Exercise sheet 4
1. For each of the following functions determine
the largest open set in which it is
analytic and calculate its derivative
a)
$$f(z) = z^{3}(1+z)^{6}$$

b) $g(z) = \frac{z+1}{z-zi}$
c) $f_{1}(z) = (\frac{z-1}{z-zi})^{4}$
Solution: a) $f(z)$ is a polynomial and hence analytic
in the whole plane $C(that is f is entire)$
 $f_{1}'(z) = 3z^{2}(1+z)^{6} + 6z^{3}(1+z)^{5} =$
 $= 3z^{2}(1+z)^{5}(4+z) + 6z^{3}(1+z)^{5} =$
 $= 3z^{2}(1+z)^{5}(4+z) + 6z^{3}(1+z)^{5}(1+3z)$
b) $g(z)$ is analytic if $z-2i \neq 0$. That is
when $z \neq 2i$
 $g_{1}'(z) = \frac{(z-2i)(-(z+1))}{(z-2i)^{2}} = \frac{-1-2i}{(z-2i)^{2}}$
c) $h(z)$ is analytic if $z^{3}-2i\neq 0$
 $z^{2}-2i = (z-3)(z^{2}+3z+9) = 0$
 $z^{2}+3z+9 = (z+\frac{3}{2})^{2}+9-\frac{9}{4} = 0$
 $(z+\frac{3}{2})^{2} = -\frac{2\pi}{4}$
 $\Longrightarrow 2^{3}-2i = 0$ iff $z_{1}=3$, $z_{2}=-\frac{3}{2}+i\frac{3\pi}{2}$ or
 $z_{3}=-\frac{3}{2}-i\frac{3\pi}{2}$

So
$$h(z)$$
 is analytic in $\mathbb{C} \setminus \frac{13}{2}, \frac{-3}{2}, \frac{135}{2}, \frac{3}{2}, \frac{135}{2}, \frac{1}{2}$
and $h'(z) = 4 \left(\frac{z-1}{z^2-2\lambda}\right)^3 \cdot \frac{d}{dz} \left(\frac{z-1}{z^3-2\lambda}\right) =$
 $= 4 \left(\frac{z-1}{z^3-2\lambda}\right)^5 \cdot \frac{z^3-2\lambda-3z^2(z-1)}{(z^3-2\lambda)^2} =$
 $= 4 \left(\frac{z-1}{z^3-2\lambda}\right)^5$
2) Let $f(z) = 1-y^2+i(2xy-y^2)$. Lecate
all points z at which f is complex
differentiable, and alternine $f'(z)$ for
each such point.
Solution: We will use the Cauchy-Riemann equation.
First $f(z) = u(xy)+iv(xy)$ where
 $u(x,y) = 1-y^2$ and $v(xy) = 2xy-y^2$
So $u_x = 0$, $v_y = 2x - 2y$.
These are all continuous so if CR -equations holds
af a point them f is complex differentiable there.

So
$$u_x = v_y$$
 gives $0 = 2x \cdot 2y$ and
 $v_x = -u_y$ gives $2y = 2y$
The second equation is always satisfied
The first holds if $y = x$.
 \Rightarrow The (auchy-Riemann equations hold on the
time $y = x$.
 $f'(z) = u_x(z) + iv_x(z) = 0 + idy$ for these
points.
(Sanity chech ?: $f'(z) = -i(u_y(z) + iv_y(z))$
 $= v_y(z) - iu_y(z) = (2x \cdot 2y) - i(-2y) =$
 $= 0 - i 2y$
 $x = y$