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These lecture notes are written for a research M.Sc. course in microe-
conomic theory covering welfare economics and competititive markets.
They are meant to complement the course textbook ’Microeconomic The-
ory’ by Mas-Colell, Whinston and Green and the material presented in the
lectures. Special thanks to Mikael Mäkimattila for comments.

Introduction

The four parts in the research M.Sc. sequence in microeconomic theory
at Helsinki GSE cover: Decision Theory (Part I), Welfare Economics and
Competitive Markets (Part II and this course), Game Theory (Part III) and
Economics of Information (Part IV). At a very general level, the aim of Part
II is to introduce formal models of economies consisting of multiple eco-
nomic agents. Key concepts for analyzing economies revolve around eval-
uating economic outcomes (often called allocations), considering various
economic institutions (in particular competitive markets) and aggregating
individual behavior within the institutions. Part III extends the analysis to
cover strategic aspects, Part IV concentrates on models of imperfect and
incomplete information.
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These lecture notes are organized as follows:

1. Economic Setup

(a) Modeling Economies: economic agents, preferences, feasible out-
comes or allocations.

(b) Assessing Economic Outcomes: Pareto efficiency, social welfare
functions, Arrow’s theorem.

2. Institutions and Allocations in Discrete Economic Models

(a) Assignment

(b) Matching

3. Competitive Markets

(a) Exchange Economies

(b) Economies with Production

4. Competitive Equilibrium Analysis

(a) Cobb-Douglas Exchange Economies

(b) Exchange Economies under Uncertainty

(c) Models of Trade

(d) Assignment Markets: Housing in General Equilibrium
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1 Economic Setup

1.1 Primitives for Social Choice

Microeconomic Theory I focuses on decision theory, i.e. the choice be-
havior of a single economic agent. In this course, we consider economic
decisions and outcomes for groups of agents.

As the starting point, we take a set N = {1, ..., n} of economic agents
and a set of social outcomes or alternatives A. Each outcome contains a
complete description of all relevant aspects to all economic agents.

As in Microeconomic Theory I, we assume that each i ∈ N has a ra-
tional (i.e. complete and transitive) preference order on the set of alterna-
tives. We denote the preference relation of agent i by ⪰i. We write ≻i for
the strict part of ⪰i and ∼i for the indifference relation induced by ⪰i.

In the first part of the course, we are mainly interested in evaluating
different institutions, i.e. ways in which social outcomes are decided. In
the second part of the course, we look more carefully at a particular insti-
tution, i.e. competitive markets as a means for reaching social outcomes.
Microeconomic Theory III and IV adopt a different approach to decision
making for groups of agents based on non-cooperative game theory. In
those courses, each economic agent has to make an independent choice
and the vector of choices determines the social outcome.

The starting point for our analysis is hence a society.

Definition 1.1. A society is a collection (N ,A, {⪰i}ni=1), where

1. N is a set of agents.

2. A is a set of social outcomes.

3. For all i ∈ N , the preference relation ⪰i is a complete and transitive
order on A, i.e.

i) for all i and all a, b ∈ A, either a ⪰i b, or b ⪰i a or both, and
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ii) for all i and for all a, b, c ∈ A,

(a ⪰i b) ∧ (b ⪰i c) =⇒ a ⪰i c.

Examples

1. A society consisting of agents N = {1, 2, 3, 4} and houses {a, b, c, d}.
We assume that each house is occupied by a single agent. The out-
comes in this model can then be described by a bijective function
m : N → {a, b, c, d}, where m(i) ∈ {a, b, c, d} is the house occupied
by agent i. We say in such cases that the function m is a matching of
the agents to houses. The set of possible social allocations is then the
set A of all possible matchings, i.e.:

A = {m : N → {a, b, c, d}|m is bijective}.

Exercise: How many different matchings exist?

Each agent i has a preference order ⪰i on A.

We say that the model has no externalities if for all i ∈ {1, 2, 3, 4} and
for all m,m′ ∈ A, we have

m(i) = m′(i) =⇒ m ∼i m
′.

In this case, individual preferences on which house to occupy are
sufficient to determine the individual preferences over outcomes.

2. A society consisting of employers E = {e1, ..., en} and workers W =

{w1, ...wm}. An outcome is a not necessarily one-to-one function µ :

W → E. The set of outcomes A is then the set of all functions from
W toE. All workers i ∈ W and all employers j ∈ E have preferences
over A.

We say again that the model has no externalities if for all i ∈ W and
j ∈ E, and all µ, µ′ ∈ A:

µ(i) = µ′(i) =⇒ µ ∼i µ
′, and
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µ−1(j) = µ′−1(j) =⇒ µ ∼j µ
′,

where µ−1(j) = {i ∈ W |µ(j) = i}.

In words, the workers care only about the employer for whom they
work and the firm only cares about the set of workers that it employs.
If each firm has a single task and n = m, then the set of outcomes is
the set of possible bijections (or matchings) from W to E as in the
previous example. The notable difference is that now both sides of
the match have preferences whereas houses in the previous example
did not have preferences.

3. A society consists of n consumers i ∈ {1, ..., n} and a total quantity
x̄l > 0 of divisible good l ∈ {1, .., L} to be shared between the con-
sumers. Outcomes are vectors of non-negative consumption bundles
that add up to no more than the total resources available:

A = ((x11, ..., xnL), (x21, ..., x2L), ..., (xn1, ..., xnL)) =: x ∈ RnL
+ ,

such that:
n∑

i=1

xil ≤ x̄l for all l.

In this case, we call the outcomes allocations. Each consumer i has
continuous preferences ⪰i over (the vector of individual consump-
tion sets) RnL

+ .

We say that the model has no externalities if for all i and all x,x′ ∈ A,

(xi1, ...xiL) = (x′i1, ..., x
′
iL) =⇒ x ∼i x

′.

4. Buyers (or consumers) i ∈ {1, .., b} =: B and sellers j ∈ {1, ..., s} =: S

producing a homogenous discrete good. An outcome consists of a
collection of non-negative integer-valued vectors {q(i, j)}i∈B,j∈S in-
terpreted as the number of goods that consumer i buys from seller j
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and non-negative real vectors {p(i, j)}i∈B,j∈S interpreted as the pay-
ment that consumer i makes to seller j. Seller j has a cost function
cj(qj) for producing quantity qj .

Here is one possible specification for preferences: Buyer i’s prefer-
ences are represented by the quasi-linear function

ui

(∑
j

q(i, j)

)
−
∑
j

p(i, j).

In words, the consumer gets utility from the number of goods con-
sumed and disutility from her payments to all sellers.

Seller j’s preferences are represented by

∑
i

p(i, j)− cj

(∑
i

q(i, j)

)
.

In words, the seller’s preferences are determined by her profit, i.e.
the sales revenue net of production costs.

1.2 Criteria for social choice

In a society consisting of a single decision maker, deciding how to choose
is not that hard. For a given preference order, it is quite uncontroversial
to suggest that choice be consistent with preferences. With multiple mem-
bers in the society, individual preferences may disagree on the ranking of
various alternatives.

Social Choice Theory is a branch of economics that aims at deriving a
reasonable protocol for deciding the outcome for any society. Clearly the
primitives on which such decisions may depend are the available social
outcomes A, and individual preferences over these outcomes. In an ideal
world, we might find with a rational social preference ordering to guide
social choices.
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Following Arrow (1951), the task is to come up with a social preference
function Φ that maps all rational preference profiles ⪰:= (⪰1, ...,⪰n) over
a finite set of social outcomes A to a social preference over A. We write
Φ(⪰) for the social preference that Φ assigns to the individual preference
profile (⪰1, ...,⪰n).

Examples

1. Dictatorial rule

The easiest social preference function to describe is the dictatorial rule.
Pick any i∗ ∈ {1, ..., n} and define dictatorial social preferences Φ(⪰)

by the following: for all a, b ∈ A, and for all preference profiles ⪰=

(⪰1, ...,⪰n) as follows:

For any ⪰ such that a ≻i∗ b =⇒ ¬b.

By completeness of the social preference ¬(b Φ(⪰) a) means that the
society prefers strictly a to b.

Notice that it is not necessarily the case that ⪰D=⪰i∗ since the social
preference is arbitrary for ranking of a, b ∈ A when a ∼i∗ b.

Exercise: Show that the resulting social preference is a legitimate ra-
tional order on the social outcomes for all profiles of rational indi-
vidual preferences.

2. Borda rule

Denote the set of outcomes by A := {a1, ..., ak}. For each agent i
in the society, and for each alternative aj ∈ A, and each preference
profile ⪰, compute

r(i, j) = #{aj′|aj′ ≻i aj}+
1

2
#{aj′ |aj′ ∼i aj},

i.e. the number of alternatives that are better than aj in agent i’s
ranking plus half the number of alternatives that are equally good.
For each aj , compute u(aj) =

∑
i r(i, j).
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Consider the following binary relation ⪰B defined on A by: aj ⪰B

aj′ ⇐⇒ u(aj) ≤ u(aj′). Notice that the binary relation depends
obviously on the underlying profile of preferences.

Exercise: Show that ⪰B is a rational preference for all ⪰. The result-
ing ranking of the alternatives is called the Borda rule.

3. Majority rule

One of the most popular rules for ranking alternatives is the majority
rule. Continuing with the notation of the previous example for social
outcomes, we let n(aj, aj′) = #{i|aj ⪰i aj′}, i.e. is the number of
agents that consider aj at least as good as a′j . The majority rule ⪰M

is given by the following binary relation on A:

aj ⪰M aj′ ⇐⇒ n(aj, aj′) ≥ n(aj′ , aj).

Unfortunately ⪰M is not a rational ordering. To see this, consider the
most famous (counter)example of social choice theory, the Condorcet
paradox. Suppose that:

a1 ≻1 a2 ≻1 a3,

and
a2 ≻2 a3 ≻2 a1,

and
a3 ≻3 a1 ≻3 a2.

Then we get by pairwise comparisons of the three distinct pairs of
alternatives that:

a1 ≻M a2, and a2 ≻M a3, but a3 ≻M a1.

But this contradicts transitivity of ⪰M .
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Here we see two possible social preference functions: the dictatorial
one and the one giving rise to Borda rule. Are these functions reason-
able and what criteria should one set for preference aggregation? In other
words, what are desirable properties for a social preference function? We
have already required that an acceptable social preference function out-
puts a rational preference ordering for any profile of rational preferences
in the society. Let’s state this as a formal assumption sometimes called the
unrestricted domain or universal domain assumption.

Assumption 1.1. The domain of the social preference function Φ is the set
of all rational preference profiles (⪰1, ...,⪰n) over A. The range of Φ is a
subset of rational preferences on A.

Definition 1.2. A social choice function Φ satisfies unanimity if for any
preference profile ⪰ (⪰1, ...,⪰n) and any pair of social outcomes a, b ∈ A
such that a ≻i b for all i ∈ {1, ..., n},

¬(b Φ(⪰) a).

In words, unanimity just states that the if all agents in the society strictly
prefer a to b, then the social preference also strictly prefers a to b. The
requirement of unanimity for social choice functions is one of the least
controversial modeling choices made in economics. (Recall that by com-
pleteness of the social preference ¬(bΦ(⪰)a) means that the society prefers
strictly a to b at profile ⪰.)

Definition 1.3. The social choice function Φ satisfies independence of irrel-
evant alternatives if for any two individual preference profiles ⪰ = (⪰1

, ...,⪰n) and ⪰′ = (⪰′
1, ...,⪰′

n), and any social outcomes a, b ∈ A such that
a ⪰i b ⇐⇒ a ⪰′

i b for all i ∈ {1, ..., n} :

a Φ(⪰) b ⇐⇒ a Φ(⪰′) b.

Notice that independence of irrelevant alternatives (IIA) is similar in
spirit to weak axiom of revealed preference. Societal preferences on A

9



induce preferences on all subsets of A and in particular on {a, b}. Soci-
etal preferences over these two alternatives ”should” then depend only on
how agents in the society rank a versus b and not on their preferences on
some irrelevant social outcomes c. This requirement is not as compelling
for societal preferences as it is for individual decision theory. For exam-
ple Borda rule as defined above violates IIA (can you show this?). Can
you give a justification for societal rules that depend on irrelevant alterna-
tives?

The society is said to have a dictator i∗ ∈ N if i∗’s preferences deter-
mine the societal preference in the following sense.

Definition 1.4. A social preference function Φ is dictatorial if there is some
i∗ ∈ {1, ..., n} such that for all ⪰, and all a, b ∈ A,

a ≻i∗ b =⇒ ¬(b Φ(⪰) a).

Clearly, having a dictatorial rule is not a very desirable situation for the
society even though it satisfies unanimity and IIA (can you show this?).
With these properties, we have the ingredients for the most important re-
sult in Social Choice Theory.

1.3 Arrow’s Theorem

Theorem 1.1 (Arrow’s Theorem). Suppose that A has at least three ele-
ments and the social preference function Φ satisfies Assumption 1.1. Then
if Φ satisfies unanimity and independence of irrelevant alternatives, it is
dictatorial.

In the proof below, I denote the social preference induced by the profile
(⪰1, ...,⪰n) by ⪰ for notational convenience. It should be kept in mind
that this preference depends on the underlying profile of preferences. As
before, I denote strict social preference by ≻. The social preference induced
by profile (⪰′

1, ...,⪰′
n) is denoted by ⪰′.
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Proof. We assume that Φ satisfies 1.1, unanimity and IIA and show that
it is dictatorial. The proof is divided into four steps.

STEP 1 Fix an alternative b and consider a profile (⪰1, ...,⪰n) such that
for all i, either a ≻i b or b ≻i a for all a ̸= b. Then either a ≻ b or b ≻ a for
all a ̸= b.

Remark. In words, if for all i, alternative b is either the uniquely best or
uniquely worst alternative, then b is either the uniquely best or uniquely
worst alternative in the social ranking (even if, say halt the individuals
rank b at the top and half rank it at the bottom).

Proof. Assume to the contrary that for some a, c ̸= b, we have a ⪰ b ⪰ c.
Consider another preference profile (⪰′

1, ...,⪰′
n), where ⪰i=⪰′

i if c ≻i a.
If a ⪰i c, then modify the ranking of alternative c in ⪰i to construct a new
individual preference ⪰′

i by requiring that c ≻′
i a and a′ ≻′

i c for all a′ ̸= a

such that a′ ≻i a.
(In words, the preference of i is unchanged if c ≻i a, but if a ⪰i c, then

alternative c is raised to a position immediately above a (and therefore
below a′ if a′ ≻i a) in the new ranking ⪰′

i. This change does not affect the
relative ranking of a, b or b, c for any agent since b is by assumption either
at the top or at the bottom of each individual ranking.)

Let ⪰′ be the social preference generated by the new profile (⪰′
1, ...,⪰′

n).
By unanimity, c ≻′ a. Since a ⪰i b ⇐⇒ a ⪰′

i b for all i and a ⪰ b, IIA
implies that a ⪰′ b. Since b ⪰i c ⇐⇒ b ⪰′

i c for all i and b ⪰ c, IIA implies
that b ⪰′ c. By transitivity, a ⪰′ c contradicting c ≻′ a.

STEP 2 Some individual i∗ is pivotal in the sense that depending on ⪰i∗ ,
some alternative b is ranked either at the top or at the bottom of the social
preference order ⪰ for some preference profile of other agents.

Proof. Suppose b is ranked uniquely at the bottom for all i at some fixed
preference profile. Then by unanimity b is ranked uniquely at the bottom
for the social preference ⪰.
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Consider alternative profiles indexed by k where for agents i ∈ {1, ..., k},
b is moved to the top of their preference (but otherwise their preferences
are unchanged), and the preferences of agents i ∈ {k + 1, ..., n} (for k < n)
are unchanged.

By the previous step, the social preference ranks b uniquely at the top
or at the bottom of all alternatives. Set i∗ to be the smallest k such that the
social preference ranks b at the top. Such i∗ exists since unanimity implies
that for k = n, the social preference ranks b uniquely at the top.

Denote the preference profile in the previous step for k = i∗ − 1 by I
and the profile for k = i∗ by II. The social preference order then ranks b
uniquely at the bottom in I and uniquely at the top in II.

