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1 The ideal string

An ideal string is a fictitious entity with certain special
properties. Namely, it is

homogeneous

perfectly flexible

lossless

It has three quantities that govern its behavior:

linear density µ [ kg
m ]

tension T0 [N]

length L [m]
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In the following, we will consider the movement of string in
one plane only. The longitudinal coordinate is x and the
transversal displacement is denoted with y .
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1 The Wave Equation

The two opposing forces here are

inertia (mass × acceleration)

spring force (tension × curvature)

If the string displacement is moderate, i.e. ∂y
∂x ≪ 1, the

movement of the ideal string can be characterized with the
1D wave equation:

∂2y
∂t2 = c2∂

2y
∂x2 (1)

where c =
√

T0
µ .

ELEC-E5610 Acoustics and the Physics of Sound, Lecture 2 5/41
Georg Götz 26/10/2023
Aalto DICE ELEC-E5610 Lecture 2



The ideal string

The Wave Equation

Two Solutions

Bernoulli’s Solution

Free Vibration

String excited at x0

Forced Vibration

1 The Wave Equation

The two opposing forces here are

inertia (mass × acceleration)

spring force (tension × curvature)

If the string displacement is moderate, i.e. ∂y
∂x ≪ 1, the

movement of the ideal string can be characterized with the
1D wave equation:

∂2y
∂t2 = c2∂

2y
∂x2 (1)

where c =
√

T0
µ .

ELEC-E5610 Acoustics and the Physics of Sound, Lecture 2 5/41
Georg Götz 26/10/2023
Aalto DICE ELEC-E5610 Lecture 2



The ideal string

The Wave Equation

Two Solutions

Bernoulli’s Solution

Free Vibration

String excited at x0

Forced Vibration

1 The Wave Equation

The two opposing forces here are

inertia (mass × acceleration)

spring force (tension × curvature)

If the string displacement is moderate, i.e. ∂y
∂x ≪ 1, the

movement of the ideal string can be characterized with the
1D wave equation:

∂2y
∂t2 = c2∂

2y
∂x2 (1)

where c =
√

T0
µ .

ELEC-E5610 Acoustics and the Physics of Sound, Lecture 2 5/41
Georg Götz 26/10/2023
Aalto DICE ELEC-E5610 Lecture 2



The ideal string

The Wave Equation

Two Solutions

Bernoulli’s Solution

Free Vibration

String excited at x0

Forced Vibration

1 Two Solutions

Two main solutions for Eq. (1) are
d’Alembert’s solution where the string vibration is seen as

two waves traveling in opposite directions
y(x , t) = g1(ct − x) + g2(ct + x) (2)

(animations: https://www.acs.psu.edu/drussell/Demos/Pluck-Fourier/Pluck-Fourier.html

http://www.phys.unsw.edu.au/jw/strings.html)

Bernoulli’s solution where the vibration is seen as a
superposition of standing wave modes

y(x , t) =
∞∑

n=1

sin
(nπx

L

)[
An sin

(
nπct

L

)
+ Bn cos

(
nπct

L

)]
(R&F:(2.13))
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1 Bernoulli’s Solution

Let’s take a closer look on Eq. (R&F:(2.13)):

y(x , t) =
∞∑

n=1

sin
(nπx

L

) [
An sin

(
nπct

L

)
+ Bn cos

(
nπct

L

)]

String vibration is

a sum over mode number n of...

spatial sinusoidal terms (modes), multiplied by...
temporal sinusoidal terms (vibration in time)

An and Bn together define the amplitude of each
frequency component
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1 Bernoulli’s Solution II

In addition to the physical string parameters L and c, the
spectrum of the vibration is defined by An and Bn.

How are
An and Bn defined?
- By excitation, i. e. the initial conditions for the velocity and
displacement:

An =
2

ωnL

∫ L

0
ẏ(x , 0) sin

(nπx
L

)
dx (R&F:(2.17))

Bn =
2
L

∫ L

0
y(x , 0) sin

(nπx
L

)
dx

(R&F:(2.18))

For plucked string ẏ(x , 0) = 0 ⇒ An = 0,
for a struck string y(x , 0) = 0 ⇒ Bn = 0.
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1 Bernoulli’s Solution III

Recall that the spatial term in Eq. (R&F:(2.13)):
yn = sin

(nπx
L

)
corresponds to different modes...
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1 Bernoulli’s Solution IV

...furthermore, the temporal term
yt =

[
An sin

(nπct
L

)
+ Bn cos

(nπct
L

)]
vibrates at frequencies

fn = n
c

2L
= nf0 (3)

Vibration components evenly spaced in frequency! ⇒
harmonic spectrum!
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1 Free Vibration

Free vibration means that the string is excited with some
initial conditions and then left to vibrate on its own
(https://www.youtube.com/watch?v=_X72on6CSL0).

