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Human genome

» Human genome is located in the nucleus
of each cell and contains the genetic
information of an individual

» Each individual has two copies of the
genome, inherited from both parents
» Genome consists of 23 chromosome pairs

» Genetic information is contained in the
chemical compound called
deoxyribonucleic acid (DNA)
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Human genome

>

>

DNA is a double-stranded molecule with each
strand being a linear sequence of nucleotides
A nucleotide consists of a phosphate group,
sugar, and nucleoside
A nucleoside is a nitrogenous base connected
to a deoxyribose sugar
There are four different nucleotides depending
on the nucleoside: adenine (A), cytosine (C),
guanine (G), thymine (T)
The nucleotides have a specific base pairing in
double-stranded DNA:

» Adenine pairs with thymine

» Cytosine pairs with guanine

Total length: about 3 billion nucleotides

sugar-phosphate
backbone

(® phosphate P> ) nitrogen-
containing
() sugar EZ =JlE bases

® 2007 Encyclopadia Britannica, Inc.

Figure from Wikipedia



High-throughput sequencing technologies
Terminology: the current best sequencing technologies are called interchangeably as
» High-throughput sequencing (HTS)
> Next generation sequencing (NGS)

What it does: time- and cost-efficient sequence determination (DNA, RNA)

» Input: biological sample
> Biological sample contains a (large) collection of cells

> Output: short nucleotide sequences (also called “reads” )

» DNA (or RNA) content of the input sample in digital format

> Not the original long DNA/RNA sequences, but lots of short DNA/RNA sequences (long
DNA/RNA sequences are randomly fragmented) from randomly selected cells in the
biological input sample

> This is typically called “bulk” DNA or RNA-sequencing: one is not able to determine that
from which cell any of the measured DNA/RNA fragment comes from

> We will discuss single cell technologies later



NGS technologies

» Sanger sequencing
» The grand old technology
» lllumina

» Illumina is currently by far the most commonly used
— We will focus on lllumina sequencing technology

» Applied Life sciences: SOLID
» Pacific Biosciences: PacBio
» lon Torrent sequencing
» Nanopore
» A technology to measure an entire (long) DNA molecule



lllumina: basics of NGS chemistry

» Three main steps

1. Library preparation
2. Cluster amplification (bridge amplification)
3. Sequencing by synthesis

» Next: cartoon guide to NGS chemistry



lllumina: basics of NGS chemistry

Step 1: Library preparation

> Isolate DNA (or RNA) from cells in
a biological sample

» Sequencing library is prepared by
random fragmentation of the DNA
(or cDNA sample), followed by 5'
and 3' adapter ligation

» Single stranded molecules

» Adapter-ligated fragments are then
PCR amplified and gel purified

A. Library Preparation

Genomic DNA
l Fragmentation
— —
—
Adapters - .
_—
l Ligation
e —
Sequencing  —
Library
e —

NGS library is prepared by fragmenting a gDNA sample and
ligating specialized adapters to bath fragment ends.

Figure from http://www.illumina.com/content/dam/illumina-marketing/documents/products/

illumina_sequencing_introduction.pdf
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lllumina: basics of NGS chemistry

Step 2: Cluster amplification

> The library is loaded into a flow cell B. Cluster Amplification
where fragments are captured on a
lawn of surface-bound oligos that
are complementary to the library

Flow Cell
adapters l

» Each fragment is then amplified

. . Bridge Amplification

into distinct, clonal clusters through Cycles

bridge amplification l
» When cluster generation is

complete, the templates (i.e., clonal

clusters) are ready for sequencing P 2)

> A flow cell contains millions of ) Clusters

clonal cluster _ B
Library is loaded into a flow cell and the fragments hybridize

to the flow cell surface. Each bound fragment is amplified into
a clonal cluster through bridge amplification.


http://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf
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lllumina: clonally amplified templates

» Step 2: Cluster amplification

b Illumina/Solexa
Solid-phase amplification
One DNA molecule per cluster

Cluster
growth
Sample preparation
DNA (5 ug)

and

Template
dNTPs
polymerase

Bridge amplification



lllumina: basics of NGS chemistry

Step 3: Sequencing
a lllumina/Solexa — Reversible terminators
> lllumina uses a terminator-based % og, 9, o P %%
. 6. @e
method that detects single bases —
all four

L
as they are incorporated into Puciaatides,

5 E
P
each label

DNA template strands et dye
!
different fluorescent dye 11
5|6

» Each nucleotide (ANTP) has a
.