STEP 3 For all a, c ̸= b, we have a ≻ c if a ≻i∗ c.

Proof. Construct profile III from II by changing outcome a to the top in the
ranking of i∗ so that a ≻i∗ b ≻i∗ c. Let all other agents i ̸= i∗ have otherwise
arbitrary preferences, but b remains at the same extreme position as in
profile II. By IIA, a ≻ b at profile III since

a ⪰i b at profile III ⇐⇒ a ⪰i b at profile I .

Similarly by IIA, b ≻ c at profile III since

b ⪰i c at profile III ⇐⇒ b ⪰i c at profile II .

By transitivity, a ≻ c. By independence of irrelevant alternatives, a ≻
c if a ≻i∗ c.

STEP 4 For all a, we have a ≻ b if a ≻i∗ b and b ≻ a if b ≻i∗ a.

Proof. Consider any profile where a ≻i∗ b. Take an arbitrary outcome c
and modify i∗’s preference (if necessary) so that a ≻i∗ c ≻i∗ b and so that
for the other agents, c is ranked at the top. At the new profile, c ≻ b by
unanimity.
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By the previous step, we know that a ≻i∗ c =⇒ a ≻ c. Hence by
transitivity, a ≻ b at the new profile. Since all agents rank a, b in the same
way in the two profiles, we conclude by IIA that a ≻ b at the original
profile.

The case where b ≻i∗ a is handled similarly.

Remark.

1. The proof is not terribly long, but it is not trivial either. You may
want to consult Geanakoplos (2005) for different ways of proving
the result.

2. Even though Arrow’s Theorem has a negative message, some rea-
sonable ways for aggregating individual preferences exist. Borda
rule is often reasonable even though if fails IIA.

3. Unrestricted domain is also a strong requirement. We say that indi-
vidual preferences ⪰i are single peaked on A ⊂ R if for all x, y, z ∈ A
such that x > y > z, either y ≻i x or y ≻i z or both. If all agents
have single peaked preferences and anti-symmetric preferences, then
majority rule defined in Example 3 above produces a complete and
transitive social ranking. This result goes under the name of Median
Voter Theorem and it is due to Black (1948).

4. If one has more information on cardinal utilities of the agent, then
much more can be done. Ia a world with quasilinear preferences,
the strength of individual preferences can be quantified in terms of
money. If this (or other cardinal information on utilities) is available,
then much more can be done.

5. A separate issue concerns the incentives that individuals have for re-
porting their preferences. If individual preferences are used in social
decision making, then it may well be in the agents’ best interest to re-
port their preferences strategically. This issue is taken up in Microe-
conomic Theory III, where Gibbard-Satterthwaite Theorem plays the
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role of Arrow’s Theorem in showing that the only non-trivial social
decision processes that do not give rise to strategic manipulation are
dictatorial ones (if there are three or more alternatives).

1.4 Pareto-Efficiency

Definition 1.5 (Pareto-Efficiency). Given a society with a preference pro-
file ⪰ over social outcomes A, an outcome a Pareto-dominates b if a ⪰i b for
all i ∈ {1, ..., n} and a ≻i b for some i. Outcome a strictly Pareto-dominates b
if a ≻i b for all i. Outcome a is said to be Pareto-efficient is there is no b ∈ A
that Pareto-dominates a.

Pareto-domination induces an order ⪰P on A: a ⪰P b iff a Pareto-
dominates b. It should be clear that this order is transitive (since individual
preferences are transitive) but it is far from complete.

Nevertheless, we can show that the set of Pareto-efficient outcomes is
non-empty whenever the set of outcomes is finite or the set is compact and
all individual preferences are continuous.

Definition 1.6 (Serial Dictatorship). Serial Dictatorship is defined as fol-
lows: Let agent 1 choose her set of most preferred alternatives A1 ∈ A.
By the results in Microeconomic Theory 1, this set is non-empty and in
the case with a compact A, it is also compact. Let agent 2 choose her set
of most preferred alternatives A2 ⊂ A1. Continue iteratively until the last
agent the process so that agent i chooses her most preferred outcomes in
Ai−1 for all i. The set An is the outcome of the serial dictatorship.

Proposition 1.1. The outcome of serial dictatorship is Pareto-efficient.

Proof. Left as an exercise.

In the above construction,An clearly depends on the order in which the
agents make their choices. Can you show with a simple example that there
are some Pareto-efficient outcomes that are not in An for any ordering of
the agents?
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Suppose now that we have a family of utility functions ui where each ui
represents agent i’s preferences ⪰i. We can then associate with each social
outcome a ∈ A, an n-dimensional real vector u(a) = (u1(a), ..., un(a)). An
outcome a ∈ A is then Pareto-efficient if and only if there is no b ∈ A
such that ui(b) ≥ ui(a) for all i and ui(b) > ui(a) for some i. This gives a
nice geometric interpretation to the set of Pareto-efficient points also often
called the Pareto-frontier.

Consider now a strictly increasing function W : Rn → R and the prob-
lem:

max
a∈A

W (u(a)). (1)

Proposition 1.2. If a∗ solves Problem 1, then a∗ is Pareto-efficient.

Proof. The claim is proved by contrapositive. If a∗ is not Pareto efficient,
then there is another b ∈ A, such that ui(b) ≥ ui(a

∗) for all i and ui(b) >

ui(a
∗) for some i. Since W is a strictly increasing function, W (u(b)) >

W (u(a∗)) so a∗ is not a solution to Problem 1.

The converse of this Proposition is also true, but since it is not practical
to work with the set of all (possibly quite complicated) strictly increasing
functions W , it would be good if the converse (or at least something close
to that) would be true for simpleW . A linearW would certainly be simple
to handle. An application of the separating hyperplane theorem can be
used to prove the converse for the case where the set F = {v ∈ Rn|v ≤
u(a) for some a ∈ A} is convex.

Proposition 1.3. If F is convex and a∗ is Pareto-efficient, then there is a
λ = (λ1, ..., λn) ̸= 0 with λi ≥ 0 for all i, such that a∗ solves

max
a∈A

n∑
i=1

λiui(a).

Proof. Let P := {v ∈ Rn|v ≥ u(a∗)}. Then F and P are convex sets whose
intersection has an empty interior. Separating hyperplane theorem guar-
antees the existence of a non-zero vector λ ∈ Rn and a real number γ such
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that λ · v ≤ γ for all v ∈ F and λ · v ≥ γ for all v ∈ P . Since u(a∗) ∈ F ∩ P ,
we conclude that λ · u(a∗) = γ ≥ λ · v for all v ∈ F . Furthermore, λi ≥ 0

since P includes points u(a∗) +Mei for all positive M , where ei is the ith

unit vector.

Remark.

1. F is convex if A is a convex set and ui is concave for all i.

2. If ui(a) is the Bernoulli utility function of agent i for all i, then the set
F of all utility vectors for the corresponding von-Neumann - Mor-
genstern expected utility functions over lotteries on the outcomes is
convex.

One social utility function that has attracted some attention is the Rawl-
sian function w(a) := mini∈{1,...,n}{ui(a)}. The maximizers of w(a) need not
be Pareto-efficient, but can you find a modification for the Rawlsian func-
tion so that its maximizers are Pareto-efficient outcomes?
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2 Institutions and Allocations in Discrete Economies

This section is a first introduction to the use of welfare economic analysis
in market contexts. The first subsection gives the simplest possible exam-
ple for discussing different allocation methods in a society consisting of
multiple agents. It is meant to illustrate the general methodology rather
than represent an important real-life market. The second subsection pro-
vides a more elaborate model that has been applied in practice to impor-
tant allocation problems. In a first-year course we cannot unfortunately go
very deep into the applications or extensions of the model, but I hope you
get a sense of the type of research done in the relatively new paradigm of
market design.

2.1 Assignment

We specialize the problem of choosing social outcomes to that of finding
feasible housing arrangements for the agents N := {1, ..., n}. The mem-
bers of the society have access to a set of houses H := {1, ..., h} and the
number of houses is assumed to be at least as large as the number of
agents.

2.1.1 Allocations and efficiency

We assume that all houses are single occupancy and therefore feasible out-
comes are one-to-one functions from m : N → H. We call such functions
allocations. An allocation is then identified with a vector (m(1), ...,m(n))

where m(i) ∈ H denotes the house assigned to i ∈ N . Hence the name
assignment model.

We also assume that the housing decisions impose no externalities on
occupants of other houses so that the preferences of i ∈ N are over the
set of houses and hence the preferences ⪰i of i over outcomes are deter-
mined by the house m(i) assigned to i in allocation m. With this in mind,
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we define an assignment society without externalities directly in terms of
individual preferences over houses.

Definition 2.1. A society without externalities is a collection (N ,H, {⪰i}i∈N )

of agents i ∈ N := {1, ..., n}, houses H = {1, ..., h}, where the number
of houses is at least as large as the number of agents, and an individual
rational preference relation for each i over H. An allocation is a one-to-one
function m : N → H.

Example 2.1. Consider a society with four agents N = {1, 2, 3, 4} and
five houses H = {a, b, c, d, e}. The individual preferences are given in the
following table where agents represent the columns and the houses are
ranked in the descending order of preference within columns.

1 2 3 4
b a b⃝ d
c⃝ c e e⃝
e d⃝ a a
a b c b
d e d c

Figure 1: The allocation is represented by the circled elements in the table.

Definition 2.2. An allocation m(1), ...,m(N) is Pareto-efficient if there is no
other allocation m′ such that m(i) ⪰i m

′(i) for all i and m(i) ≻i m
′(i) for

some i.

The allocation depicted in Figure 1 is not Pareto-efficient. House a is
not occupied in that allocation, but agent 2 ranks a the highest. Hence
m′ = (c, a, b, e) Pareto-dominates m = (c, d, b, e). But m′′ = (c, a, b, d)

Pareto-dominates m′. You should verify that m′′ is Pareto-efficient. An
allocation can be Pareto-efficient only if all agents (weakly) prefer their as-
signed house to all unoccupied houses. In m′′ the only unoccupied house
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is e. Can you find another Pareto-efficient allocation where some other
house is left unoccupied?

A useful observation on the set of Pareto-efficient allocations is the fol-
lowing: some agent is assigned her favorite house. Let h∗(i) denote any
house that is at the top of agent i’s ranking.

Proposition 2.1. If m is a Pareto-efficient allocation, then for all i ∈ N ,
there is a j ∈ N such thatm(j) = h∗(i) and for some i∗ ∈ N ,m(i∗) = h∗(i∗).

Proof. i) If h∗(i) is unoccupied for some i in allocation m, then m is not
Pareto-efficient.

ii) Suppose m(i) ̸= h∗(i) for all i ∈ N . Consider the agents in an arbi-
trary order i1, i2, ..., in. Construct a chain ik → ik+1 for all k by requiring
m(ik+1) = h∗(ik) so that ik+1 occupies the favorite house of ik. Since the fa-
vorite house of all agents is occupied by some agent by part i), there must
be a k∗ such that ik∗+1 = il for some l ≤ k∗. Let m′ be the allocation where
m′(ik) = m(ik+1) for l ≤ k ≤ k∗, and m′(ik) = m(ik) otherwise. Then m′

Pareto-dominates m and the claim is proved.

2.1.2 Property Rights and Market Equilibrium

For this subsection, we assume that the starting point in the society is that
the houses are initially owned by the agents. The key difference to the
previous discussion of Pareto-efficiency is that we now give the agents
property rights to their houses. They can stay in their own house if they
so decide.

An allocation in this context is a bijection from the agents to the set
of houses (all houses in this section are initially occupied by some agent).
We call the allocations also matchings We denote the initial allocation in the
society by e = (e(1), ..., e(n)), and H = {e(i)}i∈N .

Definition 2.3. An economy is a society without externalities together with
an initial allocation e denoted by (N ,H, {⪰i}i∈N , e) .
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We are interested in allowing the agents in our economy to trade. You
should notice that this is somewhat weird trading since there is no money
or any other good that could be exchanged for the houses. We will take up
trading with a richer set of trade-offs in sections 3 and 4 of these notes.

Nevertheless, it is instructive to see how to construct a market with
prices for this very simple setup. Towards this, we assign a (positive) real
number p(h) to each house and interpret it as the price of the house. Agent
i occupies initially house e(i) so we determine her budget as p(e(i)).

The idea is to construct a market equilibrium for the economy where
all agents choose the best house that they can afford. In other words, each
i chooses the best house in {h′ ∈ H| p(h′) ≤ p(e(i))}.

Definition 2.4. A market equilibrium of the economy (N ,H, {⪰i}i∈N , e) is a
house price vector p and a vector of housing demands a = (a(1), ..., a(n))

with a(i) ∈ H for all i such that
i) For all i, a(i) ⪰i h

′ for all h′ such that p(h′) ≤ p(e(i))

ii) a is an allocation (i.e. the vector of optimal demands is a matching).

Notice the structure of this definition. An equilibrium is a price and a
vector of demands with the requirement that the demands are optimal
within the feasible set given the prices and markets clear (in this case,
this implies that the demand vectors form an allocation represented by
a matching). The agents are not required to know anything about other
agents’ preferences or total resources in the society. It is enough that they
know their own preferences and their budget set. Of course, there is no ex-
planation of how an equilibrium might arise. Equilibrium prices depend
on the individual preferences. But if individual preferences are not known
to others, how can prices depend on preferences. Maybe there is a mech-
anism that asks individuals about their preferences? But then the issue of
manipulability arises. These issues are treated (to a very limited extent) in
Parts III and IV of the Microeconomic Theory sequence.

To start the analysis, we discuss how to move between two allocations.
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Definition 2.5. From an arbitrary initial allocation, we define a trading cy-
cle to be an ordered set of distinct agents (i1, ..., ik) with the interpretation
that the agents trade their houses in such a way that il gets the house of
il+1 for l < k, and ik gets the house of i1.

Definition 2.6. A trading partition is a collection of t trading cycles such
that each agent belong to exactly one trading cycle. We say that a trading
partition {(i11, ..., i1k1), ..., (i

t
1, ...i

t
kt
)} transforms allocation m to allocation m′

if for each j ∈ {1, ..., t},

m′(ijl ) = m(ijl+1) for all l ∈ {1, ..., kj−1} and

m′(ijkj) = m(ij1).

Since this is quite a complicated definition, lets see what trading parti-
tions do in examples.

Example 2.2. Start withm = (a, b, c, d, e). The trading partition {(1, 3, 4), (2, 5)}
transforms m to m′ = (c, e, d, a, b)}. The trading partition {(1, 3, 5, 4)(2)}
transforms m′ to m′′ = (d, e, b, c, a).

Example 2.3. Consider two allocationsm = (b, c, e, d, a) andm′ = (a, c, d, e, b).
Since agent 1 gets the house of agent 5, agent 5 gets the house of agent 1,
agent 2 keeps her house and agents 3 and 4 swap houses to get from m to
m′, we see that {(1, 5), (2), (3, 4)} transforms m to m′.

The cycle decomposition theorem for permutations guarantees that for
any two allocations m and m′, there is a unique trading partition trans-
forming m to m′. (Sketch of a proof: Pick an arbitrary i1. If m′(i1) = m(i1),
add {(i1)} to the trading partition T . If not, take i2 to be defined by
m(i2) = m′(i1) and add (i1, i2) to T if m′(i2) = m(i1). If not, define i3

by m(i3) = m′(i2) etc until agent ik such that m′(ik) = m(i1). Since n is
finite, such an ik must exist (why can’t we have m′(ik) = m(il) for some
1 < l < k?). Then add (i1, ..., ik) to T. Restart the process with the set
N \ {i1, ..., ik} to find the next trading cycle and repeat until no agents
remain.)
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Proposition 2.2. Let (p,a) be a market equilibrium for the economy (N ,H, {⪰i

}i∈N , e) and T the trading partition transforming e to a. Then the prices
of all houses in any trading cycle in T are equal.

Proof. Let (i1, ..., ik) be a trading cycle of T . Then a(il) = e(il+1) for l < k,
and a(ik) = e(i1).This means for l < k that e(il+1) must be in the budget
set of il or p(e(l+1) ≤ p(el) and similarly p(e1) ≤ p(e(ik)). But then all the
prices must be equal.

