Exercise session 3
(1) a) Prove the reverse triangle inequality

$$
||z|-|w|| \leq|z-w|
$$

for any $z, w \in \mathbb{C}$.
Hint: $z=(z-w)+w$
b) Show that the set

$$
\overline{\Delta\left(z_{0}, r\right)}=\left\{z \in \mathbb{C} ;\left|z-z_{0}\right| \leq r\right\}
$$

is closed.
Hint: Ia is useful to show that the complement is open.

Solution: a) $|z|=|(z-w)+w| \leqslant|z-w|+|w|$ by the ordinary triangle inequality. We get

$$
|z|-|w| \leqslant|z-w| .
$$

Let z and w switch roles to get

$$
\begin{aligned}
& |w|-|z| \leq|z-w| \\
& \Rightarrow||z|-|w|| \leq|z-w|
\end{aligned}
$$

b)

We want to show that the set (red in figure) $\overline{\Delta\left(z_{0}, r\right)}=\left\{z \in \mathbb{C} ;\left|z-z_{0}\right| \leq r\right\}$ is closed. We do this by showing that the complement (blue in figure)' $\left\{z \in \mathbb{C} ;\left|z-z_{0}\right|>r\right\}$ is open
Pick z such that $\left|z-z_{0}\right|=r+k \quad(k>0)$

This is indeed the case since

$$
\begin{aligned}
& \quad\left|w-z_{0}\right|=\left|(w-z)+\left(z-z_{0}\right)\right| \geq\left||w-z|-\left|z-z_{0}\right|\right|= \\
& =r+k-|w-z| \geq r+k-\frac{k}{2}>r
\end{aligned}
$$

Hence $\left\{z \in \mathbb{C} ;\left|z-z_{0}\right|>r\right\}$ is open and therefore

$$
\overline{\Delta\left(z_{0}, r\right)}=\left\{z \in \mathbb{C} ;\left|z-z_{0}\right| \leqslant r\right\}
$$

is closed.
(2) Compute $\lim _{n \rightarrow \infty} z_{n}$ when
a) $z_{n}=i^{n!}+2^{-n}$
b) $z_{n}=2^{-n+i \sqrt{n}}$
c) $Z_{n}=\sqrt[n]{z}$, for $z \in \mathbb{C}$.

Solution: a) Notice that $i^{4}=1$ and that
n ! is an integer multiple of 4 when $n \geq 4$.
Therefore $z_{n}=1+2^{-n}$ when $n \geq 4$.
We now calculate

$$
\lim _{n \rightarrow \infty} z_{n}=\lim _{n \rightarrow \infty} 1+2^{-n}=1
$$

b)

$$
\begin{aligned}
z_{n}=2^{-n+i \sqrt{n}} & =2^{-n} \cdot 2^{i \sqrt{n}}= \\
& =2^{-n} \cdot \underbrace{e^{(\ln 2) \sqrt{n} i}} \\
& =\cos (\sqrt{n} \ln 2)+i \sin (\sqrt{n} \ln i
\end{aligned}
$$

Therefore $\left|z_{n}\right|=2^{-n}$ and since

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|z_{n}\right|=\lim _{n \rightarrow \infty} 2^{-n}=0 \\
& \text { also } \lim _{n \rightarrow \infty} z_{n}=0
\end{aligned}
$$

c)

$$
\begin{aligned}
z_{n} & =\sqrt[n]{z}=e^{\frac{1}{n}(\log (z))}= \\
& =e^{\frac{1}{n} \ln |z|+i \frac{\operatorname{Arg}(z)}{n}}= \\
& =e^{\frac{1}{n} \ln |z|}\left(\cos \left(\frac{\operatorname{Arg}(z)}{n}\right)+i \sin \left(\frac{\operatorname{Arg}(z)}{n}\right)\right.
\end{aligned}
$$

$\lim _{n \rightarrow \infty} \frac{\ln |z|}{n}=0$ and also $\lim _{n \rightarrow \infty} \frac{\operatorname{Arg}(z)}{n}=0$
Since exp, cos and sin are continuous we get

$$
\begin{aligned}
\lim _{n \rightarrow \infty} z_{n}=\lim _{n \rightarrow \infty} \sqrt[n]{z} & =e^{0} \cdot(1+i 0)= \\
& =1
\end{aligned}
$$

(unless $z=0$. If $z=0$ then $\sqrt[n]{z}$ is undefined!)
(3) A complex sequence is defined recursively by $z_{1}=0, z_{2}=i$, and $z_{n}=\frac{z_{n-1}+z_{n-2}}{2}$ for $n \geq 3$. Show that

$$
z_{n}=\frac{2 i}{3}\left(1-\left(-\frac{1}{2}\right)^{n-1}\right)
$$

when $n \geq 2$.
Calculate $\lim _{n \rightarrow \infty} z_{n}$.

