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Introduction

▶ Finite Element Method (FEM): A numerical
technique for finding approximate solutions
to boundary value problems for partial
differential equations.

▶ Originated in the 1940s and 1950s for
structural engineering applications.

▶ Some references
▶ ”The Finite Element Method: Its Basis and

Fundamentals” by O.C. Zienkiewicz, R.L.
Taylor, and J.Z. Zhu

▶ ”A First Course in the Finite Element
Method” by D.L. Logan

▶ ”The Mathematical Theory of Finite Element
Methods” by S.C. Brenner and L.R. Scott



Key components

Key Concepts
▶ Element: A small, simple shape used to approximate the

behavior of a larger, more complex structure.
▶ Mesh: Division of the structure into interconnected

elements.

Workflow
▶ Discretization: Divide the physical space into elements.
▶ Interpolation: Define behavior within each element.
▶ Assembly: Combine element equations to form the system

equations.
▶ Solution: Solve the system equations for the unknowns.



Pros and cons

Advantages
▶ Versatile: Applicable to a wide range of problems.
▶ Efficiency: Efficient for complex geometries.

Challenges
▶ Mesh Generation: Creating a suitable mesh can be

challenging.
▶ Validation: Ensuring the accuracy of results.

Commercial software tools include Abaqus, ANSYS, and
Comsol Multiphysics.
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Idea of Galerkin FEM

Let us consider a simple 2nd order ordinary differential
equation

−
d

dx

(
du(x)

dx

)
+ q(x)u(x) = f(x), a < x < b

With boundary conditions:

u(a) = 0
u(b) = 0

Let us assume that the solution u ∈ X exists (X will be defined
later)



Idea of Galerkin FEM (Contd.)

Let Xh be a finite dimensional subspace of X and let uh ∈ Xh be
an approximation for u

u(x) ≈ uh =

N∑
ℓ=1

αℓvℓ(x),

where αℓ are unknown coefficients and vℓ(x) ∈ Xh.

Questions arise:
1. How to choose vℓ?
2. How to determine αℓ?



Outline

Introduction

Idea of Galerkin FEM

Variational problem

Discretization

Numerical example

Numerical Integration in FEM

Extension to 2D and 3D Problems



Variational Formulation

▶ Key concept: Minimization of a functional.
▶ Derivation of weak form from the strong form of the

problem.

Let us continue with the previously studied 2nd order system
▶ Multiply the system by a test function v = v(x) and

integrate over the domain:∫b
a

(
−

d

dx

(
du

dx

)
+ qu− f

)
v dx = 0, ∀v ∈ X
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Variational Formulation for a 1D Problem

We can re-write the system as∫b
a

(
−

d

dx

(
du

dx

))
v dx+

∫b
a

quvdx−

∫b
a

fv dx = 0, ∀v ∈ X

Apply integration by parts:∫b
a

du

dx

dv

dx
dx−

(
du

dx
v

) ∣∣∣b
a
+

∫b
a

quvdx−

∫b
a

fv dx = 0, ∀v ∈ X

Boundary conditions given above leads v(a) = v(b) = 0 (v is in
the same space as u).



Variational Formulation for a 1D Problem (Contd.)

Apply boundary conditions and obtain the weak form:∫b
a

du

dx

dv

dx
dx+

∫b
a

quvdx =

∫b
a

fv dx, ∀v ∈ X

a(u, v) = F(v), ∀v ∈ X

▶ This is the variational form and it is equivalent with the
original PDE.

▶ Solving this solution (in weak sense) for the original
problem.

▶ a(u, v) is so-called bilinear form.
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Discretization

▶ Variational form can be discretised using Galerkin finite
element approximation:

▶ We set

u ≈ uh =

N∑
ℓ=1

αℓϕℓ and choose v = ϕj

Now we get

a(uh,ϕj) = F(ϕj), ∀j = 1, . . . ,N∫b
a

(
N∑
ℓ=1

αℓ
dϕℓ

dx

dϕj

dx

)
dx +

∫b
a

q

(
N∑
ℓ=1

αℓϕℓϕj

)
dx =

∫b
a

fϕj dx, ∀j = 1, . . . ,N



Discretization (Contd.)

▶ The above system can be written as Kα = b, where

kjℓ = K(j, ℓ) =
∫b
a

(
dϕℓ

dx

dϕj

dx
+ qϕℓϕj

)
dx

bj = b(j) =

∫b
a

fϕj dx

α = (α1,α2, . . . ,αN)⊤

▶ From this, the unknowns α can be solved (formally) as
α = K−1b and then

uh =

N∑
ℓ=1

αℓϕℓ.
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1D numerical example

Let us consider a 2nd order ordinary differential equation

−u ′′ + u = −2x2 + 4x, x ∈ Ω = [0, 1]

With boundary conditions:

u ′(0) = 4
u ′(1) = 0

Note that ′ denotes derivative with respect to x.



1D numerical example (Contd.)

▶ First step would be to derive the weak for form the system
▶ As studied in the previous slides, we multiply the system

equation with test function v and integrate over the
domain G

−

∫ 1

0
u ′′v dx+

∫ 1

0
uvdx =

∫ 1

0
(−2x2 + 4x)v dx, ∀v ∈ G

Apply integration by parts for the first term:∫ 1

0
u ′v ′ dx−

(
u ′v
) ∣∣∣1

0︸     ︷︷     ︸
=−4v(0)

+

∫ 1

0
uvdx =

∫ 1

0
(−2x2+4x)v dx, ∀v ∈ G



1D numerical example (Contd.)