Definition 2.7. A trading cycle (i1, ..., ik) is a top trading cycle if we set
ik+1 = i1 and we have for all l ≤ k, e(il+1) ⪰il h

′ for all h′ ∈ H

Proposition 2.3. Every economy (N ,H, {⪰i}i∈N , e) has a top trading cycle.

Proof. Start with an arbitrary i1. Ask i1 to point at the occupants of her
favorite house. If she points at herself, then (i1) is a trivial top trading cy-
cle. Otherwise, let i2 be a person that i1 points at. Ask i2 to point at the
occupants of her favorite house. If she points at herself, there is the trivial
trading cycle (i2). If she points at i1, then (i1, i2) is a top trading cycle. Oth-
erwise, let i3 be any agent that i2 points. Continue inductively until some
ik points at some il with l ≤ k. Such a k must exist since (i1, ..., in−1) are all
distinct and in must point at herself or some other agent. By construction,
(il, il+1, ..., ik) is a top trading cycle.

Exercise: Show that an economy can have many top trading cycles.
We are now in a position to prove the existence of a market equilibrium

and also to demonstrate some of its properties.

Theorem 2.1 (Existence of a Market Equilibrium). Every economy has a
market equilibrium.

Proof. By Proposition 2.3, (N ,H, {⪰i}i∈N , e) has a top trading cycle (i1, ..., ik).
Assign each of the agents in this cycle their favorite house and attach the
same price p1 = p(e(il)) for l ≤ k. Consider a new economy consisting of
N1 := N \ {i1, ..., ik}, houses H1 := H \ ∪k

l=1{e(il)}, preferences of i ∈ N1
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on H1 induced by the original preference, and initial allocation (e(i))i∈N1 .
By Proposition 2.3, this new economy has a top trading cycle. Assign the
houses to the agents according to the trading cycle and set price p2 < p1 to
all houses in this second cycle. Remove the agents and the houses in the
cycle to arrive at a smaller sub-economy. Continue the house assignment
and price setting according to the top trading cycles recursively until no
agents are left (the process ends in at most n steps). This process arrives at
an allocation of houses to agents and a price vector such that the assigned
house is by construction at least as good as any of the houses in the agent’s
budget set.

It is a good exercise to show that if the agents have strict preferences
(no ties), then the equilibrium allocation is unique. Equilibrium prices
are obviously not pinned down since only the ordinal prices matter. You
should find an example to show that the ordinal ranking of house prices
can also differ across equilibria.

The next two theorems relate equilibrium allocations to Pareto-efficient
allocations when preferences are strict.

Theorem 2.2 (First Welfare Theorem). If the agents have strict preferences
over houses, then every market equilibrium allocation is Pareto-efficient.

Proof. Let (p,a) be a market equilibrium of the economy (N ,H, {⪰i}i∈N , e).
If a′ is an allocation that Pareto-dominates a, then a′(i) ⪰i a(i) for all i and
a′(i) ≻i a(i) for some i. But a′(i) ≻i a(i) =⇒ p(a′(i)) > p(a(i)) since
otherwise a′(i) would be budget feasible. If a′(i) ∼i a(i), strict preferences
imply that a′(i) = a(i) and thus p(a′(i)) = p(a(i)). By summing over the
agents

n∑
i=1

p(a′(i)) >
n∑

i=1

p(a(i)).

But this is not possible if both a and a′ are allocations.

Exercise: Find an example of an economy and a market equilibrium that
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is not Pareto-efficient if preferences are not strict. Do all economies have a
Pareto-efficient equilibrium if preferences are not strict?

We can also prove a converse result to the first welfare theorem show-
ing that Pareto-efficient allocations can be supported as market equilibria.

Theorem 2.3 (Second Welfare Theorem). Suppose a is Pareto-efficient for
(N ,H, {⪰i}i∈N ) and the agents have strict preferences. Then in all market
equilibria (p,a′) of (N ,H, {⪰i}i∈N ,a), we have a = a′.

Proof. If a′ is a market equilibrium allocation, a′(i) ⪰i a(i) for all i (since
initial endowment is in the budget set for all p). If a′ ̸= a, then a′(i) ≻i

a(i) for some i and since a′ is an allocation, this contradicts the Pareto-
efficiency of a.

These two welfare theorems are sometimes interpreted as showing that
the market mechanism is wonderful. It is not clear to me why this would
be so. The next subsection tries to make the point that many economic
institutions can have welfare theorems of the above type.

In Subsection 4.4, we shall discuss how the situation changes if there
is another good, money, that the agents also like. If house prices are mon-
etary so that buying a cheaper house leaves the agent with more money,
then the strength of preference becomes measurable in cardinal monetary
terms. This will have implications for the efficient allocations and for the
associated equilibria.

2.1.3 Power and the Jungle

Suppose that the agents in the society differ in terms of their power, i.e.
strength, ability to influence etc. Order the agents by descending power
so that i1 is the most powerful agent and ik is more powerful than il when-
ever l > k (we assume no ties for convenience). The consequence of power
for allocations is the following; a more powerful agent wins any strug-
gle against a less powerful one and therefore a more powerful agent can
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forcefully take over any house assigned to a weaker agent. Let ▷ denote
the complete, transitive and asymmetric binary relation on N , where i ▷ j
means that i is more powerful than j. I will follow the colorful language
of Ariel Rubinstein and Michele Piccione for the following definition.

Definition 2.8. A jungle is a society without externalities together with a
power relation ▷.

If the number of houses coincides with the number of agents, an equi-
librium for the jungle can be defined as follows:

Definition 2.9. A jungle equilibrium of the jungle (N ,H, {⪰i}i∈N , ▷) is an
allocation m such that i ▷ j =⇒ m(i) ⪰i m(j).

In words, an equilibrium is an allocation where no agent wants to exert
her power to claim the house of a less powerful agent. If there are more
houses than agents, the same definition goes through if we add dummy
agents that have the least power and that are indifferent between any
houses. We are ready for the first existence and welfare theorems of this
course.

Theorem 2.4. Every jungle has a jungle equilibrium. If the agents’ prefer-
ences are strict, then the equilibrium is unique.

Proof. Recalling the serial dictatorship from Section 1, let ik be the kth most
powerful agent for k ∈ {1, ..., n}. Denote one of the best houses in i1’s
ranking by h1. Assign recursively a house hk that is best in ik’s ranking of
the houses Hk := H \ {h1, ..., hk−1}. Since hl ∈ Hk for k < l, we conclude
that hil ⪰il hik for all il ▷ ik. The uniqueness with strict preferences over
houses is immediate.

For the rest of this section, we assume that preferences over houses are
strict for all agents.

Theorem 2.5 (First Jungle Welfare Theorem). With strict preferences over
houses, all jungle equilibria are Pareto-efficient.
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Proof. Let m∗ denote the jungle equilibrium allocation constructed by the
serial dictatorship induced by ▷. Let m be another allocation that Pareto
dominates m∗. Let ik be the first agent according to ▷ such that m(ik) ≻ik

m∗(ik). Then for all l < k, m(il) = m∗(il) since there are no ties in prefer-
ences. But then m(ik) ∈ Hk contradicting that m∗(ik) is the best choice for
ik in Hk.

Theorem 2.6 (Second Jungle Welfare Theorem). Every Pareto-efficient Al-
location is a jungle equilibrium allocation for some power relation ▷.

Proof. If m is Pareto-efficient, then by Proposition 2.1, for some i1 ∈ N ,
m(i1) = h∗(i1). Give i1 the highest ranking in ▷ and consider a society S1,
consisting of agents N1 = N \ {i1} and houses H1 = H \ {h∗(i1)}. Since m
is Pareto-efficient for the original society, (m(i))i∈N1 is Pareto-efficient for
S1. Again by Proposition 2.1, there is an agent i2 ∈ N1 such that m(i2) is
a highest ranked house for i2 in H1. Put i2 at the second highest rank of
▷. Define recursively for 1 ≤ k ≤ n − 1, Nk+1 = Nk \ {ik}, and Hk+1 =

Hk \ {h∗k(ik)}, where h∗k(i) denotes the highest ranked house for i in Hk.
Put ik ▷ ik+1. By construction, m is a jungle equilibrium for (N , H, {⪰i

}i∈N , ▷).

1. The main reason for including this subsection is to familiarize you
with the fundamental concepts (Pareto-efficiency, equilibrium, etc.)
in a simple context.

2. In the area of market design, assignment models, matching models
of the next subsection, and the concepts arising in these (e.g. top
trading cycles) play a key role. For a nice polemical article on Market
Design, see Kominers (2017).

3. If individual preferences depend on the entire allocation (preference
on neighbors on top of preference over own house), then equilibria
may fail to exist and they are not Pareto-efficient in general. Exter-
nalities are discussed further in Advanced Microeconomics: Game
Theory.
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2.2 Matching

2.2.1 Setup

Two finite populations X and Y of equal size need to be matched in pairs.
Each x ∈ X has rational preferences ⪰x over Y as match partners and
similarly each y ∈ Y has rational preferences ⪰y over X . Assume for sim-
plicity that all preferences are strict. Examples are abundant: i) workers
and tasks (e.g. medical students and residencies), ii) pilot and copilot, iii)
marriage market. We define formally:

Definition 2.10. A society is a collection (X, Y, {⪰x}x∈X , {⪰y}y∈Y ). A match-
ing µ ∈M for (X, Y, {⪰x}x∈X , {⪰y}y∈Y ) is a bijection fromX to Y . For each
x ∈ X , we call (x, µ(x)) a match. A matching method is a function that as-
signs a matching to each preference profile of the society.

Example 2.4. Recall the serial dictatorship from Section 1 and fix any pre-
determined order onX Let the members in x choose their match according
to this order amongst the Y that were not previously chosen. With strict
preferences, this produces a match so that serial dictatorship is a matching
method.

Let u(x, y) be the rank of y in x’s preference order (i.e. the number
of alternatives better than y recalling that we assume strict preferences).
Similarly let v(y, x) be the rank of x in y’s order.

Example 2.5. Let g(u(x, y), v(y, x)) be a strictly increasing function of its
two arguments. Then choosing µ ∈ argminµ∈M

∑
x g(u(x, µ(x)), v(µ(x), x))

and selecting according to serial dictatorship among the matchings if there
are multiple solutions produces a matching for all preference profiles. Hence
this procedure is a matching method.

We could of course get more structure if we took cardinal representa-
tions of the preferences. For example, one could assume quasilinear pref-
erences over match and money and maximize the surplus from the match.
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The rapidly growing literature on Optimal Transport takes this route. Note
that the optimization step is far from trivial here.

Example 2.6 (The Greedy Algorithm). Continuing with the previous ex-
ample, at first step, choose (x, y) ∈ argmin(x,y)∈X×Y g(u(x, y), v(y, x)) (with
multiple minimizers, choose in the order of a pre-determined order on X).
Remove this pair from X × Y and continue recursively until all x ∈ X are
matched.

Pareto-efficiency of matchings is defined in the usual way.

Definition 2.11. A matching µ ∈ M is Pareto efficient if there is no other
µ̃ ∈ M such that µ̃(x) ⪰x µ(x), µ̃

−1(y) ⪰y µ
−1(y) for all x ∈ X, y ∈ Y , and

for some x or some y, µ̃(x) ≻x µ(x) or µ̃−1(y) ⪰y µ
−1(y).

Exercise: Which of the matching methods result in Pareto-efficient match-
ings for all strict preference profiles?

If the match partners have autonomy on agreeing to a match, it seems
reasonable to think that a matching µ, where y ≻x µ(x) and x ≻y µ

−1(y)

would not be stable because x would have an incentive to approach y and
suggest a pairing of (x, y).

Definition 2.12. A matching µ ∈ M is pairwise stable if y ≻x µ(x) =⇒
µ−1(y) ≻y x.

Exercise: Construct an example showing that serial dictatorship does not
necessarily produce a pairwise stable matching.
Exercise: Show that every pairwise stable matching is Pareto-efficient.

2.2.2 The Gale-Shapley Algorithm

An extremely widely used matching method is the Gale-Shapley algo-
rithm also known as the deferred acceptance algorithm. In this method,
agents on one side of the market (without loss of generality consider x ∈
X) make offers to the other side.

28



In the first stage each x makes an offer to the highest ranked y (ac-
cording to ⪰x). If all y receive one offer, the algorithm ends and each x

is matched with the y that got the offer. All y ∈ Y that receive multiple
offers accepts tentatively the one they rank the highest. All other offers
are rejected at the end of the first stage.

At the beginning of each stage after the first, each y ∈ Y holds at most
one offer and during the stage she may receive new ones. All x that are
not tentatively matched send a new offer to the highest ranked y ∈ Y that
she has not sent an offer in previous periods. At the end of the stage, each
y is tentatively matched to her best offer and rejects the others.

The algorithm stops after the first stage where no offers are rejected,
i.e. when all y have exactly one offer, and all y ∈ Y are matched with the
agents whose offer they hold.

To show that this algorithm is a matching method, we need to show
that the algorithm stops after finitely many stages in a well-defined match.

More formally, the algorithm is defined as follows:

1. At the start of stage 1:

(a) Each x ∈ X makes an offer to her 1st choice.

(b) Any y ∈ Y tentatively accepts (or keeps) the best offer and re-
jects the others (deferred acceptance).

2. At stage k,

(a) Any x ∈ X rejected at step k − 1 makes a new offer to its most
preferred y that has not rejected x in any prior stage.

(b) Every y ∈ Y tentatively accepts her most preferred acceptable
offer up to (and including) stage k, and rejects any others.

3. STOP: when no further proposals are made, and match each y ∈ Y

to the x whose whose offer she has tentatively accepted.
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Proposition 2.4. For any society and any profile of strict preferences, the
Gale-Shapley algorithm is well-defined and results in a matching.

Proof. i) No x ∈ X is ever rejected by all y ∈ Y . To see this, note that all
y that reject an offer are tentatively matched. All y tentatively matched
at some stage remain tentatively matched or matched until termination.
Since the number of agents in X and Y is the same, all y are tentatively
matched only if no x is rejected.

ii) The algorithm stops. At least one x is rejected in each non-terminal
stage and no y ever gets an offer from the same x more than once. Hence
if the algorithm does not stop, some x must be rejected by all y ∈ Y con-
tradicting i).

iii) The algorithm ends when nobody is rejected and hence no x re-
mains unmatched.

Maybe the most important reason for the popularity of Gale-Shapley
algorithms in practical markets is that it results in a pairwise stable match-
ing. If a matching is not stable, the agents in the society would have incen-
tives to search for pairwise improving opportunities to leave their current
matches. It is hard to legislate against the freedom to contract in any so-
ciety and therefore an unstable matching would be unlikely to remain in
place.

Proposition 2.5. Any matching produced by the Gale-Shapley algorithm
is pairwise stable.

Proof. Let µ be the matching and assume that y ≻x µ(x). Then x must
have made an offer to y in some stage prior to making an offer to µ(x).
Furthermore, y must have rejected x and tentatively accepted some x′ with
x′ ≻y x. Since y rejects a tentatively accepted offer only if she gets to accept
tentatively a better offer, we conclude by transitivity of ⪰y that µ−1(y) ≻y x

and hence µ is pairwise stable.
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The following proposition shows that the Gale-Shapley algorithm se-
lects the best matching for all x ∈ X amongst the pairwise stable match-
ings.

Proposition 2.6. Let µ be the matching generated by the Gale-Shapley al-
gorithm. Then for all x ∈ X , and all pairwise stable µ′ ∈ M , we have
µ(x) ≻x µ

′(x).

For the proof, I use the following terminology: agent y ∈ Y is achievable
for x ∈ X if there is a stable matching µ′ such that µ′(x) = y.

Proof. Let µ be the matching produced by the Gale-Shapley algorithm and
suppose no x has been rejected by an achievable y prior to stage k of the
algorithm. Assume that in stage k, some y rejects x. This can happen only
if y tentatively accepts some x′. We show that y is not achievable to x.
Suppose there is a µ′ with y = µ′(x) and y′ = µ′(x′) achievable for x′. Then
µ′ cannot be pairwise stable since by the inductive step (y rejects x for x′ in
stage k), x′ ≻y x and y ≻x′ y′ for all y′ achievable to x′ (by inductive step,
no rejections by achievable y up to stage k and Gale-Shapley algorithm
makes offers in descending order of preference). Hence each x is matched
with the highest ranked y in the set of achievable Y .