Solution: We verity the formula

$$
z_{n}=\frac{2 i}{3}\left(1-\left(-\frac{1}{2}\right)^{n-1}\right) \text { for } n \geq 2
$$

by induction.
Base step: $n=2$

$$
\begin{aligned}
& \quad \frac{2 i}{3}\left(1-\left(-\frac{1}{2}\right)^{2-1}\right)=\frac{2 i}{3}\left(\frac{3}{2}\right)=i \\
& n=3 \\
& \frac{z_{1}+z_{2}}{2}=\frac{i}{2} \\
& \frac{2 i}{3}\left(1-\left(-\frac{1}{2}\right)^{3-1}\right)=\frac{2 i}{3}\left(1-\frac{1}{4}\right)=\frac{2 i}{3} \cdot \frac{3}{4}=\frac{i}{2}
\end{aligned}
$$

Induction step
Assume the formula

$$
z_{k}=\frac{2 i}{3}\left(1-\left(-\frac{1}{2}\right)^{k-1}\right) \text { is true }
$$

for $2 \leq k \leq p$.

$$
\begin{aligned}
z_{p+1} & =\frac{z_{p}+z_{p-1}}{2}=\frac{2 i}{2 \cdot 3}\left(\left(1-\left(-\frac{1}{2}\right)^{p-1}\right)+\left(1-\left(-\frac{1}{2}\right)^{p-2}\right)\right. \\
& =\frac{2 i}{3} \cdot \frac{2-\left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)^{p-2}-\left(-\frac{1}{2}\right)^{p-2}}{2}= \\
& =\frac{2 i}{3}\left(\frac{2-\frac{1}{2}\left(-\frac{1}{2}\right)^{p-2}}{2}\right)=\frac{2 i}{3}\left(1-\left(-\frac{1}{2}\right)^{2}\left(-\frac{1}{2}\right)^{p-2}\right) \\
& =\frac{2 i}{3}\left(1-\left(-\frac{1}{2}\right)^{p}\right) \text { ok! }
\end{aligned}
$$

So the formula is true for $n \geq 2$ by induction.
we get

$$
\lim _{n \rightarrow \infty} z_{n}=\lim _{n \rightarrow \infty} \frac{2 i}{3}\left(1-\left(-\frac{1}{2}\right)^{n-1}\right)=\frac{2 i}{3}
$$

\otimes
(4) Compute:
a) $\lim _{z \rightarrow i} \frac{z^{4}+1}{z+i}$
b) $\lim _{z \rightarrow-i} \frac{z^{4}-1}{z+i}$
c) $\lim _{z \rightarrow 1:} \frac{z^{2}-i z+2}{z^{2}+4}$

Warning: You cannot use l'Hospitals rule (yet)!
Solution: al Since polynomials are continuous we can just plugin $z=i$ (unless the numerator is zero)

$$
\lim _{z \rightarrow i} \frac{z^{4}+1}{z+i}=\frac{i^{4}+1}{i+i}=\frac{2}{2 i}=\frac{1}{i}=-i
$$

b) $\lim _{z \rightarrow-i} \frac{z^{4}-1}{z-i}=$?

Notice that the numerator $-i+i=0$. However also $i^{4}-1=1-1=0$.

$$
\frac{z^{4}-1}{z+i}=\frac{\left(z^{2}+1\right)\left(z^{2}-1\right)}{z+i}=\frac{(z-i)(z, i)\left(z^{2}-1\right)}{z+i}
$$

Therefore $\lim _{z \rightarrow-i} \frac{z^{4}-1}{z+i}=\lim _{z \rightarrow-i}(z-i)\left(z^{2}-1\right)=$

$$
=-2 i\left(i^{2}-1\right)=4 i
$$

c) $\lim _{z \rightarrow l_{i}} \frac{z^{2}-i z+2}{z^{2}+4}$

Notice $(2 i)^{2}+4=-4+4=0$ and

$$
(2 i)^{2}-i(2 i)+2=-4+2+2=0
$$

So $z^{2}-i z+2=(z-2 i)(z+i)$
and $z^{2}+4=(z-2 i)(z+2 i)$
Therefore $\lim _{z \rightarrow 2 i} \frac{z^{2}-i z+2}{z^{2}+4}=\lim _{z \rightarrow 2 i} \frac{(z+i)(z-2 i)}{(z+2 i)(z-2 i)}=$

$$
=\lim _{z \rightarrow 2 i} \frac{z+i}{z+2 i}=\frac{3 i}{4 i}=\frac{3}{4}
$$