» All 4 reversible terminator-bound Wash, four-

colour imaging _-

dNTPs are present during each
sequencing cycle

» Natural competition minimizes i
incorporation bias and greatly Zipdmwyhg
reduces raw error rates
compared to other technologies

» Laser excitation and imaging of
the emitted flourescence



lllumina: basics of NGS chemistry

» Step 3: Sequencing

C. Sequencing
ki

il S

ololol oty

Sequencing Cycles ( )

Digital Image
Data is exported to an output file l

Cluster 1 > Read 1: GAGT...
Cluster 2 > Read 2: TTGA...
Cluster 3 > Read 3: CTAG...
Cluster 4 > Read 4: ATAC...  Text File

Sequencing reagents, including fluorescently labeled nucleo-
tides, are added and the first base is incorporated. The flow
cell is imaged and the emission from each cluster is recorded.
The emission wavelength and intensity are used to identify
the base. This cycle is repeated “n” times to create a read
length of “n” bases.

Figure from http://www.illumina.com/content/dam/illunina-marketing/documents/products/illunina_sequencing_introduction.pdf
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lllumina: basics of NGS chemistry

» Step 4: Data analysis

D. Alignment & Data Anaylsis

ATGGCATTGCAATTTGACAT
TGGCATTGCAATTTG
AGATGGTATTG
Reads GATGGCATTGCAA
GCATTGCAATTTGAC
ATGGCATTGCAATT
AGATGGCATTGCAATTTG

Reference A GATGGTATTGCAATTTGACAT

Genome

Reads are aligned to a reference sequence with bioinformatics
software. After alignment, differences between the reference
genome and the newly sequenced reads can be identified

Figure from http://www.illumina.com/content/dan/illunina-marketing/documents/products/illunina_sequencing_introduction.pdf
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lllumina Genome Analyzer:

1. PREPARE GENOMIC DMNA
SAMPLE

Adaptars

A\

Randomly fragment genomic DNA
and ligate adapters to both ends of
the fragmants.

bridge amplification

2. ATTACH DNA TO SURFACE 3. BRIDGE AMPLIFICATION

Add unlabeled nucleotides and en-
randomly to the insids surface of the zyme to initiate solid-phase bridge
flow call ehannals. arnplification.

Bind single-stranded fragments

Figure from http://www.illumina.com
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lllumina Genome Analyzer:

4. FRAGMENTS BECOME
DOUBLE-STRANDED

bridge amplification

5. DENATURE THE DOUBLE-
STRANDED MOLECULES

= Attached
terminus

\Ana:hed Fran
TEATTINUE

Aeerinug

The enzyme incorporatas nuclaotides
to bulld double-stranded Bridges an
the solid-phase substrate.

Denaturation leaves single-stranded
tamplates anchered to the substrate,

Figure from http://www.illumina.com

&. COMPLETE AMPLIFICATION

Saveral million dense clusters of
d

bl ded DNA are ge t
ed in each channal of the flow cell.

53



lllumina Genome Analyzer: sequencing by synthesis

7. DETERMINE FIRST BASE 8. IMAGE FIRST BASE ¥. DETERMINE SECOND BASE

Lazar

The first saquencing cycle begins Aftar laser sxchation, the emit The next cydle repeats the incor
by adding four labaled revarsible ted flucrescence from each chuster poratien of four labelad reversibla
terminators, primers, and DNA is captured and the first base is terminators, primers, and DA
polymarase, Identified. polymerase.

Figure from http://www.illumina.com 16/ 53



lllumina Genome Analyzer: sequencing by synthesis

10. IMAGE SECOND CHEMISTRY
CYCLE

After laser axcitation, the Image is
eaptured as before, and the identity
of tha sacond base Is recordad.

11. SEQUENCING OVER MUL-
TIPLE CHEMISTRY CYCLES

6@ —| @ —| ® —| @
8, 8,

9 —|

-

=* GCTGA...