Unfortunately µ is similarly the worst amongst all pairwise stable match-
ings for the Y . This follows immediately from the definition of pairwise
stability.

2.2.3 Extensions and Related Models

1. Since the manipulation of a matching mechanism is a topic for game
theory, I refrain from elaborating on this issue here. Unfortunately
the Gale-Shapley algorithm can be manipulated. This means that
if the agents are asked to report their preferences with the under-
standing that the G-S algorithm is the run based on the reported
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preferences, some agents may have an incentive to report a prefer-
ence profile different from their true one. The G-S algorithm cannot
be manipulated by x (or even coalitions of agents in X), but unfortu-
nately the agents in y can gain from manipulation their preferences.
In fact, a theorem by Al Roth proves:

Theorem 2.7. No pairwise stable matching mechanism exists where
no agent can profit by manipulating her reported preferences.

Kominers (2017), gives references on this and a number of other re-
lated topics.

2. How essential is it that we have assumed strict preferences? Many
of the results go through with weak preferences. For example, the
Gale-Shapley algorithm can be run by breaking any ties in individual
preferences in an arbitrary manner (e.g. assign numerical names to
the agent and break ties in favor of the smaller name). The outcome
of the G-S algorithm remains pairwise stable in this case as well. This
amounts to adding a stage 0 to the algorithm where ties are broken.
Not all results survive this, e.g. Proposition 2.6 is not true for weak
preferences.

3. It is quite straightforward to allow for different numbers of agents
in X and Y as well as allowing for the possibility that some x may
prefer to remain unmatched rather than be matched with some of the
y. You will encounter such variations in the Problem Set questions.

4. An important extension of the model concerns the case where the
agents on one side of the market are to be matched with groups of
agents (up to a capacity constraint) on the other side. These problems
are called school choice or college admission problems or many-to-
one matching problems for obvious reasons. Deferred acceptance
algorithms can be constructed for this case as well with straightfor-
ward modifications. Since college and school admissions are ob-
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viously a very important real world problem that needs a central-
ized admission system, research (both theoretical and empirical) into
such models is huge and still growing. A nice (and fairly recent)
survey on theory developments is in Abdulkadiroğlu and Sönmez
(2013). More practical issues in school choice are covered in Cantil-
lon (2017).

5. It is essential that there are two separate sides to be matched. The
related roommate problem with a single population X and where
a matching is a partition of X into non-overlapping pairs does not
necessarily allow for any stable matchings. You may be invited to
find such examples on a Problem Set.

6. The model of matching in this section is still quite special in the sense
that the matching is the only endogenous variable in the model.
There are no trade-offs that would allows any kind of quantification
of the strength of ordinal preferences. If the model allowed for pref-
erences over randomized allocations, the analysis would change by
quite a bit. Even more dramatic would be the introduction of money
in the model. Since many matching markets have monetary con-
tracts or prices to go with the matching of the different parties, there
is also a literature on matching with contracts. ’The Assignment
Game I: The Core’ by Shapley and Shubik (International Journal of
Game Theory, 1971) (unfortunately no free copy available) started
this literature and Kelso and Crawford (1982) connected matching
literature with auctions. Hatfield and Milgrom (2005) gave an extra
boost to this area of research. Rostek and Yoder (2020) is a recent ex-
ample (with a good discussion of the area and extensive references)
of theoretical work in this area. We discuss equilibria of assignment
models in Subsubsection 4.4 of these notes, where some versions of
assignnment models with prices are analyzed in more detail.
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3 Competitive Markets

In this section, we consider equilibrium and efficiency in the classical set-
ting of competitive consumer theory and producer theory.

3.1 Exchange economies

3.1.1 Allocations and Preferences: The Edgeworth Box

A society consists of n consumers i ∈ {1, ..., n} and a total quantity x̄l > 0

of divisible good l ∈ {1, .., L} to be shared between the consumers. Feasi-
ble outcomes, called allocations, are collections of non-negative consump-
tion bundles. We denote an allocation by x and the set of possible alloca-
tions by X .

X = {x ∈ RnL
+ },

where

x := (x1,x2, ...,xn) := ((x11, ..., x1L), (x21, ..., x2L), ..., (xn1, ..., xnL)) ∈ RnL
+ ,

such that:
n∑

i=1

xil ≤ x̄l for all l.

Hence xi is the consumption vector (xi1, ..., xiL) of consumer i, and xil is
consumer i’s consumption of good l.

We assume that each consumer i has a continuous rational preference
relation represented by the utility function ui on the consumption set RL

+.

Definition 3.1. An allocation x is Pareto-efficient if there is no feasible
allocation x′ = (x′

1, ...,x
′
n) such that for all i ∈ N , ui(x′

i) ≥ ui(x) and for
some i, ui(x′

i) > ui(xi).

Example 3.1. If n = 2, there allocations and preferences can be displayed
in an Edgeworth Box E (Edgeworth Rectangle?) that consist of a rectan-
gle with opposite corners at the origin and at (x̄1, x̄2) respectively. Any
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point (x1, x2) inside the rectangle allows represents a feasible allocation
((x11, x12), (x21, x22)) by identifying (x11, x12) = (x1, x2), and (x21, x22) =

(x̄1 − x1, x̄2 − x2).

origin for

agent 1

(0, x̄2)
origin for

agent 2

(x̄1, 0)

go
od

x
2

good x1

x

x22

x12
x11

x21

Figure 2: The Edgeworth box with consumption allocation at x

We can also draw the indifference curves for the two agents positioned
at (0, 0) and (x̄1, x̄2) respectively through allocation x.

origin for

agent 1

(0, x̄2)
origin for

agent 2

(x̄1, 0)

go
od

x
2

good x1

x̂

x̂22

x̂12
x̂11

x̂21

u2(x̂2)

u1(x̂1)

Figure 3: The Edgeworth box with consumption allocation at x̂
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Let
B1(x11, x12) = {x ∈ R2

+|u1(x) ≥ u1(x11, x12)},

B2(x21, x22) = {x ∈ R2
+|u2(x) ≥ u2(x21, x22)}.

Then the set of Pareto-efficient allocations consists of all ((x11, x12), (x21, x22))
such that for all

x′ ∈ E ∩B1(x11, x12) ∩B2(x21, x22),

ui(x
′
i) = ui(xi) for i ∈ {1, 2}.

origin for

agent 1

(0, x̄2)
origin for

agent 2

(x̄1, 0)

go
od

x
2

good x1

x̂

x̂22

x̂12
x̂11

x̂21

u2(x̂2)

u1(x̂1)

Figure 4: Pareto-efficient allocation at x̂

Observe that if the indifference curves intersect at an interior allocation
x̂ ∈ R4

++ in the Edgeworth Box, then x̂ is not Pareto-efficient.

3.1.2 Initial endowments and competitive budget sets

An exchange economy is a society (N , {⪰i}i∈N ) together with an initial en-
dowment vector ω ∈ RnL

+ , where ω := (ω1, ...,ωn), and ωi := (ωi1, ..., ωiL).
In an exchange economy, the agents have property rights over their

initial endowment and they are competitive price takers. In other words,
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they may exchange goods in the economy at market prices p ∈ RL
+ as in

the classical consumer theory part of Microeconomic Theory I.
The budget set B(p,ωi) of agent i is given by

B(p,ωi) = {xi ≥ 0| p · xi ≤ p · ωi}.

Agent i chooses xi ∈ B(p,ωi) to maximize a utility function ui repre-
senting her preferences. The resulting demand correspondence is denoted by
xi(p,ωi).

Definition 3.2. The excess demand correspondence zi(p) ∈ RL of agent i is
given by:

zi(p) = xi(p,ωi)− ωi.

Negative excess demands are called excess supplies and since demands
are positive, excess supplies are bounded from above and excess demands
are bounded from below.

I have suppressed the dependence on the initial endowment for nota-
tional convenience since p is an endogenous variable, but ω is kept fixed
in the analysis.

We can illustrate the budget line at slope −p1
p2

through ω and optimal
demands in the Edgeworth Box.
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Origin for agent 1

Origin for agent 2

go
od

x
2

good x1

ω

slope = −p1
p2

x∗
11

x∗
1

x∗
12

x∗
21

x∗
2

x∗
22

u1

u2

−z1

z2

Figure 5: Consumer choice and aggregate excess demands for the two
goods in the Edgeworth Box
Exercises:

1. A society consists of two agents and two goods. Suppose the agents
have linear preferences, i.e. their indifference curves have a constant
slope everywhere in their consumption set. Illustrate in an Edge-
worth Box the Pareto efficient allocations for the society with fixed
resources (x̄1, x̄2).

2. Suppose an agent with initial endowment (ω1, ω2) can trade the two
goods at prices (p1, p2) ∈ R2

+. Find the optimal demand correspon-
dence for the agent.

We recall some properties of optimal demands from Advanced Microe-
conomics 1.

Theorem 3.1. Consider an agent with strictly convex and strictly increas-
ing preferences with a strictly positive intial endownment ω ∈ RL

++. Then
her optimal demand correspondence is a function that is:

i) Continuous in p,
ii) Homogenous of degree 0 in p,
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iii) Satisfies Walras’ law: p · x(p,ω) = p · ω,
iv) If pn → p and p ̸= 0 and pl = 0 for some l, then

max
l

{x1(p,ω), ..., xL(p,ω)} → ∞.

Remark. These are familiar results, but the last property deserves a com-
ment. If the last property is violated, then the sequence of optimal de-
mands is bounded and therefore must have a convergent subsequence.
Since the preferences are continuous, this would imply the optimality of
bounded demand at zero prices for some goods. This contradicts the as-
sumption of strictly increasing preferences.

These same properties hold obviously for individual excess demands
as well. Our next task is to aggregate the individual excess demands across
all agents.

Definition 3.3. The aggregate excess demand z(p) of an economy is given by

z(p) =
n∑

i=1

zi(p).

I will comment on the positive and normative meaning of aggregate
demand at the end of this section. For now, it is enough to observe that the
above properties on individual demands carry over to aggregate excess
demands.

Theorem 3.2. Suppose all agents in the economy have strictly convex and
strictly increasing preferences and that the aggregate intial endownment∑n

i=1ωi ∈ RL
++. Then the aggregate excess demand function z(p) satisfies:

i) z(p) is continuous in p,
ii) z(p) is homogenous of degree 0 in p,
iii) Walras’ law: p · z(p) = 0,
iv) There is an s <∞ such that zl(p) ≥ −s for all l and all p,
v) If pn → p and p ̸= 0 and pl = 0 for some l, then

max
l

{z1(p,ω), ..., zL(p,ω)} → ∞.
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Property iv) follows from the fact that the individual excess supplies
are bounded above by the initial endowment and by summing over agents.

3.1.3 Competitive equilibrium: existence and properties

We start with the definition of a competitive equilibrium for an exchange
economy.

Definition 3.4. A competitive equilibrium of the exchange economy (N , {⪰i

}i∈N , {ωi}i∈N ) is a price vector p ∈ RL
+ and an allocation x ∈ RnL

+ such
that:

i) For all i ∈ N , xi solves:

max
y∈RL

ui(y) subject to p · y ≤ p · ωi.

ii) Markets clear, i.e. for all l,

n∑
i=1

xil ≤
n∑

i=1

ωil.

An equilibrium consists then of a price and an allocation such that all
agents maximize their preferences (represented by ui) in the budget set
determined by the price vector p and their initial endowment. Individual
decisions must be compatible in the sense that demand not exceed sup-
ply. This is the requirement of market clearing: prices are such that the
aggregate demand at those prices must stay below the aggregate supply.

Notice that the market clearing condition allows for possibility of not
using up the entire aggregate endowment. This is known as the assump-
tion of free disposal. For the cases that are covered in these lectures, we
could also insist on equality in ii) above.

We can summarize the conditions for a competitive equilibrium as find-
ing a price vector p such that z(p) ≤ 0. Walras’ law implies immediately
that pl = 0 for all l such that zl(p) < 0. Our search for a competitive
equilibrium is then equivalent to the search of a price vector p such that
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z(p) ≤ 0. This is a non-trivial problem. In this subsection, we will show
the existence of such a vector when the conditions for Theorem 3.2 hold.

To show this, we notice first that by the homogeneity of degree zero
of the aggregate excess demand, we can normalize the prices to be in the
simplex ∆ := {p ∈ RL|

∑L
l=1 pl = 1}. We construct a correspondence

f : ∆ ⇒ ∆ that satisfies the conditions for Kakutani’s fixed point theorem
and where

p ∈ f(p) =⇒ z(p) = 0.

Denote the interior of the price simplex, i.e. p ∈ ∆ such that p >> 0 by
∆o. Let ∂∆ := ∆ \∆o be the boundary of the simplex. For p ∈ ∆o, we let:

f(p) = argmax
q∈∆

z(p) · q.

For p ∈ ∂∆, we let:

f(p) = argmax
q∈∆

−p · q.

Exercise: Show that if p ∈ ∂∆, then p /∈ f(p). Show also that if zl(p) >
zl′(p) for some l, l′, then f(p) ⊂ ∂∆. Use Walras’ law to argue that

p ∈ f(p) =⇒ z(p) = 0.

Recall that Kakutani’s fixed point theorem (Theorem M.I.2 in MWG)
guarantees the existence of a fixed point for a correspondence f , i.e. a
point such that p ∈ f(p) if the domain of f is compact and convex and if
f is nonempty-valued, upper hemi-continuous and convex-valued.

Theorem 3.3 (Existence of Competitive Equilibrium). Suppose that the ag-
gregate demand z of the exchange economy (N , {⪰i}i∈N , {ωi}i∈N ) satis-
fies the conditions i)-v) of Theorem 3.2. Then a competitive equilibrium
(p,x) exists.

Proof. In light of the Exercise above, we only need to show that the corre-
spondence f has a fixed point. We have two steps:
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i) The domain of f is compact and convex (as shown in Advanced Mi-
croeconomics 1).

ii) Since ∆ is compact and the functions to be maximized in the defini-
tion of f are linear, f(p) is nonempty-valued and convex-valued for all p.
(In fact f(p) is a vertex, edge or a face of ∆).) Hence the only property that
needs to be verified is that f is u.h.c. Consider pn → p. If p ∈ ∆o, then the
claim follows from the Berge’s theorem of the maximum (M.K.6 in MWG),
i.e. if the objective function is continuous in x, the set of maximizers is an
u.h.c. correspondence in x.

If p ∈ ∂∆, then property v) of Theorem 3.2 shows the existence of an
unbounded excess demand zl′ for some good l′ with pl′ → 0 whenever
pn → p. But this shows that lim f(pn) ⊂ f(p) and as a result, f is u.h.c.

Notice that the hypothesis is Theorem 3.2 gives a nice set of sufficient
conditions for z(p) to satisfy i)-v) of that theorem. We will use the same
existence theorem again when discussing production economies, but in
that case, we will have different primitive assumptions on the economy
(playing the role of the hypothesis in Theorem 3.2).

The constructed correspondence f in not particularly intuitive, but it
makes the proof simple. A further advantage of this proof is that it makes
the inclusion of firms in the economy quite straightforward. As long as
the aggregate excess demand satisfies the conditions of Theorem 3.2, we
have the existence of a competitive equilibrium.

An alternative and somewhat more natural approach to proving the
existence is given in Proposition 17.C.2 of MWG, but unfortunately this
approach does not handle the case where some pl → 0 very well.

The existence proof can be extended to the case where the individual
demands (and hence excess demands and aggregate excess demands) are
convex valued correspondences. This covers the case of linear utility func-
tions below, but also other types of linear models. See ’Theory of Value’
by Debreu (1960) for details.
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Example 3.2. We can demonstrate the competitive equilibria in the Edgeworth-
Box for an economy consisting of two agents.

