Exercise sheet 4

1. For each of the following functions determine the largest open set in which it is analytic and calculate its derivative
a) $f(z)=z^{3}(1+z)^{6}$
b) $g(z)=\frac{z+1}{z-2 i}$
c) $h(z)=\left(\frac{z-1}{z^{3}-2 z}\right)^{4}$

Solution: a) $f(z)$ is a polynomial and hence analytic in the whole plane \mathbb{C} (that is f is entire)

$$
\begin{aligned}
f^{\prime}(z) & =3 z^{2}(1+z)^{6}+6 z^{3}(1+z)^{5}= \\
& \left.=3 z^{2}(1+z)^{5}(1+z)+2 z\right)=3 z^{2}(1+z)^{5}(1+3 z)
\end{aligned}
$$

b) $g(z)$ is analytic if $z-2 i \neq 0$. That is when $z \neq 2 i$

$$
g^{\prime}(z)=\frac{\left(z-\frac{i_{i}}{}\right)-(z+1)}{\left(z-z_{i}\right)^{2}}=\frac{-1-2_{i}}{\left(z-z_{i}\right)^{2}}
$$

c) $h(z)$ is analytic if $z^{3}-27 \neq 0$

$$
\begin{gathered}
z^{3}-27=(z-3)\left(z^{2}+3 z+9\right)=0 \\
z^{2}+3 z+9 \quad\left(z+\frac{3}{2}\right)^{2}+9-\frac{9}{4}=0 \\
\Rightarrow z^{3}-27=0 \text { of } \quad z_{1}=3, z_{2}=-\frac{3}{2}+i \frac{3 \sqrt{3}}{2}, \text { or } \\
\Rightarrow z_{3}=-\frac{3}{2}-i \frac{3 \sqrt{3}}{2}
\end{gathered}
$$

So $h(z)$ is analytic in $\mathbb{C} \backslash\left\{3,-\frac{3}{2}+i \frac{3 \sqrt{3}}{2},-\frac{3}{2}-i \frac{3 \sqrt{3}}{2}\right\}$ and $h^{\prime}(z)=4\left(\frac{z-1}{z^{3}-27}\right)^{3} \cdot \frac{d}{d z}\left(\frac{z-1}{z^{3}-27}\right)=$

$$
\begin{aligned}
& =4\left(\frac{z-1}{z^{3}-27}\right)^{3} \cdot \frac{z^{3}-27-3 z^{2}(z-1)}{\left(z^{3}-27\right)^{2}}= \\
& =\frac{4(z-1)^{3}\left(-2 z^{3}+3 z^{2}-27\right)}{\left(z^{3}-27\right)^{5}}
\end{aligned}
$$

(2) Let $f(z)=1-y^{2}+i\left(2 x y-y^{2}\right)$. Locate all points z at which f is complex differentiable, and determine $f^{\prime}(z)$ for each such point.
Solution: We will use the Cauchy-Riemann equation. First $f(z)=u(x, y)+i v(x, y)$ where

$$
u(x, y)=1-y^{2} \quad \text { and } \quad v(x, y)=2 x y-y^{2}
$$

So $\quad u_{x}=0$, $\quad v_{y}=2 x-2 y$,

$$
V_{x}=2 y \text {, and } u_{y}=-2 y
$$

These are all continuous so if CR-equations holds af a point then f is complex differentiable there.

So $u_{x}=v_{y}$ gives $0=2 x-2 y$ and

$$
v_{x}=-u_{y} \text { gives } 2 y=2 y
$$

The second equation is always satisfied The first holds if $y=x$.
\Rightarrow The Cauchy-Riemann equations hold on the live $y=x$.

$$
f^{\prime}(z)=u_{x}(z)+i v_{x}(z)=0+i 2 y \quad \text { for these }
$$ points.

(Sanity check?: $f^{\prime}(z)=-i\left(v_{y}(z)+i v_{y}(z)\right)$

$$
\begin{aligned}
=v_{y}(z)-i u_{y}(z) & =(2 x-2 y)-i(-2 y)=. \\
& =0+i 2 y \\
x & =y
\end{aligned}
$$

(3) Let $U \subseteq \mathbb{C}$ be an open set. Assume that $h: U \rightarrow \mathbb{R}$ has continuous partial derivatives of 1st and 2nd order and satisfy Laplace's equation $h_{x x}+h_{y y}=0$ in C. Show that
$f(z)=h_{x}(x, y)-i h_{y}(x, y)$ is analytic in le. (A function solving Laplace's equation is called harmonic.)
Solution: We will use the Cauchy -Riemann equations. Putting $u=h_{x}$ and $v=-h_{y}$ we see that

$$
u_{x}=h_{x x}, u_{y}=h_{x y}, v_{x}=-h_{y x} \text {, and } v_{y}=-h_{y y}
$$

are continuous. Also the Caucly-Riemanu equations are easily verified since $u_{x}=v_{y}$ is equivalent to $h_{x x}=-h_{y y}$

$$
\Leftrightarrow h_{x x}+h_{y y}^{y y}=0
$$

and since $h_{x y}=h_{y x}$ we get

$$
u_{y}=-v_{x} \text {. Therefore } f(z)=h_{x}(x, y)-i h_{y}(x, y)
$$ is analytic

(We started with a harmonic function and produced an analytic function)
(4) Assume that $U \subseteq \mathbb{C}$ is an open set and that $f: U \rightarrow \mathbb{C}$ is analytic. Let $u=\operatorname{Re}(f)$ and $v=\operatorname{Im}(f)$ and assume that u and v has continuous partial derivatives of 1 st and Ind order. (We will later see that the assumptions on u and v are automatically trial Show that u and v are harmonic (that is solve Laplace's equation in Exercise 3.)
Solution: Since f is analytic u and v satisfies the Cauchy-Riemann equations $u_{x}=v_{y}$ and $u_{y}=-v_{x}$. Now

$$
u_{x x}=v_{y x} \text { and } u_{y y}=-v_{x y}
$$

So $\quad u_{x x}+u_{y y}=v_{y x}-v_{x y}=0$
since $v_{x y}=v_{y x}$.
Also $v_{y y}=u_{x y}$ and $v_{x x}=-u_{y x}$ which in the same way gives

$$
v_{x x}+v_{y y}=-u_{y x}+u_{x y}=0 .
$$

(We started with an analytic function and produced two harmonic functions.)