The sequencing eyeles are repeated
to determine the sequence of bases
in a fragmant, one base at a tima.

Figure from http://www.illumina.com

12. ALIGN DATA

1
GCTGATGTGCOGECTCACTCORGTG

CACTCCTOTOG
CICACTLCTGI GG
» GCIGATGTGCOACCTCA
GATGT GCCACCTCACTC
GIGCOGLE TCACTCONG
CICOIGTEG

ke ement e
dan e S0 kel

The data are aligned and cam-
pared to a reference, and sequenc-
ing diffarances are identified.



Differences between NGS technologies

» Template preparation

> Amplified templates from single DNA molecule (454, SOLID, Illumina)
> Single DNA-molecule templates (PacBio, Nanopore)



Differences between NGS technologies

» Template preparation

» Amplified templates from single DNA molecule (454, SOLiD, lllumina)
» Single DNA-molecule templates (PacBio, Nanopore)

» Sequencing
» Cyclic reversible termination (Illumina)

Single-nucleotide addition (454)

Single DNA-molecule templates (PacBio)

Real-time sequencing (PacBio)

Sequencing by ligation (SOLiD)

Physical properties (Nanopore)

vVvyvyvVvy



Differences between NGS technologies

» Template preparation

» Amplified templates from single DNA molecule (454, SOLiD, lllumina)
» Single DNA-molecule templates (PacBio, Nanopore)

» Sequencing
» Cyclic reversible termination (Illumina)

Single-nucleotide addition (454)

Single DNA-molecule templates (PacBio)

Real-time sequencing (PacBio)

Sequencing by ligation (SOLiD)

» Physical properties (Nanopore)

vvyy

» Imaging
» Four-color imaging (lllumina, SOLID, PacBio)
> Bioluminescense (454)

» Data analysis



Differences between NGS technologies

» Differences » |llumina, SOLID

> Sequencing read length >
» Raw read accuracy:
P> Substitutions, insertions, deletions
» Error models (quality scores)

vyvyy

> Speed: nucleotide bases/second
> Costs: >

> Nucleotide bases/€

»> Equipment cost/maintanence
>

>

De novo assembly
Resequencing
RNA-seq

Non coding RNAs
ChlP-seq

etc.

» Sanger, PacBio, Nanopore

De novo assembly
Detection of large structural variants
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NGS sequencing data formats: FASTQ

> FASTQ format is the most commonly used text-based format for storing both a nucleotide
sequence and its corresponding quality scores
> Line 1: sequence identifier containing: instrument name, flowcell lane, tile number,
coordinates in a tile, etc.
» Line 2: The raw sequence letters: A, C, G, T, or N
> Line 3: +[sequence identifier]
» Line 4: The quality values for the sequence in Line 2

» An example

BHWI-EAS209_0006_FCT06VJI:5:58:5894:21141#ATCACG/1
TTAATTGGTAAATARATCTCCTAATAGCTTAGATNTTACC TTNNNNNNNNNNTAGTTTCTTGAGATT TG TTGGGGGAGACATTTTTGTGATTGCCTTGAT
+HWI-EAS209_0006_FC706VJ:5:58:5894:21141#ATCACG/1
efcfffffefeefffcffffffddf feed] | _Ba_"_[YBEBBEBBBBBBRTT\]][ |dddd" ddd"dddadd"BEEBBBBEBBEBBBBEBEBEBBEB



Fastq quality scores

» Each nucleotide that has been sequenced is associated with a quality score @

» @ is a function of the probability P that the corresponding base call is incorrect

» This probability is estimated during the sequencing run (affected by e.g. the quality of
imaging, etc.)
» The score @ is mapped to an integer to reduce space
» E.g. using ASCII from 33 to 126 (encoding varies between versions)

» This is called the Phred quality score



Fastq quality scores

» The Phred quality score table

Phred quality scores are logarithmically linked to error probabilities
Phred Quality Score | Probability of incorrect base call Base call accuracy