For the Edgeworth-Box, the existence proof is quite a bit simpler. Start-
ing with a Pareto-inefficient allocation such as x̂ in the next figure, we can
see that x̂1 is optimal for agent i if p1

p2
= MRSi(x̂i), i.e. the slope of agent

i’s indifference curve through x̂.

origin for

agent 1

(0, x̄2)
origin for

agent 2

(x̄1, 0)

go
od

x
2

MRS1(x̂1) MRS2(x̂2)

good x̂1

x̂

u2(x2)

u1(x1)

Figure 6: The Edgeworth box with initial endowment at x̂

Since MRS2(x̂2) > MRS1(x̂1), we see (for example by the law of com-
pensated demand) that the aggregate excess demand for good 1 is positive
for budget lines through x̂ at slope p1

p2
= MRS1(x̂1) and negative for price

ratio p1
p2

= MRS2(x̂2). Since the excess demands are continuous, there
must be a price vector (p̂1, p̂2) such that:

MRS1(x̂1) <
p̂1
p̂2
< MRS2(x̂2),

and
z11(p̂1, p̂2) + z21(p̂1, p̂2) = 0.

Walras’ law implies that market clears for good 2 as well at those prices.
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agent 1
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origin for
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z11
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u2(x̂2)
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Figure 7: Competitive equilibrium: ((p̂1, p̂2), (x̂1, x̂2))

We show next that all competitive equilibria are Pareto-efficient.

Theorem 3.4 (First Welfare Theorem for Exchange Economies). Suppose
all agents in an exchange economy (N , {⪰i}i∈N , {ωi}i∈N ) have locally non-
satiated preferences. Then all competitive equilibrium allocations of the
economy are Pareto-efficient.

Proof. Let (p,x) be a competitive equilibrium and y an allocation that
Pareto-dominates x. By local non-satiation, p · yi ≥ p · xi for all i and
p · yi > p · xi for some i. Summing over all i, we get

∑n
i=1 p · yi >∑n

i=1 p · xi =
∑n

i=1 p · ωi, where the last equality follows from Walras’
law. Hence, there must be an l such that

∑n
i=1 yil >

∑n
i=1 ωil showing that

y is not feasible.

Notice that this theorem is little more than just the observation that
at optimal consumptions, budget constraint binds for locally non-satiated
preferences.

There is also a sense in which almost all Pareto-efficient allocations can
be made competitive equilibrium allocations if preferences are convex.

Theorem 3.5 (Second Welfare Theorem for Exchange Economies). Sup-
pose all agents in a society (N , {⪰i}i∈N , (x̄1, ..., x̄L)) have continuous, strictly
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monotone and convex preferences on RL
+ and x∗ is a Pareto-efficient al-

location. Then the there is a price vector p∗ > 0 such that (p∗,x∗) is a
competitive equilibrium of the exchange economy (N , {⪰i}i∈N , {x∗

i }i∈N )

The proof is essentially an application of the supporting hyperplane
theorem.

Proof. STEP 1 Let Si(x
∗
i ) := {xi ∈ RL

+| xi ⪰i x∗
i }. Set S(x∗) := S1(x

∗
1) +

S2(x
∗
2) + ...+ Sn(x

∗
n), where S is the direct sum of the sets Si, i.e.

x∑ ∈ S(x∗) ⊂ RL
+ if for all i, ∃x′

i ∈ Si(x
∗
i ) such that x∑ =

n∑
i=1

x′
i.

Each of the Si is closed and convex and since the direct sum of convex sets
is also convex, we conclude that S(x) is a non-empty closed and convex
subset of RL.

STEP 2 Let x∗∑ =
∑n

i=1 x
∗
i Since x∗ is Pareto-efficient and since the

preferences are strictly monotone, we conclude that x∗∑ /∈ So(x∗), where
So(x∗) denotes the interior of the set S(x∗). Hence by the Supporting
hyperplane theorem (MWG M.G.3), there exist p∗ ̸= 0 and w∗ such that
p∗ · x∗∑ = w∗ and p∗ · x∑ ≥ w∗ for all x∑ ∈ S(x∗).

STEP 3 To show that p∗ > 0, let ek denote the kth unit vector and 1

denote the vector of 1’s. Then by strict monotonicity, there is an ϵ > 0 such
that x∗∑ + ek − ϵ1 ∈ S(x∗). By Step 2, p∗ · (x∗∑ + ek − ϵ1) ≥ w∗. Since
p∗ · x∗∑ = w∗ by step 2, we have

p∗k ≥ ϵ
L∑
l=1

p∗l > 0,

where the last step follows again from Step 2 showing that p∗ ̸= 0. Since k
is arbitrary, we have p∗ > 0.

STEP 4 The remaining task is to show that xi ≻i x
∗
i =⇒ p∗ ·xi > p∗ ·x∗

i

showing the optimality of x∗
i in the budget set of i with initial endowment

x∗
i .
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If xi ≻i x
∗
i , then by continuity of preferences, αxi ≻i x

∗
i for some 0 <

α < 1. Then αxi +
∑

j ̸=i x
∗
j ∈ S(x∗) so that:

p∗ · (αxi +
∑
j ̸=i

x∗
j ∈ S(x∗)) ≥ w∗ = p∗ · (x∗

i +
∑
j ̸=i

x∗
j).

But then we have αp∗xi ≥ p∗x∗
i and since p∗ > 0 and xi ∈ RL

+ \ {0}, we
have p∗xi > αp∗xi ≥ p∗x∗

i proving the claim.

For historical reasons, these two theorems are viewed as fundamental
to understanding the welfare properties of competitive economies. Hence
they are sometimes called ’Fundamental Theorems of Welfare Economics’.
In my opinion, they are interesting, but have little to do with how we
typically understand welfare in a society.

Example 3.3. In order to have concrete examples of how to find competi-
tive equilibria, it is extremely useful to consider agents with linear prefer-
ences, i.e. ui(xi1, xi2) = αi1xi1 + αi2xi2. Consider the case with two agents
and assume that α11

α12
̸= α21

α22
and draw the Edgeworth Box.

Figure 8: Linear indifference curves and Pareto-efficient points

Since MRS1 ̸= MRS2 at all points, there cannot be interior Pareto-
efficient allocations. Hence all Pareto-efficient allocations are located on
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a side or at a corner of the box. Make sure that you understand the eco-
nomics behind this (think about profitable trades when both agents own
both of the goods and the MRS are different).

By first welfare theorem, we know that the competitive equilibrium
allocation is Pareto efficient. On the side of the box, one of the agents
has an interior consumption vector and hence optimality requires that the
MRS of this agent be equal to the price ratio.

Figure 9: Linear indifference curves and some Pareto-efficient points

At a corner of the Edgeworth Box, both agents are at the boundary
of their consumption set and hence an equilibrium price can be different
from both MRS’s.

Exercise (with the linear utility specification of this Example):

1. Show that if x∗ := (ω11 + ω21, 0), (0, ω12 + ω22) Pareto-dominates ω,
then ((ω12

ω21
, 1),x∗) is a competitive equilibrium for this economy.

2. Show that if for all Pareto efficient x∗ that Pareto-dominate ω, we
have x∗12 = 0, then (α21

α22
, 1) is the price vector in the competitive equi-

librium of the economy.
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Figure 10: Linear indifference curves and some Pareto-efficient points

3.1.4 The Core of and Exchange Economy

We discussed pairwise stability in the context of the matching model. If
two agents can improve their situation by rematching with each other, we
do not consider the original matching to be stable. Similarly we could ask
about the stability of an allocation in an exchange economy against devia-
tions by groups of agents. The idea is simply that a group can destabilize
or block an allocation if it can find a better feasible allocation. An allocation
is feasible for a group of agents if it distributes no more than the aggregate
endowment of the group amongst its members. An allocation is stable if
no group can find another feasible allocation that Pareto dominates the
original allocation for the group members.

Pareto-efficient allocations are those allocations that are stable against
deviations by the group consisting of all agents. We say that an alloca-
tion is in the core of the exchange economy if it is stable against all group
deviations. In an Edgeworth box, the set of Pareto-efficient allocations is
sometimes called the contract curve. The core is the part of the contract
curve that is individually rational, i.e. Pareto-efficient allocations where
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each agent is at least as well off as at the initial endowment (since the only
deviating groups in an economy consisting of two agents are individual
deviations and deviations by the entire society).

Proposition 3.1. Suppose that (p,x) is a competitive equilibrium of an
economy (N , {⪰i}i∈N , {ωi}i∈N ) with locally non-satiated preferences. Then
x is in the core of the exchange economy.

Proof. The proof is almost identical to the proof of the first welfare the-
orem. Let I be a group of deviating agents. If x′

i ⪰i xi, then by local
non-satiation and optimality of the equilibrium choice xi, p · x′

i ≥ p · xi

and x′
i ≻i xi =⇒ p · x′

i > p · xi. Hence if x′ Pareto-dominates x for I ,
then

∑
i∈I

p · x′
i >

∑
i∈I

p · xi =
∑
i∈I

p · ωi,

and this contradicts feasibility for group I .

The more surprising result is that the core of an exchange economy
shrinks to the competitive equilibrium allocation as the economy grows
large.

I will not give a full proof of this result in the notes since it is well
covered in MWG. I will just outline the steps in the proof and discuss
the interpretation of the result. In the remainder of this section, we will
maintain the following assumptions on individual preferences.

Assumption 3.1. Each agent i has preferences ⪰i that satisfy:

1. ⪰i is continuously differentiable,

2. ⪰i is strictly increasing,

3. ⪰i is strictly convex,

4. for all i, xil = 0 for some l ∈ {1, ..., L} implies that ωi ≻i xi
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The society consists of H types of agents i ∈ {1, ..., H}. Each type is
characterized by her utility function uh and her initial endowment ωh. The
N-replica economy is one where there are N agents of each type. (How
should we deal with the case where there are different numbers of differ-
ent types of agents?)

Lemma 1. If x is in the core of the N-replica of the economy, then all agents
of the same type have the same consumption vector.

Proof. Sketch: i) If agents of the same type have different consumption
allocations at a core allocation, then they are not indifferent between the
allocations (use Pareto-efficiency and strict convexity).

ii) Form a deviating group by joining together one of the worst treated
agents of each type. One of them must be strictly worse off by part i) if the
agents of the same type do not all have the same consmuption vector. By
the strict convexity of preferences, the average consumption vector of each
type is at least as good as the original consumption vector for all types in
the deviating group and strictly better than the original for the type with
unequal consumption vectors.

iii) The average consumption vector of the N-replica economy is fea-
sible for this deviating group (an exercise in accounting) showing that x
cannot be in the core of the N-replica economy.

You should treat the proof sketch below as an exercise, or alternatively
you may want to check the proof in MWG Proposition 18.B.3.

Theorem 3.6. If x is in the core for all N-replica of the economy, then x is
a competitive equilibrium allocation.

Proof. Since only Pareto-efficient allocations can be in the core, we assume
that x is Pareto-efficient. Bullet 4 of Assumption 3.1 implies that xh,n > 0

for all h, n since core allocations must be at least as good as the initial
endowment for all agents.
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By Lemma 1, all agents of the same type have the same consumption
vectors at any core allocation and we let xh denote the consumption vector
of all agents of type h.

By second welfare theorem and strict convexity of preferences, there
exists a p ≥ 0 such that x is the competitive equilibrium allocation with
initial endowments given by x.

We show the claim by contrapositive, i.e. if x is not a competitive equi-
librium allocation, then it is not in the core for all N-replica of the economy.
First we note that if x is not a competitive equilibrium allocation for the
N-replica economy with initial endowment ω, then for some type h′, we
have

p · (xh′,N − ωh′,N) > 0.

Consider a deviating group formed of all agents of types other than
h′ and all but one agent of type h′. To maintain feasibility, distribute the
excess trade of the excluded agent evenly to all agents in the deviating
group. Use next the fact that at an interior Pareto-efficient allocation, p is
proportional to ∇uh(xh) for all h.

Finally, compute the effect of the distributed excess demand on the util-
ity functions of the other agents by Taylor’s approximation to uh around
xh when N is large (and therefore the per agent change in consumption is
small).

Remark. 1. The core formalizes the stability of an allocation against
group deviations. From this perspective, the above theorem tells us
that in large economies, the only stable allocations are competitive
equilibrium allocations.

2. The core is not entirely unproblematic. Why do the agents not in the
deviating group not react to the deviation? If there are many block-
ing allocations for a deviating group and the preferences amongst
the deviators differ on which is the best deviation, how should this
be resolved?
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3. On a more positive note, here is another interpretation for competi-
tive prices. Start with the quasilinear setting, where

uh(xh) = ψh(x1, ..., xL−1) + xL.

Let µ = (µ1, ..., µH) be the vector representing the fractions of agents
of type h in the economy.

With quasi-linear utilities, Pareto-efficient points can now be found
by solving:

max
x

H∑
h=1

µhuh(xh)

subject to the feasibility constraint

µ · x ≤ µ ·
∑
h

ωh.

Let v(µ) denote the value function of this problem. An allocation x

is a competitive allocation of the economy if and only if

∂v(µ)

µh

= uh(xh).

To see how to derive this, you should just apply the envelope theo-
rem to the above value function and maximization problem and note
that the competitive equilibrium price vector arises as the Lagrange
multiplier in the first-order condition of the constrained optimiza-
tion problem.

In words, an allocation is a competitive allocation if and only if the
agent’s utility is equal to her marginal contribution to the social value
function. You may want to recall this when considering VCG-mechanisms
in Part IV of he course.

Subsection 18.E of MWG contains more details on this.
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3.1.5 Appendix: Aggregate Demand, Excess Demand, and the Set of
Equilibria

Let xi(p, wi) denote the Walrasian demand of consumer i. In Chapter 4
of MWG, you saw that it is not easy to find conditions that give a nice
interpretation to the aggregate demand

x(p, w) =
∑
i∈N

xi(p, wi).

If you want x to depend on prices and aggregate wealth (w =
∑

iwi)
only, then you are restricted to utility functions giving rise to the Gorman
form indirect utility:

vi(p, wi) = ai(p) + b(p)wi,

i.e. wealth affects the indirect utility of all agents in the same linear fash-
ion.

It is not enough that the individual demand functions satisfy the com-
pensated law of demand (or WARP) for the aggregate demand to satisfy
WARP. If individual demands satisfy uncompensated law of demand, then
the aggregate demand also satisfies uncompensated law of demand and
hence also WARP.

On a more positive note, aggregate demand has some properties that
individual demands do not have. In particular aggregating over individ-
ual consumers reduces non-convexities in demand. This is very important
for the analysis of general equilibrium models with e.g. discrete goods
(such as the houses in Section 2 of these notes). In order to show the
full power of aggregation in this respect would necessitate talking about
economies with a continuum of non-atomic agents. See Kreps 13.3 for
some details on this (if interested).

With regard to aggregate excess demand functions, classical consumer
theory does not put many restrictions.
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Theorem 3.7. Let ζ : ∆L → RL be a continuous and homogenous of degree
0 function satisfying Walras’ law. The for all ϵ > 0, there are L agents with
continuous, strictly convex and monotone preferences ⪰i and initial en-
dowments ωi such that ζ is the aggregate excess demand of the economy
({1, ..., L}, {⪰i}i∈{1,...,L}, {ωi}i∈{1,...,L}) on the set {p ∈ ∆| pi > ϵ for all i}.

Finally, here is a very disappointing result concerning the predictive
power of general equilibrium theory.

Theorem 3.8. Let Q be a non-empty closed subset in the interior of ∆.
Then there is an exchange economy (N , {⪰i}i∈N , {ωi}i∈N ) with continu-
ous, strictly convex and monotone preferences such that Q is the set of
competitive equilibrium prices of that economy.

MWG contains a lot more information on the mathematical properties
of competitive equilibria. For example, in the typical case the competitive
equilibria are locally isolated and therefore in principle, comparative stat-
ics analysis is possible. Typically also the set of competitive equilibria is
finite. In my view, these results are of limited interest since there are no
constructive ways for computing the equilibria.

The message of these last two results is that if you want to get real
results, you must be willing to make some assumption. This is what we
will do after dealing with the productions side of the economy in the next
subsection.

3.2 Economies with Production

3.2.1 Theory of the Competitive Firm

I should start by noting that we are not really talking about firms as orga-
nizational entities consisting of many individuals with possibly differing
views on the best way to operate. We take the black-box approach where
a productive unit is characterized by its ability to transform some goods
(inputs and intermediate products) into final goods. We call these units
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competitive firms because we emphasize profit maximization as the be-
havioral objective for the units.

