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1 General

For finite vibrating objects, the sound field created by the
vibration is affected by

the shape and dimensions of the surface
vibrational distribution on the surface

amplitude
phase
frequency

surrounding environment

the interaction of all sides of the vibrating surface
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2 Circular Piston

Consider a circular piston with
radius R as a sound source

vibrates as a single unit
with velocity ũn

constant amplitude,
phase, and frequency

placed on an infinite rigid
plane

no interaction from the
other side of the plane

Approximation of a baffled loudspeaker! Let’s study the
radiation pattern more thoroughly...
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2 Pressure Field Generated by a Circular Piston

The far-field sound pressure created by the piston source is

p̃(r , θ) =
iρωR2ũn

2r

[
2J1(kR sin θ)

kR sin θ

]
e−ikr

(FF:6.53,R&F:7.30)
where J1 is the 1st-order Bessel function.

Compare to the
far-field sound pressure of the monopole (q0 = 4πR2ũn):

p̃(r) =
iωρR2ũn

r
e−ikr (FF:6.20,R&F:7.4)

They are the same, except for scaling by 1
2 and a

multiplication term, called the directivity function.
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2 Pressure Field Generated by a Circular Piston II

In other words, pressure field = pressure field of a monopole
× directivity function f (θ) =

[
2J1(kR sin θ)

kR sin θ

]
.

f (θ) gives
the pressure
magnitude
as a function
of θ

f (θ) also
frequency-
dependent,
since k =
2π/λ = ω/c

No sound radiates to the red directions!

Lobe

+

−

+

−
+

Adjacent lobes have opposite phase
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2 Intensity Field Generated by a Circular Piston

Figure: Active intensity for (a) low and (b) high frequencies
(FF:p.129)
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2 Scalability

As in the piston case, the directivity patterns of sound
sources in general are not dependent on absolute
dimensions, but rather on kR, called the Helmholtz
number.

As a result, an acoustic similarity principle holds:
sound field behaves similarly when the wavelength
changes proportionally to the object dimensions
⇒ enables the use of acoustic scale models!

However, scale models should be used carefully if significant
losses are present, for example

with very high frequencies
small ducts, porous materials, etc.
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2 Scalability II

Figure: Scale model of a concert hall
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2 Directivity Approximations

When increasing kR sin θ from zero, we find out that the
f (θ) =

[
2J1(kR sin θ)

kR sin θ

]
has its first zero when kR sin θ ≈ 3.83.

Since sin ≤ 1, there are no zeros in directivity, if kR < 3.83.

⇒ low frequencies radiate to all directions!

In fact, for kR � 1 (i.e. if the dimensions of the piston are
very small compared to wavelength)
⇒ f (θ) =

[
2J1(kR sin θ)

kR sin θ

]
≈ 1, so that the piston source

approximates an elementary monopole.
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2 Radiation Impedance of a Circular Piston

The mechanical radiation impedance of a circular piston
(relation between piston velocity and the resulting force
exerted by the fluid to the piston) is

zmrad ≈ ρcπR2
[
(kR)2

2
+ i

8kR
3π

]
(FF:(6.55))

when kR � 1.

on the surface of the piston: piston velocity = particle
velocity of air
Eq. (FF:(6.55)) is a low kR approximation. Let’s see
what the exact zmrad

ρcπR2 looks like...
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2 Radiation Impedance of a Circular Piston II

Figure: Real R and imaginary X components of rad. impedance

What can you say about the low-frequency-response of the baffled
vs. unbaffled piston? What about high frequencies?
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2 Radiation Impedance of a Circular Piston III

Let’s take a look at the reactive part of Eq. (FF:(6.55)):

Im[zmrad] ≈ ρcπR2
[
i
8kR
3π

]
= ick

8ρR3

3

remember k = ω/c ⇒

Im[zmrad] ≈ iω
8ρR3

3
.

How would you interpret the reactive radiation impedance for
the piston? It represents an attached mass of 8ρR3

3 kg.
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2 Radiation Impedance of a Circular Piston IV

Since FF:Fig.6.19 showed that the bracketed resistive part
of zmrad ≈ 1 for high frequencies, it can be concluded that

Re[zmrad] ≈ πR4ρc

How would you interpret this? Remember the characteristic
impedance of a plane wave zc = ρc. This means that for
high frequencies, the piston behaves as a plane wave
source.
See also https://www.acs.psu.edu/drussell/Demos/BaffledPiston/BaffledPiston.html.
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3 Radiator Groups

Consider a case where
a group of equal-phase
monopoles are placed
on the z-axis, d meters
apart.

P is the
observation point
at a distance r from
the group midpoint

θ is the angle
between P, group
midpoint, and
z-axis

x

y

z

r

P.

d

d

d

d

d

θ
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3 Sound Pressure

The sound pressure at P caused by N monopoles can be
given as

p̃(θ, r) ≈
(

iωρq0

4πr

)
e−ikr

[
sin
(Nπd

λ cos θ
)

sin
(
πd
λ cos θ

) ] (R&F:(7.17))

which consists of

sound pressure of a monopole

directivity function

(note that book version of R&F:7.17 uses a number of 2N
monopoles)
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3 Directivity Patterns

Figure:
directivity
patterns
created by 7
point sources
(illustrated
with red
circles)

lobe number
increases
with
frequency!
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3 Wavefield Synthesis

Generally, the radiation patterns of group sources can be
varied by varying the phases, amplitudes, and delays of the
individual sources.

This enables wavefield synthesis:

principle: http:
//www.holophony.net/Wavefieldsynthesis.htm

virtual sources inside the room:
http://www.youtube.com/watch?v=TiZdgdd3lZE

The same principle can be used also for microphone arrays!

acoustic beamforming by summing the mic signals
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