

 COMSOL: powerful and widespread multiphysics simulator

Used widely in industry

ELEC-E5610 Acoustics and the Physics of Sound Pulkki, Wirler Aalto SPA

ELEC-E5610 General info

Organizers & schedule

Course objective

Course contents

Course material

How to pass the course

 COMSOL: powerful and widespread multiphysics simulator

Used widely in industry

A COMSOL homework will be given

Organizers & schedule

Course objective

Course contents

Course material

- Arni: a varechoic chamber with 55 openable absorption panels
- Possibility to change the reverberation time from 0.3 s to about 1.5 s

Organizers & schedule

Course objective

Course contents

Course material

- Arni: a varechoic chamber with 55 openable absorption panels
- Possibility to change the reverberation time from 0.3 s to about 1.5 s
- Room modes btw 30-100 Hz

Organizers & schedule

Course objective

Course contents

Course material

- Arni: a varechoic chamber with 55 openable absorption panels
- Possibility to change the reverberation time from 0.3 s to about 1.5 s
- Room modes btw 30-100 Hz
- Common task for acoustical engineers: where to place the absorptive material to control the modes

• open exactly 10 absorbent panels to best control the

- Organizers & schedule
- Course objective
- Course contents
- Course material
- How to pass the course

Aalto University

ELEC-E5610 Acoustics and the Physics of Sound Pulkki, Wirler

Aalto SPA

ELEC-E5610 General info

• simulated modes 10 panels open

Organizers & schedule

Course objective

Course contents

Course material

How to pass the course

Aalto University

ELEC-E5610 Acoustics and the Physics of Sound

Pulkki, Wirler Aalto SPA

ELEC-E5610 General info

These slides

Organizers & schedule

Course objective

Course contents

Course material

How to pass the course Latex sources evolved along a long time [curr affiliation]

- Jyri Pakarinen (abt 2007-11) [Huawei]
- Henna Tahvanainen [A-insinöörit]
- Alessandro Altoe [U. South California]
- Archontis Politis [Tampere University]
- Julie Meyer [Aalto]
- Ville Pulkki (2018–) [Aalto]
- Georg Goetz (2020–)[Aalto]
- Stefan Wirler (2021–)[Aalto]