There are K firms and they operate in an economy with L goods. The
production possibilities of firm j are summarized by a production set Yj ⊂
RL. We assume that Yj is a closed and convex set for each j, and {0} ∈ Yj

for all j. This last assumption is interpreted as giving each firm the option
of not operating.

To interpret the meaning of the Yj , negative components in yj ∈ Yj are
understood to be inputs and positive components are the outputs of the
technology. Convexity rules out increasing returns to scale. You should
check MWG chapter 5 for additional details.

It is also assumed that Yj ∩ RL
+ = {0} so that it is not possible to pos-

itive amounts of any good without using some inputs. Another typical
assumption is that the sets Yj are downward comprehensive, i.e.

yj ∈ Yj and y′
j ≤ yj =⇒ y′

j ∈ Yj.

This is essentially an assumption guaranteeing free disposal.
The boundary points {∂Yj} of Yj form the efficient boundary of the pro-

duction set. This means that:

yj ∈ ∂Yj ⇐⇒ {{yj}+ RL
+} ∩ Yj = {yj}.

The objective of firm j is to find a profit maximizing vector y∗
j ∈ Yj .

The profit depends on the price vector p ≥ 0 prevailing in the economy. A
competitive firm acts as a price taker. In other words,

y∗
j ∈ argmax

yj∈Yj

p · yj.

Notice that the firm’s problem has no (price dependent) budget set and
as a result, the comparative statics of the firm’s optimal decisions are very
easy in comparison to consumer choice. If the production sets are strictly
convex, then the profit maximizing production vector is single-valued and

55



continuous in prices. Notice also that the optimal production vector is
homogenous of degree zero in prices.

It is a useful exercise to recall the production Edgeworth-Box where
two firms produce a single output from two inputs or factors (say labor
and capital). Place the input allocations to the firms on the two axes and
let the total factor endowments determine the size of the box. Put the firms
at the corners of the box and draw the isoquants inside the box. An input
allocation is production-efficient if there is no other feasible factor allocation
that results in at least as high production of both final goods and strictly
more production for at least one final good.

In order to understand general equilibrium with production, it is a
good idea to recall from Intermediate Microeconomics that for competi-
tive firms, marginal revenue product of each factor is equalized to the fac-
tor price. All firms (using positive amounts of both factors) have the same
marginal rate of technical substitution (i.e. their isoquants are tangent to
each other in the production Edgeworth Box).

A final consequence of competitive profit maximization is that the mar-
ginal rate of transformation (MRT) between the final goods is equal to
their price ratio (for strictly positive levels of production). Since opti-
mality on the consumer side for strictly positive consumption levels is
achieved where marginal rate of substitution (MRS) equals the price ra-
tio, we get the familiar characterization of competitive equilibrium as the
requirement that MRS = MRT.
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Figure 11: Production Edgeworth Box

3.2.2 Competitive Equilibrium in Production Economies

In order to complete the description of an economy with production, we
need to take a stance on what happens to the profits that the firms gener-
ate. We denote the set of firms in the economy by K := {1, ..., k} and we
assume that the agents (i.e. the consumers) own the firms. Let θij ≥ 0 be
agent i’s ownership share in firm j (so that

∑
i∈N θij = 1 for all j). The idea

is that the budget set of each agent is determined by her income from her
endowment (including labor endowment) and her capital income (divi-
dends) from the ownership of the firms.

With these primitives, we can define formally a production economy.

Definition 3.5. A production economy is a collection of agents, firms, prefer-
ences, initial endowments, ownership shares and production technologies

(N ,K, (⪰i)i∈N , (ωi)i∈N , (θij)i∈N ,j∈K, (Yj)j∈K).

A production vector for the entire economy is y ∈ RkL so that y =

(y1, ...,yk) and yj = (yj1, ..., yjL). The definition of a competitive equi-
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librium for a production economy extends the definition for exchange
economies as follows.

Definition 3.6. A competitive equilibrium of the production economy

(N ,K, (⪰i)i∈N , (ωi)i∈N , (θij)i∈N ,j∈K, (Yj)j∈K)

is a triple (p,x,y), where p ∈ RL
+ is a price vector, x ∈ RnL

+ is a consump-
tion allocation and y ∈ RkL

+ is a production vector such that:
i) For all i ∈ N , xi solves:

max
x′
i∈RL

+

ui(x
′
i) subject to p · x′

i ≤ p · ωi +
∑
j∈K

θijp · yj.

ii) For all j ∈ K, yj solves:

max
y′
j∈Yj

p · y′
j.

iii) Markets clear, i.e. for all l,

n∑
i=1

xil ≤
∑
i∈N

ωil +
∑
j∈K

yjl.

The first question to settle is whether economies with production have
competitive equilibria. Luckily enough, existence follows from our pre-
vious existence theorem for exchange economies if the aggregate excess
demand function of the production economy satisfies the properties in
Theorem 3.2.

Definition 3.7. The aggregate excess demand with production zP (p) of the
production economy (N ,K, (⪰i)i∈N , (ωi)i∈N , (θij)i∈N ,j∈K, (Yj)j∈K) is defined
as:

zP (p) =
∑
i∈N

xi(p,p · ωi +
∑
j∈K

θijp · yj)−
∑
i∈N

ωi −
∑
j∈K

yj(p).
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Proposition 3.2. The aggregate excess demand with production zP (p) sat-
isfies properties i)-v) for of Theorem 3.2 for p > 0 if the preferences are
strictly convex and locally non-satiated, the production sets are strictly
convex and bounded from above.

Proof. The proof is similar to that of Theorem 3.2 and left as an exercise.

With this result, we get the main existence theorem for production
economies by showing that there are prices p where the aggregate excess
demand vanishes.

Theorem 3.9 (Existence of Competitive Equilibrium). Suppose that the ag-
gregate demand zP of the production economy

(N ,K, (⪰i)i∈N , (ωi)i∈N , (θij)i∈N ,j∈K, (Yj)j∈K)

satisfies the conditions i)-v) of Theorem 3.2. Then a competitive equi-
librium (p,x,y) exists.

The proof is the same as for exchange economies and therefore not re-
peated.

I will not go over the entire formalism for the two welfare theorems
since the essential idea shown for exchange economies carries over to pro-
duction economies as well. I will provide short sketches of the proofs for
the theorems. Let Y := Y1 + Y2 + ... + Yk ⊂ RL be the aggregate produc-
tion set of the economy (where the summation is the direct sum as in the
definition of the aggregate consumption set before).

Theorem 3.10 (First Welfare Theorem for Production Economies). Sup-
pose all agents in an a production economy have locally non-satiated pref-
erences. Then all competitive equilibrium consumption allocations of the
economy are Pareto-efficient.
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Proof. (Sketch:) If (p∗,x∗,y∗) is a competitive equilibrium and consump-
tion allocation and x Pareto-dominates x∗, then p∗ ·

∑
i x

∗
i < p∗ ·

∑
i xi.

If x is feasible, then
∑

i xi =
∑

i ωi +
∑

j yj for some y ∈ Y .
Taking together these two facts gives:

p∗ ·
∑
j

yj > p∗ ·
∑
j

y∗
j

contradicting profit maximization by all firms at y∗.

The second welfare theorem generalizes in the same way. To make the
statement of the theorem simpler, I include the initial endowment point
in the aggregate production setso that Y ωΣ = {

∑
i ωi} + Y . As before, let

x∑ =
∑

i xi and y∑ =
∑

j yj .

Theorem 3.11 (Second Welfare Theorem for Production Economies). Sup-
pose that x∗ ∈ RL

++ is a Pareto-efficient consumption allocation in a pro-
duction society with aggregate production set Y ωΣ and strictly convex and
strictly monotone preferences. Then there is a non-zero price vector p ≥ 0

and a y∗ ∈ Y ωΣ such that (p∗,x∗,y∗) is a competitive equilibrium for some
initial endowments and ownership shares.

Proof. (Idea:) Both S(x∗) (as defined in the proof for exchange economies)
and Y ωΣ are closed convex sets. Since x∗ is Pareto-efficient, their inter-
section has no interior points. Hence the separating hyperplane theorem
guarantees the existence of non-zero p∗ such that for all x∑ ∈ S(x∗) and
all y∑ ∈ Y ωΣ ,

p∗ · x∑ ≥ p∗ · x∗∑ ≥ p∗ · y∑.
Strict monotonicity of preferences (and the fact that x∗ ∈ RL

++) can be
used again to show that p∗ > 0. The rest is an exercise in accounting to
distribute the ownership shares and endowments in a way that balances
the individual budgets for all agents.
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Remark. 1. The existence proof can be extended to cover unbounded
Y as in the case with constant returns to scale. In that case, opti-
mal profit must be zero and this helps in the analysis. The general
existence result in Debreu (1960) covers this case as well.

2. The same disappointing conclusions from exchange economies re-
garding the predictive power of the production model remain valid
here.

3. Firms do not make decisions, their owners do. In the next section, we
see how to incorporate decisions under uncertainty into the compet-
itive model. If the owners have different views regarding the under-
lying probabilities, the objective of profit maximization is not well
defined (whose probability assessments should be reflected)?

4. The modern theory of the firm as an organization where workers
may have differing objectives and different information is very dif-
ferent from the model of price taking profit maximization analyzed
here. The tools of information economics as developed in Microeco-
nomic Theory IV are more relevant for the modern view of the firm.

4 Competitive Equilibrium Analysis

4.1 Cobb-Douglas Exchange Economies

An exchange economy with Cobb-Douglas preferences consists of n agents,
each with an initial endowment vector ωi ∈ RL

+. The preferences of agent
i have the utility represenation:

ui(xi) =
L∑

j=1

αij ln(xij),

where for all i and j, αij ≥ 0 and
∑

j αij = 1.
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A competitive equilibrium in a pair (p∗,x∗) such that the agents maxi-
mize their utility in B(p∗,ωi) and markets clear:

∑
i

x∗
i ≤

∑
i

ωi.

Since competitive equilibria are Pareto-efficient, the inequality must be
binding at competitive allocations x∗.

From Advanced Microeconomics 1, you will recall that the optimal de-
mands for good j, xij(p,ωi), for strictly positive p are given by:

xij (p,ωi) =
αij (p · ωi)

pj
.

Market clearing for xj is written as:

n∑
i=1

αij (p · ωi)

pj
=

n∑
i=1

ωij.

Multiplying both sides by pj transforms this into a linear equation in p:

n∑
i=1

αijp · ωi =
n∑

i=1

ωijpj. (2)

Hence we have a market clearing price at a non-zero solution p∗ to the
system of equations:

Ap∗ = 0,

where A is given by:

A =


∑n

i=1 ωi1 −
∑n

i=1 αi1ωi1 · · · −
∑n

i=1 αi1ωiL

... . . . ...
−
∑n

i=1 αiLωi1 · · ·
∑n

i=1 ωiL −
∑n

i=1 αiLωiL

 .

Exercise: How do you see that the system has a non-zero solution? What
is the economic reason for having multiple equilibrium prices? Can you
show that the system has rank L− 1?
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For the case with only two goods, you can compute from Equation (2)
the condition for market clearing for x1 :

n∑
ι=1

αi1 (p1ωi1 + p2ωi2)

p1
=

n∑
i=1

ωi1.

Rearranging this yields:

n∑
i=1

(1− αi1) p1ωi1 =
n∑

i=1

αi1p2ωi2,

so that:
p1
p2

=

∑n
i=1 αi1ωi2∑n
i=1 αi2ωi1

.

Walras’ Law implies that the market for x2 clears as well. Finally, you
can find the equilibrium allocation by substituting the equilibrium prices
p∗ into the agents’ optimal demand functions to get the competitive equi-
librium allocation.

With two goods, it is easy to calculate the effects of e.g. increasing
the aggregate endowment of one good on the prices and equilibrium con-
sumption and to do other comparative statics exercise based on this simple
model. The model with more goods forms the basis of many computa-
tional equilibrium models used in policy analysis.

4.2 Exchange Economies under Uncertainty

4.2.1 Contingent Good markets and Equilibrium Risk Sharing

One of the most prominent applications of the competitive equilibrium
model is into markets under uncertainty and financial markets. In this
subsection, we cover the first steps into modeling markets under uncer-
tainty often called markets for contingent commodities.

The economy consists of n agents facing uncertainty regarding the fu-
ture state of the economy. As discussed in Advanced Microeconomics 1,
these situations can be modeled with a state space S consisting of S states:
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s ∈ {1, ..., S} . At the outset, the agents are uncertain about which state s is
going to be realized.

There is a single physical good, x, and the agents have strictly increas-
ing preferences in x. Consumption of x in state s by agent i is denoted by
xis. We interpret xis as the consumption in the contingency that state s is
realized and hence the name contingent goods and contingent markets.

The initial endowment of agent i in state s is denoted by ωis and the
agents are assumed to have well-defined von Neumann-Morgenstern util-
ity functions. Let ui denote the (same) utility function for consumption in
each state, assume separability across states. Let π = (π1, ..., πS) denote the
objective probability distribution on the set of states, we write:

Ui (xi1, ..., xiS) = Ui (xi) =
S∑

s=1

πsui (xis) ,

where ui : R+ → R is a strictly increasing, strictly concave and continu-
ously differentiable function.

For the first analysis of the model, assume that there is no aggregate
risk, i.e.

n∑
i=1

ωis = ω for all s.

The relevant consumption set for the agents in this example is RS
+.

Financial markets are represented by trades across the states. The agents
decide how to trade away from their initial endowment by choosing a vec-
tor of consumptions xi. This assumes the existence of a perfect financial
market that allows for trades that shift wealth across the different states.
With this assumption choosing xis does not differ conceptually from the
choice of xil in the previous subsection. In the next subsection, we discuss
how asset markets can be modeled to facilitate these trades across states.

A competitive equilibrium for this economy is (p,x) , where p ∈ RS
+

and x = (x1, ..., xn) ∈ RnS such that

i) For all i, xi maximizes U (xi) s.t. p · xi ≤ p · ωi.
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ii) For all s,
n∑

i=1

xis =
n∑

1=1

ωis = ω.

To characterize the competitive equilibria of the model, we use again
the welfare theorems. By the first welfare theorem, competitive allocations
are Pareto-efficient. The first characterization of Pareto-efficient points fol-
lows almost immediately from the assumed concavity of the utility func-
tions.

Consider an arbitrary feasible allocation x. Suppose that xis ̸= xis′ for
some i and for some s, s′. Compare this allocation to x∗

i , where (xis)
∗ =∑

s πsxis.

In this allocation, each consumer consumes her average allocation in
all states. Then

Ui (x
∗
i ) =

∑
s

πsui

(∑
s

πsxis

)
= ui

(∑
s

πsxis

)

≥
∑
s

πsui (xis) = Ui (xi) .

The inequality follows from the strict concavity of ui and it is strict if
xis ̸= x′is for some s, s′. Thus x∗ Pareto dominates x if we can show that x∗

is also feasible.
To see this, note that

N∑
i=1

x∗is =
∑
i

∑
s

πsxis =
∑
s

πs
∑
i

xis =
∑
s

πsωs = ω.

Hence the only Pareto optimal allocations have all individuals per-
fectly insured. By the first welfare theorem, we know that all competitive
allocations must then have xis = xis′ for all i, s, s′.

First-order conditions for optimal consumer demand imply:

πsu
′ (xis)

πs′u′ (xis′)
=
ps
ps′
.
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But then, we must have:
ps
ps′

=
πs
πs′
.

Obviously, full insurance for all agents is not possible if ωs ̸= ωs′ for
some s, s′. Let’s see, how efficient risk sharing works with two agents and
two states. For interior choices xis > 0 for i ∈ {1, 2}, s ∈ {1, 2}, we have:

u′1(x11)

u′1(x12)
=
u′2(ω1 − x11)

u′2(ω2 − x12)
.

Exercise:

1. What happens if agent 2 is risk-neutral? Draw the Edgeworth box
for the case with u1(x) = ln(x), u2(y) = y, and initial endowments
ω1 = (1, 1), ω2 = (2, 1), and π = (2

5
, 3
5
) and solve for the competitive

equilibrium prices and allocation.