Let’s consider
striking a string at some location, and see how Bernoulli’s
solution is affected.

add an excitation force to the wave equation:
ÿ − c2y ′′ = f (x , t) [Note that y ′′ = ∂2y

∂x2 ]

consider the force as an impulse at some location x0:
f (x , t) = δ(x − x0)δ(t), where δ is Dirac’s delta function

However, instead of force, we would need an initial
velocity or displacement to calculate An and/or Bn. How
to proceed?
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1 Free Vibration II

So, our force impulse becomes initial acceleration
ÿ(x , 0) = δ(x−x0)δ(t)

µ

initial velocity becomes ẏ(x , 0) =
∫

ÿ(x , 0)dt = δ(x−x0)
µ

while the initial displacement is y(x , 0) = 0
Insert the initial conditions into Eqs. R&F:(2.17) and
R&F:(2.18):

An =
2

nπc

∫ L

0

δ(x − x0)

µ
sin

(nπx
L

)
dx

Bn = 0
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So, our force impulse becomes initial acceleration
ÿ(x , 0) = δ(x−x0)δ(t)

µ

initial velocity becomes ẏ(x , 0) =
∫

ÿ(x , 0)dt = δ(x−x0)
µ

while the initial displacement is y(x , 0) = 0
Insert the initial conditions into Eqs. R&F:(2.17) and
R&F:(2.18):
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2

nπc
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0
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(nπx
L

)
dx

Bn =
2
L

∫ L

0
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(nπx
L
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dx
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Next, evaluate the integral:∫ L

0

δ(x − x0)

µ
sin

(nπx
L

)
dx =

1
µ
sin

(nπx0

L

)

(when x0 ∈ [0, L]). Thus, the string vibration is

y(x , t) =
∞∑

n=1

sin
(nπx

L

)[
An sin

(
nπct

L

)
+ Bn cos

(
nπct

L

)]
where

An =
2

nπcµ
sin

(nπx0

L

)
, Bn = 0
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The ideal string

The Wave Equation

Two Solutions

Bernoulli’s Solution

Free Vibration

String excited at x0

Forced Vibration

1 Free Vibration IV

Remember Eq. (3): fn = nc
2L

⇔ c = 2Lfn
n insert into the

vibration equation:

y(x , t) =
1

πLµ

∞∑
n=1

sin
(nπx

L

)
sin

(nπx0

L

) 1
fn
sin (π2fnt) (4)

consists of

spatial terms (eigenmodes)

temporal terms (eigenfrequencies)

frequency-dependent scaling
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The ideal string

The Wave Equation

Two Solutions

Bernoulli’s Solution

Free Vibration

String excited at x0

Forced Vibration

1 String excited at x0

After all the math, we obtained a nice equation for the
vibration of a string, struck at x0:

y(x , t) =
1

πLµ

∞∑
n=1

sin
(nπx

L

)
sin

(nπx0

L

) 1
fn
sin (π2fnt) (5)

What if x0 = L/2 ? The middle sine term becomes
sin

(nπ
2

)

= 0, when n = 2, 4, 6, 8, ...

⇒ even harmonics
absent! Generally:

if the string is excited at 1
m of it length, every mth

harmonic will be missing
if excitation location is moved towards string’s end,
fewer and fewer harmonics missing ⇒ sound gets
brighter!
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The ideal string

The Wave Equation

Two Solutions

Bernoulli’s Solution

Free Vibration

String excited at x0

Forced Vibration

1 String excited at x0 II

An alternative (graphical) way to express the same idea: the
closer the excitation is to the antinode of an eigenmode, the
better it excites the corresponding eigenfrequency.
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The ideal string

The Wave Equation

Two Solutions

Bernoulli’s Solution

Free Vibration

String excited at x0

Forced Vibration

1 String excited at x0 III

Actually used in the piano! The piano hammer typically hits
the string at 1

7 th of its length ⇒ the 7th harmonic damped...
Table: Eigenfrequencies and closest notes for A2 note.

n fn note fnote error (Hz)
1 110 A2 110 0
2 220 A3 220 0
3 330 E4 329.63 0.37
4 440 A4 440 0
5 550 C#5 554.37 4.37
6 660 E5 659.26 0.74
7 770 G5 783.99 13.99
8 880 A6 880 0

...luckily, since it’s so much out of tune!
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The ideal string

