Aalto university

Björn Ivarsson

Exercise sheet 3

Complex Analysis, MS-C1300.
Hand in exercise 1 and 2 in separate files for grading. Deadline Monday 30.10 at 23:59. The exercises should be uploaded to the correct folder on MyCourses as pdf-files with name and student number in the file name. Submission via MyCourses is the only accepted way. Done during class Tuesday 31.10 or Wednesday 1.11.
(1) (a) Prove the reverse triangle inequality

$$
\begin{equation*}
||z|-|w|| \leq|z-w| \tag{3p}
\end{equation*}
$$

for all $z, w \in \mathbb{C}$. (Hint: $z=(z-w)+w$.
(b) Let $z_{0} \in \mathbb{C}$ and $r \geq 0$. Show that the set

$$
\overline{\Delta\left(z_{0}, r\right)}=\left\{z \in \mathbb{C} ;\left|z-z_{0}\right| \leq r\right\}
$$

is closed. (Hint: The reverse triangle inequality is useful to show that the complement is open.)

$$
\text { (1) }-2000=0
$$

(2) Compute

$$
\lim _{n \rightarrow \infty} z_{n}
$$

when:
(a) $z_{n}=i^{n!}+2^{-n}$
(b) $z_{n}=2^{-n+i \sqrt{n}}$
(c) $z_{n}=\sqrt[n]{z}$, for $z \in \mathbb{C}$
(3) A complex sequence is defined recursively by $z_{1}=0, z_{2}=i$, and

$$
z_{n}=\frac{z_{n-1}+z_{n-2}}{2}
$$

for $n \geq 3$. Show that

$$
z_{n}=\frac{2 i}{3}\left(1-\left(-\frac{1}{2}\right)^{n-1}\right)
$$

when $n \geq 2$. Calculate

$$
\lim _{n \rightarrow \infty} z_{n} .
$$

(4) Compute:
(a) $\lim _{z \rightarrow i} \frac{z^{4}+1}{z+i}$
(b) $\lim _{z \rightarrow-i} \frac{z^{4}-1}{z+i}$
(c) $\lim _{z \rightarrow 2 i} \frac{z^{2}-i z+2}{z^{2}+4}$.
(WARNING: You cannot use l'Hospital's rule (yet)! You don't know how to differentiate at this point in the development of the theory.)