10 1in 10 90%

20 1in 100 99%

30 1in 1000 99.9%

40 1in 10,000 99.99%
50 1 in 100,000 99.999%
60 1 in 1,000,000 99.9999%

Figure from https://en.wikipedia.org/wiki/FASTQ_format


https://en.wikipedia.org/wiki/FASTQ_format

Quality control (QC) for sequencing data

» NGS experiments can generate hundreds of millions or billions of sequences in a single run
» Before analysing the data and drawing any biological conclusions, one should perform
some quality control checks to ensure that
> the raw data looks good overall, and
» there are no problems or biases in the data
» Most sequencing facilities will generate a quality control report as part of their analysis
pipeline
» These are typically limited to identifying and reporting overall problems that may have
happened during the laboratory work or sequencing experiment



Quality control (QC) for sequencing data

» NGS experiments can generate hundreds of millions or billions of sequences in a single run
» Before analysing the data and drawing any biological conclusions, one should perform
some quality control checks to ensure that
> the raw data looks good overall, and
» there are no problems or biases in the data
» Most sequencing facilities will generate a quality control report as part of their analysis
pipeline
» These are typically limited to identifying and reporting overall problems that may have
happened during the laboratory work or sequencing experiment
» Many tools are available for more comprehensive sequence-level QC analysis that aim to
identify problems originating either in the sequencer or in the starting library material

» We will look at FastQC tool (Andrews, 2010)

» Note: quality control analysis depends on the particular NGS protocol: genome sequencing
(assumed here), RNA-seq, methylation sequencing, etc.



Quality control (QC) for sequencing data

» Quality control criteria include e.g.

1.

akrwDd

Per base quality

Per sequence quality

Per base content

Sequence duplication levels
Overrepresented sequences



1. Per base quality

> The accuracy of reading the . Quality scores across all bases {ilumina 1.5 encoding)
nucleotides tends to decrease N
towards the end of the sequences z
» It is useful to quantify if the quality N
scores decrease more than expected 2:
or to decide where to trim / cut the .
sequences .
» Sequencing machine can also N

output N read-out to indicate that
the sequencing machine was not
ab|e to make deCiSiOn Of the base T2345678010 12 13 16 P;:tmnz‘ivezzj(bp)u % 2 3 32 3 B ® 4O

> BOXp|OtS of quality scores Q for Figure from http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
each base position across all reads

» Example of good quality data


http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

1. Per base quality

» An example of low quality data qulty sores sross il b Ui 15 encacing)
| AETAE TR AT ARTEALT,

> A solution: keep only the first k z L
nucleotides for each sequence and x | A HHH
cut out nucleotides at positions y ki |
[k+1,...,n], where nis the i i T

sequencing read length

[IIT [

12345678910 12 14 16 18 20 22 24 26 28 30 32 34 3 33 40
Postion in read (bp)

Figure from http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

2. Per sequence quality

» Quantify if a sequence has overall
lower quality using the mean quality
score

» |ow quality sequences should
represent only a small percentage of
the total sequencing data

» Example of good quality data

160000}

140000]

120000

100000]

80000

60000

40000

20000

o

Qualty score distrition over all sequences

Average Qualty per read

3345678910 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Mean Sequence Qualty {Phred Score)

Figure from http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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2. Per sequence quality

> An example of a sample where a
subset of the sequences have lower
quality

» A solution: remove sequencing
reads that have mean quality score

40000

below a threshold and continue the
analysis with the good quality
sequences

10000

2345678 91011121314151617 181020 21 22 23 24 25 26 27 28 29 30 31 32 33
Mean Sequence Quality (Phred Score}

Figure from http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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3. Per base content

» In a good quality random DNA library you
would expect to see little or no variation in
sequence/GC/N content across the bases

» E.g.: the relative amount of each base
should reflect the overall amount of these
bases in a genome

» Deviations from genome-wide averages
indicates lower quality e.g. due to biases
in sample preparation

> Strong biases at selected bases can
indicate e.g. a contamination of
overrepresented sequences, power
outage, etc.