2. Do the same exercise except that u2(y) = ln(y).

Remark. This model generalizes to one where the consumption in each
period is a non-negative vector in RL

+. For details on this, see MWG Chap-
ter 19B and 19C. You should note that this entire section can be seen as a
special case of an exchange economy with LS goods and particular types
of utility functions. A similar generalization to production economies is
also also possible (so that we talk about contingent productions as well as
contingent consumptions. We do not really require additional work on the
existencce of equilibria or on the welfare theorems.

4.2.2 Financial Markets

In order to explain in the simplest possible terms how financial markets
can be introduced to the general equilibrium framework, we start with a
model with two dates t = 0, 1. Date t = 0 is just a planning stage where a
decision regarding consumption in t = 1 has to be taken. Just like in the
previous subsection, there is a single consumption good.
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The state of the economy (in particular, the initial endowments) in
t = 1 is uncertain at t = 0 and there are S possible states. The objective
probability distribution over the states is given by a non-negative vector
π = (π1, ..., πS) whose components sum to 1.

An asset is a legal title to receive an amount rs of the good in state s.
Let r := (r1, ..., rS) denote the return vector characterizing the asset. A
financial market is a market where a collection of assets is traded.

Example 4.1. 1. An asset is called the safe asset if r = (1, 1, ..., 1), i.e.
its return does not depend on state. This is essentially a commodity
future and it represents a riskless asset in a world where the utility
function is the same for all states and where we have a single con-
sumption good.

2. An asset r = (0, ..., 0, 1, 0, ..., 0), where rs = 1 for one state and zero
for all others. The contingent commodity market in the previous
subsection essentially involved trades in the S different assets of this
type. They are called Arrow Securities.

3. A Call Option on a primary asset with return vector r at the strike price
c ∈ R is a derivative asset has a return vector:

r(c) = (max{0, r1 − c}, ...,max{0, rS − c}).

The interpretation is that the option gives the right to buy at the
strike price the returns of the underlying primary asset after the state
has been realized. Hence the option is exercised only if ri > c. For ex-
ample for the primary asset (3, 5, 9), the call option at different strike
prices has the return vectors:

r(4) = (0, 1, 5), r(6) = (0, 0, 3).

Assume next that there are K different assets available. For each asset
k ∈ {1, ..., K}, the return vector is rk ∈ RS . When moving towards an
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asset market, we assume that the assets are in zero net supply (i.e. there
are no initial endowments of assets) and we allow all trades in the assets
(in particular, short sales are allowed). Assets k is traded in t = 0 at price
qk so that the vector of asset prices for the economy is q := (q1, ..., qK).

Each agent can trade freely in these assets and the vector of asset de-
mands z ∈ RK is called the portfolio of the agent. Let R denote the S ×K

matrix whose column k is the return vector of asset k. By holding a port-
folio z = (z1, ..., zk), an agent is entitled to consumption

∑
k rkszk in state

s, i.e. a vector Rz of consumption goods across the states.
With strictly increasing utilities in the consumption good, the portfolio

zi fixes the period t = 1 consumptions as:

xis = ωis +
K∑
k=1

rkszik for all s,

or in vector form:
xi = ωi +Rzi.

Hence the agent i’s problem is to:

max
zi

∑
πsui(xis)

subject to:
q · zi ≤ 0,

xi = ωi +Rzi.

A portfolio z is called an arbitrage portfolio if q · z ≤ 0 and Rz ≥ 0

with Rz ̸= 0. The agent’s problem does not have a solution if ui is strictly
increasing and if an arbitrage portfolio exists. Therefore we assume that no
arbitrage portfolios exist. We call asset prices q arbitrage free if no arbitrage
portfolio exist for q,R.

Proposition 4.1. Assume that rks ≥ 0 for all k, s, rk ̸= 0 for all k and that
for all s, there is a k such that rks > 0. Then if q is arbitrage free, there is a
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vector µ ≥ 0 such that
q⊤ = µ ·R.

Proof. Let V = {v| v = Rz for some z such that q · z = 0}. Since q is
arbitrage free, V ∩ RS

+ \ {0} = ∅.
Since the origin is both in V and in the closure of RS

+\{0}, the separating
hyperplane theorem implies the existence of µ′ ̸= 0 such that µ′ · v ≤ 0 for
all v ∈ V and µ′ · v ≥ 0 for all v ∈ RS

+. Since v ∈ V =⇒ −v ∈ V , we have
µ′ · v = 0 for all v ∈ V . Hence V is a linear subspace of dimension at most
K − 1.

If q⊤ is not proportional to µ′ ·R, then there is a z′ with q · z′ = 0, but
µ′ ·Rz′ > 0. Setting v = Rz′, we have a contradiction.

This result is one of the most fundamental building blocks for any the-
ory of financial markets. The interpretation for µs is as the value of con-
sumption in state s and this allows one to calculate the value of an asset k
by simply computing

∑
s rksµs. No arbitrage requires that this value equal

the price of the asset.
Note that q need not be uniquely determined unless R has full rank. If

R has full rank, then V = RS and therefore all distributions of consump-
tion across states are possible and the consumption choices and therefore
also the competitive equilibria of the model coincide with those obtained
in the model with free trade of contingent commodities.

The lesson from this section is that for a financial market, the important
concept is V , i.e. the set of consumption vectors in the span of the matrix
R.

Remark. 1. If V does not have full rank, we say that the market is in-
complete. In this case, competitive equilibrium consumption alloca-
tions will not coincide with the equilibria of the full contingent com-
modity model in general. The asset structure just does not allow all
feasible reallocations of consumptions. As a result, one cannot expect
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full Pareto-effciciency of the allocations in incomplete market mod-
els. It is not obvious how one should choose the relevant second-
best comparison in this case. Geanakoplos and Polemarchakis (1986)
show that with a single real numeraire asset, equiibrium allocations
are generically suboptimal whenever asset markets are incomplete
(in the sense that feasible reallocations of consumption vectors have
to be done with the existing assets).

2. The results go through in models with multiple goods for consump-
tion in t = 1. In fact, it is sufficient to have a single good traded as a
contingent good so that the needed span of the assets is still S rather
than LS.

3. One difference that does arise with multiple goods is that assets with
returns in fiat money (units of account) are in general different from
assets with real returns (Lucas trees). Many of the problems discov-
ered in the analysis of incomplete models with real returns vanish
with financial asset markets. These issues are quite subtle, but they
are suitable material for the course essay.

4. The basic structure of the model is also unchanged if we have many
periods of consumption. The notion of equilibrium has to be ex-
tended to include all dates and all states and rational expectations
about future prices. In other words, the agents optimize given the
correctly anticipated current and future prices and markets clear at
these prices.

4.2.3 Price Reactions to Information with Heterogenous Priors

In this last subsection on markets under uncertainty we touch upon the
possibility that agents might have different subjective beliefs on the like-
lihood of the different states. We consider a betting market where agents
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can take bets on a binary state of the world. The presentation follows very
closely Ottaviani and Sörensen (2015).

Events. Agents take positions on whether or not a binary event, A,
is realized (e.g., Olli Rehn is the next President). There are two Arrow
securities corresponding to the two possible realizations: one asset pays
out 1 unit of cash if event A is realized and 0 otherwise, while the other
asset pays out 1 cash unit if the complementary event AC is realized and 0
otherwise.

Wealth. There is a unit mass of competitive, risk-neutral agents. Wealth
in this market is bounded, as each agent i initially holds a fixed endow-
ment wi0 of each asset. Agents trade with other traders in a competitive
market for the Arrow securities. Short sales of the assets are banned, so
there is an endogenous upper bound on the number of asset units that
each individual can can purchase and eventually hold.

Priors. Initially, agent i has subjective prior belief qi on event A. The
initial distribution of assets over individuals is described by the cumula-
tive distribution function G. Thus G(q) ∈ [0, 1] denotes the share of all
assets initially held by individuals with subjective prior belief less than or
equal to q. We assume that G is continuous, and strictly increasing (no
gaps, no atoms).

Information. Before trading, all agents observe the realization of a
public signal s with likelihood ratio L(s) := f(s|A)

f(s|AC)
∈ (0, 1) for event A,

where f(s|A) is the density of signal s conditional on state A. By Bayes’
rule, the subjective posterior belief πi of i for state A satisfies:

πi(s)

1− πi(s)
=

qi
1− qi

L(s). (3)

Equilibrium. Competitive agents take asset prices as given. We nor-
malize the sum of the two asset prices to one, and focus on the price p
of the asset paying in event A. Agent i chooses a feasible asset position
(wi(A), wi(A

c)) to maximize subjective expected value
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πiwi(A) + (1− πi)wi(A
c).

With Arrow securities, wi(A), wi(A
c) also denotes the event-dependent

cash payout. Markets clear when the aggregate demand for each asset
equals the aggregate endowment.

Competitive Equilibrium. Solving the competitive demand problem
of the risk-neutral agents is straightforward. Let the public information be
realized with likelihood ratio L, and consider agent i with posterior belief
πi the posterior as computed above for L(s) = L.

Given market price p, the subjective expected return on the asset that
pays out in event A is πi − p while the other asset’s expected return is
(1 − πi) − (1 − p) = p − πi. With the given bound on trades, risk-neutral
demand thus satisfies the following:

i) If πi > p, agent i exchanges the entire endowment of theAC asset into
(1−p)wi0

p
units of the A asset. The final portfolio is then (wi(A), wi(A

C)) =

(wi0

p
, 0).
ii) Conversely, when πi < p, the agent’s final portfolio is (wi(A), wi(A

C)) =

(0, wi0

(1−p)
).

iii) Finally, when πi = p, the agent is indifferent over all feasible trades.
Aggregate demand for the A asset is then given by 1

p
times the cumu-

lative wealth of agents with posterior belief above p. Markets clear when
this equals the aggregate endowment 1.

Proposition 4.2. The competitive equilibrium price, p, is the unique solu-
tion to the equation

p = 1−G

(
p

(1− p)L+ p

)
, (4)

and is a strictly increasing function of the information realization L.

Underreaction to Information. Inverting Bayes’ rule in equation 3 af-
ter public information realization L, we can always interpret the price p as
the posterior belief of a hypothetical individual with initial belief p

[(1−p)L+p]
.
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According to equation (4), this hypothetical individual is the marginal
agent, and this initial belief might be interpreted as an aggregate of the
heterogeneous subjective prior beliefs of the individual agents. However,
this way of aggregating subjective priors cannot be separated from the re-
alization of information.

The main result states that this initial belief of the marginal agent moves
systematically against the public information available to agents. This sys-
tematic change in the market prior against the information implies that the
market price underreacts to information.

Consider the inference of any outside observer with a fixed prior be-
lief q. The observer’s posterior probability, π(L), for the event A satisfies
Equation (3), or

log
π(L)

1− π(L)
= log

q

1− q
+ logL.

The expression on the left-hand side is the posterior log-likelihood ratio
for event A, which clearly moves one-to-one with changes in logL. Part
(ii) of the following Proposition notes that the corresponding expression
for the market price, log p(L)

1−p(L)
does not possess this property, but rather

moves less than one-for-one with the publicly observable logL.

Proposition 4.3. Suppose that beliefs are truly heterogeneous, i.e., the dis-
tribution G is non- degenerate.

(i) The marginal trader moves opposite to the information, i.e., the im-
plied ex ante market belief

p

[(1− p)L+ p]

is strictly decreasing in L.
(ii) The market price underreacts to initial information: for any pair

L′ > L we have

logL′ − logL > log
p(L′)

1− p(L′)
− log

p(L)

1− p(L)
> 0.
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To understand the intuition for part (i), consider what happens when
public information is more favorable to event A (corresponding, say, to
Olli Rehn winning). Naturally, by (4) the price p for asset A is higher when
L is higher. The trading bound forces optimists (with high prior qi) to
purchase fewer units of asset A: the amount of A assets which can be ob-
tained through selling all the AC endowment is (1−p)wi0

p
, decreasing in p. If

the marginal trader were unchanged at the higher price that results with
higher L, there would be insufficient demand for the A assets sold out by
pessimists.

To balance the market it is necessary that some traders who were bet-
ting against Olli Rehn before now change sides and put their money on
Rehn. In the new equilibrium, the price must thus move traders from the
pessimistic to the optimistic side. Although p rises with L, it rises more
slowly than the posterior belief, because of this negative effect on the prior
belief of the marginal trader.

The underreaction result hinges on the fact that the endogenous upper
bound (equal to wi0

p
) on the individual position in asset A is inversely re-

lated to its price. Later sections in the paper show that similar effects are
at play when the trades are not bounded and have DARA preferences.

Application to Prediction Markets. Prediction markets are trading
mechanisms that target unique events, such as the outcome of a presiden-
tial election or the identity of the winner in a sport contest. Because the
realized outcomes are observed, these simple markets are useful laborato-
ries for testing asset pricing theories.

Prediction markets typically set a maximum trade as the model above.
According to the following corollary of the Proposition above, underre-
action implies that π(L) > p(L) when p(L) is high (so that event A is a
favorite) and π(L) < p(L) when p(L) is low (longshot).

Corollary 4.1. The market price exhibits a favorite-longshot bias, as there
exists a price p∗ ∈ [0, 1] such that p(L) > p∗ implies π(L) > p(L), and
p(L) < p∗ implies π(L) < p(L).
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Thus, the favorite-longshot bias results, with longshot outcomes occur-
ring less often than indicated by the price, while the opposite is true for
favorites. The favorite-longshot bias is widely documented in the empiri-
cal literature on betting and prediction markets when comparing winning
frequencies with market prices.

Remark. Additional topics in this area include Fully Revealing Rational
Expectations Equilibrium, where privately informed agents learn the state
of the world from price observations. In a sense, this literature tries to get
at the Hayekian view that that prices are sufficient to aggregate all relevant
information needed in the decision making of competitive agents. This
approach runs to multiple difficulties:

1. Problems with existence of equililibrium: If trades reveal informa-
tion, equilibrium trades may be such that prices do not reveal in-
formation, if prices do not reveal information, optimal trades may
result require prices that reveal the state.

2. Costly information acquisition: Why pay if prices reveal informa-
tion, but if no information is acquired, there is nothing for the prices
to convey.

3. No-trade theorems starting with Milgrom and Stokey (1982) show
common knowledge of equilibrium trades makes it impossible to
have trades based on differential information (if investors have com-
mon priors on the underlying uncertainty). The literature on market
microstructure has developed game theoretic models where trading
is possible.

4. All of these topics are suitable for the course essay. A proper under-
standing of the issues alluded to needs the tools of information eco-
nomics and game theory developed in Advanced Microeconomics 3
and 4 so it may make sense to wait until these courses.
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4.3 Models of Trade

2× 2 Production Economy
We start with the model behind the production Edgeworth Box. Two

output products y1 and y2 are produced using two factors: z1, z2. The pro-
duction technologies are summarized by the production functions:

yi = f i (zi1, zi2) for i = 1, 2,

where zij denotes the amount of factor j used in the production of output
i. We will assume throughout that the production technologies have con-
stant returns to scale, i.e. the production is homogenous of degree 1 in the
inputs.

Total endowment of the factors to be allocated into the two production
processes are given by:: zj for j = 1, 2. Recalling the definition of produc-
tive efficiency from the previous section, we have:

Definition 4.1. A vector y = (y1, y2) is output efficient if there is no other
vector y′ such that y′ > y and such that

y′i = f i (z′i1, z
′
i2) for i = 1, 2 and z1j + z2j ≤ zj for j = 1, 2.

Equilibrium with production
Assume that the economy in question is a small open economy. This

means that output prices p1, p2 are fixed in the world market and they are
exogenous to the production decisions in the small economy.

An assumption often made in old-style international trade models is
that factors are not mobile across borders. This means that factor prices,
w1and w2 are determined endogenously in the small economy.

Denote the optimal factor demands from optimal production taking
both factor prices and output prices as given by:

zij (p1, p2,w1, w2) for i = 1, 2 and j = 1, 2.
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Figure 12: Production Edgeworth Box

Since the first welfare theorem implies efficient production and since
the production functions are strictly increasing, the equilibrium factor prices
w1, w2 are found where factor demands equal the factor resource:∑

i

zij (p1, p2,w1, w2) = zj for j = 1, 2.