▶ As earlier, we set

u ≈ uh =

N∑
ℓ=1

αℓϕℓ and choose v = ϕj

Now we get

∫ 1

0

(
N∑
ℓ=1

αℓϕ
′
ℓϕ

′
j

)
dx + 4ϕj(0) +

∫ 1

0

(
N∑
ℓ=1

αℓϕℓϕj

)
dx =

∫ 1

0
fϕj dx, ∀j = 1, . . . ,N

where f = −2x2 + 4x



1D numerical example (Contd.)

▶ Reordering leads

∫ 1

0

(
N∑
ℓ=1

αℓϕ
′
ℓϕ

′
j +

N∑
ℓ=1

αℓϕℓϕj

)
dx =

∫ 1

0
fϕj dx− 4ϕj(0),

that can be written as (S+M)α = Kα = b, where

kjℓ = K(j, ℓ) =
∫ 1

0

(
ϕ ′
ℓϕ

′
j + ϕℓϕj

)
dx

bj = b(j) =

∫ 1

0
fϕj dx− 4ϕj(0)

α = (α1,α2, . . . ,αN)⊤

▶ From this, the unknowns α can be solved as α = K−1b



1D numerical example (Contd.)

▶ Integrals can be computed in the reference element (crucial
step to make the solver faster)

▶ We will skip the details but the idea relies to integral of
composite functions (familiar from integral calculus)

▶ For general 3D case it reads∫
Ge

g(x,y, z)dxdydz =
∫
G0

(g ◦ Fe)(ξ,η,γ)|JFe |dξdηdγ,

where |JFe | is the determinant of the Jacobian related to the
mapping Fe



1D numerical example (Contd.)

▶ Let us assume linear basis
functions, those are for the
reference element Ωr ∈ [−1, 1]
as

ϕr
1(ξ) = (1 − ξ)/2

ϕr
2(ξ) = (1 + ξ)/2

▶ The global coordinate x within an element is related to the
local coordinate ξ by (i.e. the mapping Fe):

x(ξ) = h/2(1 + ξ) + xi,

where h is the length of the element and xi is the starting
point of the element.



1D numerical example (Contd.)

▶ How to build matrix K

▶ As an example (one term for the local K matrix):

Kr(1, 1) = ...

=

∫ 1

−1

(
ϕr ′

1 (ξ)

Fe
′
(ξ)

ϕr ′

1 (ξ)

Fe
′
(ξ)

+ ϕr
1(ξ)ϕ

r
1(ξ)

)
|dFe/dξ|dξ

=

∫ 1

−1

(
1/h2 + ϕ1(ξ)ϕ1(ξ)

)
h/2dξ = 1/h+ h/3

▶ Note that for the first term, we applied the chain rule of
differentiation:

(g ◦ Fe) ′(ξ) = g ′(Fe(ξ))Fe
′
(ξ)



1D numerical example (Contd.)

▶ How to build right hand side b

▶ We express the term f using the linear basis functions as
fh =

∑N
ℓ=1 fℓϕℓ

b(j) =

∫ 1

0

N∑
ℓ=1

(
fℓϕℓϕj

)
dx− 4ϕj(0)

=

∫ 1

−1

N∑
ℓ=1

(
fℓϕ

r
ℓϕ

r
j

)
dξ− 4ϕj(0)

▶ As seen, this reduces to the same integral as studied
previously for the matrix K and hence we can use b = Mf⊤



1D numerical example (Contd.)

▶ Analytic solution for the studied problem is

uexact = −2x2 + 4x− 4

▶ Let us examine the effect of the grid on the numerical
accuracy (in Matlab)

▶ Convergence order:

O =
ln (eℓ+1/eℓ)

ln (hℓ+1/hℓ)
,

where e denotes the L2 error for different grids ℓ
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Motivation for Numerical Integration

▶ In FEM, integrals over elements are a crucial part of the
formulation.

▶ Analytical integration may not be feasible for complex
geometries and material properties.

▶ Numerical integration provides an efficient approach to
approximate these integrals.

Gaussian Quadrature - A widely used approach:
▶ Based on the idea of approximating the integral using

weighted sum at specific points.
▶ Nodes and weights are pre-determined for different orders

of quadrature.
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Introduction to 2D Problems

▶ In 2D, physical domains are
represented by surfaces.

▶ Nodes and elements are extended
into two dimensions.

▶ Nodal points now have two
coordinates (x,y).

Mesh generation in 2D:
▶ Triangular or quadrilateral elements

are commonly used.
▶ Mesh generation becomes more

complex than in 1D.



Extension to 3D Problems

▶ In 3D, physical domains are
represented in
three-dimensional space.

▶ Nodes now have three
coordinates (x,y, z).

▶ Tetrahedral or hexahedral
elements are commonly used
in 3D.

▶ Mesh generation becomes
more challenging but follows
the same principles as in 2D.



Challenges and Considerations

▶ Increased computational complexity: More nodes, more
elements, and more degrees of freedom.

▶ Choice of element type: Triangular, quadrilateral,
tetrahedral, hexahedral, etc.

▶ Mesh quality considerations: Delaunay conditions in 2D,
aspect ratios in 3D.

▶ Visualization challenges: Representing 3D structures in a
comprehensible manner.
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