» Some variation at the first nucleotides is
not so uncommon though

» An example of a good quality library

0

Sequence content across all bases

%T
%C

%G

12345678910 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Position in read (bp)

Figure from http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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3. Per base content

» An example of a good quality library based
on GC content

» Solutions for a low quality library depends
on the application: in the worst case
ignore the data altogether

GC content across all bases
%GC

T 3 s 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Figure from http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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4. Sequence duplication levels

» In a complex (complex=good) DNA library most sequences will occur only once

» This applies e.g. to DNA genome sequencing

» Think about randomly fragmenting the 3 billion long human genome into fragments and
sequencing those DNA fragments

» It is realistic to assume that such fragments from different cells / chromosome copies will be
mostly different

— Unlikely to measure the same DNA fragment more than once

» Note: there are also sequencing applications where this assumption does not hold

» A high level of sequence duplication may indicate some kind of enrichment bias (e.g. PCR
over-amplification during library preparation).

» Plot the relative number of sequences with different degrees of duplication



4. Sequence duplication levels

» An examp|e of a |ibrary with - Percent of seqs remaning f deduplicated 69.11%
.. . . % Deduplicated sequences
suspicious duplication levels Tt soqurces.

» Note: this looks at the sequence
similarity only, not the location
where they come from
» For example: two reads may have
nucleotide read errors and thus s
are non-identical, but map to the
same location in a genome
— Detection of duplicate reads can
also be done after read alignment 20

80
70

60

30

» A solution: keep only one copy of
each duplicated read S T B R B R e BB e T

Sequence Duplication Level

Figure from http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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5. Overrepresented sequences

>

>

A good quality, complex library will
contain a diverse set of sequences

No individual sequence should be
overrepresented

Finding a few overrepresented sequences
may indicate that the library is
contaminated

Overrepresented sequences

These overrepresented sequences may also
correspond to adapter sequences, in which
case there is typically less reason to worry

An example of a library that contains
overrepresented sequences (>0.1%)

Possible

AGAGTTTTATCGCTTCCATGACGCAGAAGTTAACACTTTC
GATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCCATG
ATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCCATGA
CGATAAAAATGATTGGCGTATCCAACCTGCAGAGTTTTAT
GTATCCAACCTGCAGAGTTTTATCGCTTCCATGACGCAGA

AAAAATGATTGGCGTATCCAACCTGCAGAGTTTTATCGCT

2065

2047

2014

1913

1879

1846

o

o

o

o

Sl

.5224039181558763

.5178502762542754

.5095019327680071

.4839509420979134

.47534961850600066

.4670012750197325

No

No

No

No

No

Figure from http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Hit

Hit

Hit

Hit

Hit
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Sequencing data

» Current sequencing technologies produce huge amounts of short sequencing read data
» The obtained sequences are typically short ~25-250bp
> A sequencing run produces batches of, say, 10M to 1B sequences

» Challenge: make sense of all these short reads

» Some obvious questions:

» From which genomic positions / chromosome in a given reference genome the reads
originate?

» Can you construct the original “full length” genome from the measured short sequencing
reads?

» De novo assembly of a genome

» For a primer in short read data alignment, see (Trapnell & Salzberg, 2009)



Short read alignment

Many of the HTS sequencing applications involve a task of finding the origin of a short
sequence in a large reference sequence
» E.g. identify the location of a 50bp read in a ~100,000,000bp human chromosome or in
any of the chromosomes with total size of ~3,000,000,000bp
» Dynamic programming based local sequence alignment (Smith-Waterman algorithm)
would provide an optimal sequence alignment (assuming substitution and gap-penalties)
> Asymptotic time complexity for aligning a single short sequence is O(nm) for sequences of
length n (reference genome) and m (a short read)



Short read alignment

Many of the HTS sequencing applications involve a task of finding the origin of a short
sequence in a large reference sequence
» E.g. identify the location of a 50bp read in a ~100,000,000bp human chromosome or in
any of the chromosomes with total size of ~3,000,000,000bp
» Dynamic programming based local sequence alignment (Smith-Waterman algorithm)
would provide an optimal sequence alignment (assuming substitution and gap-penalties)
> Asymptotic time complexity for aligning a single short sequence is O(nm) for sequences of
length n (reference genome) and m (a short read)
Challenges in short read alignment
» The volume of data / length of the reference sequence is often so large that performance
is a real concern
> Although many of the currently available sequencing machines are relatively accurate,
short reads contains errors, i.e., some bases are read incorrectly (technical noise)
» Similarly, variation between individuals cause a mismatch between the obtained reads and
a single reference genome (biological “noise”)
» Parts of e.g. the human genome is repetitive which causes mapping ambiguity
> Reads are short; if they fall in repetitive areas, it's hard to know where they truly map