Let’s compute the equilibrium for the case of Cobb-Douglas produc-
tion functions

yi = zα
i

i1 z
1−αi

i2 for i = 1, 2.

With constant returns to scale, only the ratio of factor demands for each
output is determined for each firm. We also know that the optimal profit
must equal zero if the optimal production quantity is strictly positive.

From the first-order conditions in the firms’ problem, we get:

ri =
zi1
zi2

=
αiw2

(1− αi)w1

.

The zero profit condition is:

piyi − w1zi1 − w2zi2 = 0 for i = 1, 2.
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Dividing both sides by zi2, we get:

pir
αi

i − w1ri − w2 = 0 for i = 1, 2.

Substituting from the first-order conditions, we get:

pi

(
αiw2

(1− αi)w1

)αi

=

(
1

1− αi

)
w2 for i = 1, 2.

Solving from this we get the equilibrium ratio of factor prices as:

w2

w1

=

[(
1− α1

1− α2

)(
p1
p2

)(
α1

1− α1

)α1 (
α2

1− α2

)−α2
] 1

α2−α1

.

From this expression, we see that the factor endowments have no ef-
fect on the relative factor prices as long as both products are produced
in strictly positive quantities so that the first-order conditions above are
valid.

The comparative statics of the model with respect to i) output price in-
creases and ii) factor endowments can be analyzed graphically in the Pro-
duction Edgeworth Box. The first comparative statics result goes under
the name of Samuelson-Stolper Theorem. The second is called Rybcszyn-
ski Theorem.

To see how to derive the Samuelson-Stolper Theorem, recall that for
any CRS technology, the cost functions c̃i(w1, w2; q) for i ∈ {1, 2} take the
form:

c̃i(w1, w2; q) = ci(w1, w2)q,

and therefore the zero profit condition for strictly positive output quanti-
ties is simply:

ci(w1, w2) = pi for i ∈ {1, 2}.

Recall from basic producer theory that the conditional factor demand
for zji(w1, w2; q = 1) at unit production of good yi is given by:
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zji(w1, w2; qi = 1) := zji(w) =
∂ci(w1, w2)

∂wj

.

We say that production of output y1 is relatively more intensive in factor
1 if for all w, we have:

z11(w)

z21(w)
>
z12(w)

z22(w)
.

If we assume that output y1 is relatively more intensive in factor 1,
then we will have a single vector (w∗

1, w
∗
2), where the first-order conditions

and the zero-profit conditions hold simultaneously for the two outputs.
As long as both products are produced in strictly positive quantities, the
factor prices are determined by the production functions and the output
prices and hence the endowments do not play a role. Notice that this im-
plies that as long as the countries do not specialize, factor prices across dif-
ferent countries are equalized (even though factors are not traded). This is
known as the factor price equalization theorem.

Applying the implicit function theorem to the system:

c1(w1, w2) = p1,

c2(w1, w2) = p2,

at (w∗
1, w

∗
2) gives the Samuelson-Stolper Theorem:

Theorem 4.1. If output y1 is relatively more intensive in factor 1, then an
increase in p1 increases w1 and decreases w2 assuming that the production
levels for both goods are strictly positive before and after the change.

Proof. Differentiate the system at (w∗
1, w

∗
2) and use the relative intensity

condition to sign the Jacobian determinant of the endogenous variables.
Use Cramer’s rule to get the signs of dw1, dw2.

Rybcszynski’s Theorem is even more immediate from the factor equal-
ization theorem.
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Theorem 4.2. If output y1 is relatively more intensive in factor 1, then an
increase in z1 increases the production of y1 and decreases the production
of y2 assuming that productions before and after the change in the factor
endowment are strictly positive for both goods..

Proof. Just draw the Production Edgeworth Boxes with the optimal rays
of factor demands for the two different total endowments of factor 1.
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4.4 Assignment Markets: Housing in General Equilibrium

We will start with some simple examples where we add a second good,
money, to the economies that we discussed in Section 2.1. The difference
to that section is that now we assume that we have cardinal information
on the values that agents assign to various houses. For concreteness, we
assume that the agent i has a willingness to pay (in monetary units) of
vi,h′ > 0 for living in house h′ ∈ {1, ..., H}. The agents have an endowment
of money and the set of available houses is exogenously determined.

4.4.1 Identical Houses: Recalling Intermediate Microeconomics

Perhaps the simplest model for housing is one where all houses h′ have
the same value for occupant i, and the houses are put on the rental market
by absentee landlords, with a cost ch′ of renting (maintenance cost etc.).
The tenants differ in terms of their willingness to pay for housing (maybe
because of having different incomes) so that vi,h′ = vi for all h′ and for all i.
We assume quasi-linear preferences so that negative money holdings are
allowed.

In a competitive market, the houses have a price and p = (p1, ..., ph)

is the price vector for the market. Both the tenants and the landlords are
price takers. Tenant i’s payoff from renting house h′ if her wealth is wi is
thenwi+vi−ph′ and if she does not rent a house, it iswi. The landlord own-
ing house h′ gets a payoff ph′ − ch′ from giving it to rent and 0 otherwise.
Since the houses are identical, only houses with the lowest price have pos-
itive demand and hence there is little loss of generality in concentrating on
equilibria with a uniform price for all houses.

Markets clear at price p∗ when the demand equals supply at that price.
Demand is given by the number of tenants with vi ≥ p∗ and the supply
by the number of landlords with ch′ ≤ p∗. Note that the equilibrium price
is not uniquely pinned down in a discrete economy. You may want to
show that an equilibrium exists even though the formal existence theorem
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does not apply. You should also think about the uniqueness of equilibrium
prices and quantities in this model. Finally, since the payoffs are strictly
increasing in money, all equilibria are Pareto-efficient (the absentee land-
lords’ are also included in the Pareto calculation).

4.4.2 Houses with different qualities

Assume next that the houses differ in their quality and all tenants agree on
the quality ranking. They differ in their willingness to pay for quality, i.e.
they have different (but constant) marginal utility of money. To capture
this situation, assume that the houses h′ are ranked in descending order of
quality qh′ so that

q1 > q2 > ... > qh,

and the willingnesses to pay are similarly ranked:

v1 > v2 > ... > vn.

We maintain for a moment the assumption of quasi-linear preferences so
that the payoff for agent i from renting an apartment of quality qh′ at rental
price ph′ is:

viqh′ − ph′ .

For simplicity, let’s assume that ch′ = 0 for all h′. This implies that the
houses with the smallest index h′ generate the largest surplus. We assume
also that the number of houses is at least as large as the number of tenants.

How can we find an equilibrium for such a market? We can use the
first welfare theorem to find the equilibrium allocation. Since competi-
tive equilibrium allocations are Pareto-efficient and since the models has
quasi-linear utilities, we should look for a one-to-one function r : N → H
solving:

max
(r(i))ni=1

n∑
i=1

viqr(i).
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It is a very nice exercise if you have not done this before to show that
the solution r∗ is the identity function r∗(i) = i. (To show this assume not,
then there exists a pair i < i′ with r∗(i) > r∗(i′). Evaluate the gain in the
objective function from swapping the houses.)

Hence we know what the equilibrium allocation must be. It remains to
figure out equilibrium prices supporting this allocation as a competitive
equilibrium allocation. Since the house with n + 1 highest quality is not
rented in the hypothetical equilibrium allocation, we must have pn+1 = 0

to have market clearing. Since agent n is better off renting the house of
quality qn at price pn rather than renting qn+1 at zero price, we have:

vnqn − vnqn+1 ≥ pn − pn+1 = pn.

Hence the highest price pn compatible with the equilibrium allocation
is:

pn = vn(qn − qn+1).

The lowest price compatible with equilibrium is pn = 0. This same
argument shows that for all n′ ∈ {1, ..., n},

v′nq
′
n − v′nqn′+1 ≥ p′n − pn′+1.

In the problem set, you are asked to show some basic facts about the pos-
sible equilibrium price vectors.

It is actually easier to see how the model works if we allow for a unit
mass of agents with different willingness to pay and a continuum of differ-
ent qualities for the houses. Denote the set of agents by their willingness
to pay v ∈ [v.v] and the set of house qualities q ∈ [q, q].

In light of the Pareto-efficiency of the equilibria, we consider only the
highest quality houses. The price p(q) is pinned down to zero if we as-
sume (as before) that lower quality houses would also be available but not
rented in equilibrium.
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Let the c.d.f. of the willingness to pay for the agents be F (v) and the
c.d.f. of the houses on [q, q] be G(q). Assume that F,G are strictly increas-
ing and continuous so that they have well defined inverses.

Positive assortative matching (PAM) means that we assign the agent
with the w.t.p. at percentile z in F the the house quality at percentile z inG.
You may want to prove that social surplus is maximized by PAM. (This is
actually a consequence of another inequality by Chebyshev and the result
holds whenever the surplus from matching v with q is supermodular in
(v, q)).

With PAM, we match the agent with w.t.p. v with the house of quality
q(v) with:

q(v) = G−1(F (v)). (5)

Suppose p(q) is the pricing function for the houses of different qualities.
Since agents maximize, the agent with w.t.p. v chooses to:

max
q
vq − p(q).

Assuming differentiability of p(q), the first order condition for maxi-
mum is that p′(q) = v. PAM then implies that:

v = F−1(G(q)).

Together with p(q) = 0, we have:

p(q) =

∫ q

q

F−1(G(z))dz. (6)

Hence we have solved the equilibrium for the market to be allocation
by PAM and the housing prices are given by equation 6.

4.4.3 Housing Market with Income Effects

We have said before that one way to explain differences in the willingness
to pay is by taking them to be a reduced form way to express differences
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from different wealth levels. Housing markets are actually a good example
of markets where income effects are likely to play a role. I now sketch
a model where the differences in willingness to pay arise from income
differences.

Let u(q, w) be the utility function of a representative consumer, where
q is the quality of the house occupied and w is the monetary amount used
on a composite good taking into account all other consumption.

Let the agents have an exogenous outside income y and denote the
c.d.f. of the income distribution by H(y). The agent with income y now
solves:

max
q
u(q, y − p(q)).

The first order condition for this is that:

uq(q, y − p(q))− p′(q)uw(q, y − p(q)) = 0. (7)

In words, the MRS of the consumer at optimal q(y) must equal the
derivative of the price function. Draw the picture to see how this corre-
sponds to the usual consumer choice problem.

An increase in income shifts the budget line of the consume vertically
upwards. PAM between income and housing quality implies that q(y) <
q(y′) whenever y < y′. I leave it as an exercise for you to show that if the
MRS (i.e. uq(q,y−p(q))

uw(q,y−p(q))
) is increasing in y, then the optimal choice q(y) is in-

creasing in y. (To this effect, differentiate the first-order condition, and use
the second order condition. Or alternatively, use monotone comparative
statics results by Milgrom and Shannon (1994) give a more modern and
comprehensive approach to problems of this type).

If PAM holds, then y and q are related as follows::

q = G−1(H(y)), y = H−1(G(q)).

Equilibrium prices are given by the differential equation 7 with p(q) = 0:
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p(q) =

∫ q

q

uq(z,H
−1(G(z))− p(z))

uw(z,H−1(G(z))− p(z))
dz.

This is a nonlinear first-order differential equation, but with the initial
condition, it has a unique solution. You may want to see how this simpli-
fies e.g. in the case of a Cobb-Douglas utility function.

Terviö and Määttänen (2014) extend this model to cover the interesting
case where all houses are initially occupied. This means that the budget set
of the agents i depends on their outside income as well as the endogenous
equilibrium house price p(qe(i)), where qe(i) is the quality of the house that
agent i owns. Hence the wealth of i is w(i) = y(i) + p(qe(i)).

With housing wealth included in this model, PAM holds in w(i), q(i)

under the assumption that MRS increases in y, but not necessarily in the
exogenous income y(i) and q(i). Even the existence of equilibrium in this
model is not trivial. See the cited paper for details on this. Unfortunately,
it is not easy to characterize the trades in equilibrium, but the paper con-
ducts comparative statics exercises on the impact of changes inH on hous-
ing prices and the full wealth distribution.

4.5 Houses with Idiosyncratic Qualities

Let ph denote the price of house h ∈ H . Each agent i has a willingness to
pay vi,h′ for house h′ and in contrast to the previous subsections, we al-
low now each agent to have arbitrary preferences over the houses, i.e. the
agents can have different opinions on the qualities of the houses. We as-
sume again quasi-linear preferences and hence we also allow for negative
monetary holdings. Then agent i optimizes her housing choice given price
vector p := (p1, ..., ph) by choosing:

max
h′∈H

vi,h′ − p′h.

Markets clear if the vector of optimal demands a = (a1, ..., an) is an
allocation (i.e. no house is demanded by more than a single agent).

86

http://hse-econ.fi/tervio/HousingAssignment.pdf


Example 4.2. Consider a society with four agents N = {1, 2, 3, 4} and five
houses, where for the sake of clarity, we give letter names to the houses:
H = {a, b, c, d, e}. The individual willingness of the agents to pay for the
different houses is given in the table below:.

vi,h a b c d e
1 3 5 7 4 6
2 6 2 5 3 4
3 7 4 3 8 5
4 2 7 4 6 3

Figure 13: Agents’ willingness to pay.

We can give a formal definition of a competitive equilibrium for this
model along the lines of Section 2.1:

Definition 4.2. A competitive equilibrium of the economy (N ,H, (vi,h)i∈N ,h∈H)

is a house price vector p and a vector of housing demands a = (a(1), ..., a(n))

with a(i) ∈ H for all i such that
i) For all i, vi,a(i) − pa(i) ≥ vi,h′ − ph′ for all h′.
ii) a is an allocation (i.e. the vector of optimal demands is a matching).

How could we find a competitive equilibrium for our housing econ-
omy? Since demands in the model are integer valued, the existence proofs
from the previous section cannot be directly used here. An alternative
method for showing the existence is as follows. Since the agents have lo-
cally non-satiated preferences, the first welfare theorem shows that if an
equilibrium exists, it is Pareto-efficient. With quasi-linear utilities, this in-
volves simply finding

max
a

∑
i

vi,a(i),
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subject to the constraint that a be an allocation. Again because of the inte-
ger constraints, this is not an easy problem. It can be however relaxed by
allowing for the possibility of random allocations

x := ((x1,1, ..., x1,h), ..., (xn,1, ..., xn,h)),

where xi,h′ is the probability that i is allocated house h′. The resulting
optimization problem:

max
x

∑
h

∑
i

vi,hxi,h

subject to ∑
i

xi,h ≤ 1, for all h′,∑
h′

xi,h′ ≤ 1, for all i.

This is a linear programming problem and a solution exists by standard
arguments. A non-negative matrix X is called double stochastic if all of its
rows and all of its columns sum to 1, i.e. if its elements satisfy the above
constraints with equality (Exercise: show that the constraints bind at the
optimal solution). Birkhoff’s theorem states that all doubly stochastic ma-
trices are convex combinations of permutations, and therefore the set of
doubly stochastic matrices is the convex hull of permutations of {1, ..., n}.

The optimal solution also includes an extreme point of the feasible set
(by linearity) and as a result, the optimal solution contains an integer val-
ued solution a (a permutation) that solves the original problem.

The next question is if a is a competitive equilibrium allocation. For
this, we would need to find a price vector p such that the optimal aggre-
gate demand given p coincides with a.

The dual of the above linear program is to minimize the sum of the
non-negative utilities ui of the agents and the house owners wh′ subject to
the constraint that for all i, h′:

ui + wh′ ≥ vi,h′ .
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The solution to the dual can then be used to deduce the prices for the
houses: the price is simply the optimal wh′ in the dual problem.

Another approach to solving the problem is given by a modification of
the Gale-Shapley Algorithm presented in Crawford and Knoer (1981).

The idea of the algorithm is that the landlords offer houses to potential
buyers and buyers hold offers tentatively as in Gale-Shapley. Offers now
increase a price and after an offer is rejected, a new offer at a lower price
can be made to the same potential tenant. The process ends at landlord
optimal equilibrium prices for the houses. See the cited paper for details.
Hatfield and Milgrom (2005) extends the model further.
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