The Wave Equation

Two Solutions

Bernoulli’s Solution

Free Vibration

String excited at x0

Forced Vibration

1 Forced String Vibration

When the excitation is continuous, the string vibration is
considered forced.

basically, the same mechanisms apply as what
discussed above
also, the frequency of the excitation force has an effect

the excitation must “match” both the spatial and
temporal form of a mode, if that mode is to be excited

a continuous excitation at an eigenfrequency
exponentially increases the vibration amplitude

⇒ amplitude would become infinite, if it weren’t for the
losses
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2
Losses, Stiffness, Nonlinearities,
Other Polarizations

ELEC-E5610 Acoustics and the Physics of Sound, Lecture 2 22/41
Georg Götz 26/10/2023
Aalto DICE ELEC-E5610 Lecture 2



Loss Mechanisms

Effect of Losses

Effect of Stiffness

Other Polarizations

Effect of
Nonlinearities

2 Loss Mechanisms

The most important loss mechanisms in a vibrating string
are:

damping caused by air viscosity
internal losses

actually, a set of different thermo- and viscoelastic loss
mechanisms

transfer of mechanical energy through supports
depends on the connection impedance between the
string and the body

The combined effect of all losses may be expressed as a
single force term R(f )
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Loss Mechanisms

Effect of Losses

Effect of Stiffness

Other Polarizations

Effect of
Nonlinearities

2 Effect of Losses

Strictly speaking, the loss term R(f ) depends not only on the
frequency, but also on

physical properties of the string
string geometry
properties of the air

⇒ difficult to obtain theoretically! In practice, it is measured
from the attenuation times at different frequencies. Results
in an additional term to the wave equation:

ÿ − c2y ′′ + 2R(f )ẏ = f (x , t) (6)
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2 Effect of Stiffness

Real strings are never perfectly flexible, but have a nonzero
stiffness. This internal stiffness generates another restoring
force (in addition to the external tension T0).

The amount of
the stiffness depends on

cross-section area of the string A
linear density µ
Young’s modulus E (depends on the material)
the radius of gyration κ (depends on string geometry)

Stiffness creates yet another force term to the wave
equation:

ÿ − c2y ′′ + 2R(f )ẏ +
EAκ2

µ
y ′′′′ = f (x , t) (7)
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2 Effect of Stiffness II

Stiffness causes the wave propagation velocity to become
frequency-dependent

upper harmonics shift higher in frequency

⇒ the resulting tone no longer (strictly) harmonic!

Inharmonicity caused by stiffness has a significant impact on
how pianos are tuned.
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2 Other Polarizations

Obviously, the string does not only vibrate in a single transversal
polarization, but also in the

other transversal polarization

termination impedance is different in different polarizations ⇒
different decay times ⇒ two-stage decay!

longitudinal polarization
basically the same as transversal vibration, but the
propagation velocity is different (see R&F: Sec. 2.14).
Typically cL ≫ c
might connect to the instrument body (and become audible)

rotational polarization
usually negligible, except perhaps with bowed strings

The total string vibration is a superposition of all vibrations in
different polarizations.
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2 Effect of Nonlinearities

Some nonlinear effects in vibrating strings:
tension modulation with large amplitudes

string tension varies during vibration

causes initial pitch glide
stick-slip coupling between bow and string

http://www.youtube.com/watch?v=KPpBvHXYWz4

hammer nonlinearity (in the piano)
hammer seems harder when played with greater
intensity
timbre changes as a function of key velocity

other nonlinear effects in musical instruments discussed
in Nonlinear physics of musical instruments by Fletcher.
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3 General

Basically, membranes can be seen as 2D-extensions of ideal
strings.

In the following, we will study the free vibration of rectangular
and circular membranes in the lossless case (R&F:chap 3).
In reality, losses and nonlinear effects also have a strong
impact on the vibration.
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3 Rectangular Membrane

Let’s consider a perfectly homogeneous and flexible sheet
with:

mass per unit area σ [kg/m2]

tension T [N/m] applied via the edges

positioned at the xy -plane (z-axis denotes
displacement)
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3 Rectangular Membrane II
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3 Wave Equation for the Rectangular Membrane

Similarly to the string, if ∂z
∂x ,

∂z
∂y ≪ 1 ⇒

∂2z
∂t2 = c2

(
∂2z
∂x2 +

∂2z
∂y2

)
, where c2 =

T
σ

The parenthesis term is the Laplace-operator, denoted ▽2,
so the wave equation can be given in a more compact form:

z̈ = c2 ▽2 z (8)