Short read alignment

» Classical sequence alignment methods, such as Smith-Waterman and BLAST algorithms,
are too slow and faster alignment methods have been developed
» The most important ingredient is an index: a look-up structure to rapidly find short
sub-sequences
» Hash table based methods
» Burrows-Wheeler transform
» An index is constructed

» For the reads
» For the reference genome(s)
» Or for both



Hash table aligners

» Extensions of the idea of BLAST: seed-and-extend
» Two steps: indexing and alignment
> E.g. Maq tool (Li et al, 2008)

» Indexing for sequencing reads: divide short sequencing reads of length L into bins based on
their first n nucleotides
L

First n nucleotides: key
n
T [ bint | bin2 [ bin3

» In practice, n can be e.g. 20 — 4%° = 1.1 x 10*? bins




Hash table aligners

Alignment:
» For each position p in the reference genome
> Consider the next L nucleotides in the reference sequence

» Seed: Find the appropriate bin using the first n nucleotides (out of L)
» Extend: Match the remaining reference sequence to reads in that bin

» Some methods allow gaps, others don't

i

I I

“ATAGAT"

bin 2
“ATAGAC”




Hash table aligners

» Spaced seed: allow a number of mismatches in an alignment (e.g. at most 2) using several
seeds / keys in parallel

» Example: Maq method divides each read into 4 seeds of equal length

» Reasoning: Two mismatches will fall into at most two seed segments, leaving the other two
to match perfectly
» Procedure:
» Find candidate locations by looking up all 6 possible pairs of seeds (for each read) in index
» Then check remaining segments for candidates and remove candidates with too many
mismatches



Hash table aligners

a Spaced seeds b Burrows-Wheeler
Reference genome Short read Reference genome Short read
(> 3 gigabases) (> 3 gigabases)
Chr1 1 ACTCCCGTACTCTAAT
Chr2
Chr3 ===
Chr4
Concatenate into
Extract seeds single string
— Burrows-Wheeler
Position 2 transform and indexing
CTGC CGTA AACT ANTG
e Bowtie index
Position 1 . )
16 coor awe r rore coor soro w72 01080YIeS) rcrcocamercmar

ACTG 43+ AMAC sors

ssxs 0CGT +aee AT || Six seed Look up
ACTG +ass sswe TAAT pairs per ‘suffixes’
axxs s AMAC TAAT read/ of read
ACTG COGT sx wans fragment LS5
sree COGT ARAC wvev 5
Index seed pairs Hits identify
positions in
Seed index genome where
(tens of gigabytes) Look up each pair read is found =

of seeds in index
ACTG #ssn AAAG wner

r Hits identify positions

3 in genome where

r spaced seed pair

o is found
ACTG wsas ~av Taar | | Confirm hits Convert each
ssss CCGT AAAC wawv by checking

hit back to
genome location

“xxx+” positions

O
T Report alignment to user €—



Hash table aligners

» By choosing proper seed lengths hash table index aligners can be very sensitive, but that
may decrease the performance
» Short seeds — false positives that slow down the (later) mapping process
> Longer seeds — more seeds needed — more memory
» Comprehensive hash tables take lots of memory, which degrades performance in practical
implementations
» Depending on the application, we may want to sacrifice sensitivity for performance, or
limit mismatches



Burrows-Wheeler transform

» Creates a transformation of the reference sequence that

» Contains the same information as the original sequence
» Can be compressed more efficiently

> Allows fast lookup of substrings

» Can be back-transformed

» Burrows-Wheeler Transform

» Suffix array
» Memory-efficient (~1GB for human genome)
> Used by e.g. Bowtie (Langmead et al., 2009) and BWA