ELEC-E5610 Acoustics and the Physics of Sound, Lecture 2 33/41
Georg Götz 26/10/2023
Aalto DICE ELEC-E5610 Lecture 2



General

Rectangular
Membrane

Wave Equation

Vibration Equation

Eigenfrequencies and
-modes

3 Wave Equation for the Rectangular Membrane

Similarly to the string, if ∂z
∂x ,

∂z
∂y ≪ 1 ⇒

∂2z
∂t2 = c2

(
∂2z
∂x2 +

∂2z
∂y2

)
, where c2 =

T
σ

The parenthesis term is the Laplace-operator, denoted ▽2

,
so the wave equation can be given in a more compact form:

z̈ = c2 ▽2 z (8)

ELEC-E5610 Acoustics and the Physics of Sound, Lecture 2 33/41
Georg Götz 26/10/2023
Aalto DICE ELEC-E5610 Lecture 2



General

Rectangular
Membrane

Wave Equation

Vibration Equation

Eigenfrequencies and
-modes

3 Wave Equation for the Rectangular Membrane

Similarly to the string, if ∂z
∂x ,

∂z
∂y ≪ 1 ⇒

∂2z
∂t2 = c2

(
∂2z
∂x2 +

∂2z
∂y2

)
, where c2 =

T
σ

The parenthesis term is the Laplace-operator, denoted ▽2,
so the wave equation can be given in a more compact form:

z̈ = c2 ▽2 z (8)

ELEC-E5610 Acoustics and the Physics of Sound, Lecture 2 33/41
Georg Götz 26/10/2023
Aalto DICE ELEC-E5610 Lecture 2



General

Rectangular
Membrane

Wave Equation

Vibration Equation

Eigenfrequencies and
-modes

3 Vibration Equation

The solution to Eq. (8) can be given as (R&F: pp.66-67):

z =
∞∑

m=1

∞∑
n=1

sin

(
mπ

Lx
x
)

sin

(
nπ
Ly

y
)

(M sin(ωmnt) + N cos(ωmnt))

(9)
which consists of

sum over two types of modes

spatial modes in x-direction

spatial modes in y -direction

temporal vibration

Both spatial directions have their own modes!
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3 Eigenfrequencies and -modes

The eigenfrequencies are given as

fmn =
1
2

√
T
σ

√(
m
Lx

)2

+

(
n
Ly

)2

(R&F:(3.4))

where Lx and Ly are the dimensions of the membrane and
m, n = 1, 2, 3, ...

The eigenmodes depend on both n and m:

Animation:
https://www.acs.psu.edu/drussell/Demos/rect-membrane/rect-mem.html
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3 Eigenfrequencies and -modes II

fmn =
1
2

√
T
σ

√(
m
Lx

)2

+

(
n
Ly

)2

(R&F:(3.4))

Let’s consider a rectangular membrane with T = 100,
σ = 0.01, and Lx = Ly = 1. What are the eigenfrequencies
f11, f12, and f21?

f11 = 50
√

(2) ≈ 71 Hz
f12 = f21 = 50

√
(5) ≈ 112 Hz

⇒ not in a harmonic relation, inharmonic sound!
generally no distinct pitch sensation, although one can
be obtained by carefully selecting the dimensions and
damping some of the modes
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3 Eigenfrequencies and -modes III

Similarly to a string, the eigenfrequencies are proportional to
the square root of the tension, but they are more densely
located in the membrane

in a square membrane, some of the modes have the
same eigenfrequency

these are called degenerate modes

See again:
https://www.acs.psu.edu/drussell/demos/membranesquare/square.html
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Circular Membranes
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Circular Membranes

Bessel’s function

Mode Patterns

4 Circular Membranes

Consider a circular membrane with radius R

displacement given as z(r , ϕ) (in polar coordinates)

fixed at the boundary z(R, ϕ) = 0

From the wave equation of the circular membrane
(R&F:(3.7)) one can evaluate the eigenfrequencies:

fmn =
c

2πR
Jmn, (10)

where Jmn is the nth zero of the mth Bessel function (in
practice, check e.g. from this table).
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4 Some of the lowest-order Bessel Functions

fmn =
c

2πR
Jmn,

What is the f21 for a circular membrane with
c = 100 m

s , R = 1
2π m?

- Approximately 514 Hz.
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4 Mode Patterns
Some of the lowest modal patterns given in (R&F:fig.3.6):

(the number below each mode expresses the frequency ratio
to the fundamental)

⇒ again, an inharmonic spectrum! See
animation at https://www.acs.psu.edu/drussell/
Demos/MembraneCircle/Circle.html or
http://www.falstad.com/circosc/
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