Suffix and prefix

» Definitions:
> A prefix of a string S is a substring of S that occurs at the beginning of S
> A suffix of a string S is a substring that occurs at the end of S
> By using certain representations of suffix/prefix tries the alignment of a sequencing read to
multiple identical copies of a substring in the reference is done only once
> All identical copies collapse on a single path in the trie
» When using a typical hash table index, the alignment must be performed for each individual
genome position

» Many of the current aligners use the so-called Burrows-Wheeler Transform (BWT)



Burrows-Wheeler transform: example

» Sequence: X = ACAACG
» Add the dollar symbol (or some other symbol) to mark the end of the string
> $ is considered to be lexicographically smaller than all the other symbols
» Create all cyclic permutations of the sequence X$ = ACAACGS$ and then sort them in
lexicographic order

» BWT of the sequence corresponds to the concatenation of the last character of each line
in sorted list, here: BWT(ACAACG$)=GC$AAAC

0 ACRACGS & SACAACG

1 CAACGSA 2  RACGSAC

2  AACGSAC 0 ACBACGS

3 ACGSACA 3 ACGSACA
ACAACGS |:> 4 CGSACAA |:> 1 CRAACGSA GCSBAAC
0123456 5 GSACRAC 4 CGSACAA

6 SACAACG 5 GSACAAC



Burrows-Wheeler transform: example

» Suffix array: list of the original row numbers A = (6,2,0,3,1,4,5)
» The suffix array A of a string X is an array of integers providing the starting positions of
suffixes of S in lexicographical order
> A[i] = the starting position of the ith smallest suffix in S

0 ACAACGS & SACAACG

1 CRACGSA 2 AACGSAC

2 AACGSAC 0 ACAACGS

3 ACGSACA 3 ACGSACA
ACARCGS |::> 4 CGSACAA |:> 1 CAACGSA |:> GCSAARC
0123456 5 GSACAAC 4 CGSACRA

6 SACAACG 5 GSACAAC



Reversing the BWT

» The BW matrix has the property of “last first (LF) mapping”

» The ith occurrence of character C in the last column corresponds to the same character in
the original string X as the ith occurrence of C in the first column

» We can use this property to reverse the transformation
> Example: X = acaacg$, BWT(X) = gc$aaac

(b)

g cg acg aacg caacg acaacg
$ ] $ (] $ g $ g $ g $ ]
a c a [ a [ a [ ageoo=mC a c
a $ a $ a $ a $ a\$ a $
a a a a a a agsgo-=®a a a a a
c a c a c a c\a c a caacog®da
c a [ a C‘?a [ a [+ a c a
g c > C g c g c g c g c

Figure from (Langmead et al., 2008)
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» We can use this property to reverse the transformation
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g cg acg aacg caacg acaacg
$ ] $ (] $ g $ g $ g $ ]
a c a [ a [ a [ ageoo=mC a c
a $ a $ a $ a $ a\$ a $
a a a a a a axco=®a a a a a
c a c a c a c\a c a caacog®da
c a [ a Co== :a [ a [+ a c a
g c Lacanc g c g c g c g c

Figure from (Langmead et al., 2008)

» Thus, BWT }(BWT(X)) = acaacg$ = X



Suffix array interval

» Suffix array values store the positions of the occurrences of suffixes in the string in
lexicographical order

— All suffixes that have a given substring W as prefix appear on consecutive rows

> All occurrences of a substring W in X appear in an interval (consecutive indices) in suffix

array
» Examples: W = AC — [2,3], W = A — [1,3]
0 |6|isSncrAcCG
1 |2 |ancGSAC
2 |0 |fRACRACGS
3 |3|jaceSaca
4 |1|icARCGSA
5 |4|iceSAcAR
6 |5|iGSACRAC
i S{}i} BWT



Short read aligment using BWT

The LF and suffix array intervals are used in exact matching of substrings/short reads

» The range of matrix rows beginning with successively longer suffixes of the query/read are
back-tracked

» At each step, the size of the range either decreases or remains the same

» When the algorithm completes, rows beginning with the entire query correspond to exact
occurrences of the query in the text

» If the range is empty, the text does not contain the query
» Example query: AAC

aac aac aac

© s 9 s 9 .8 g

a c_,a ¢ ~aac c

a $ ac $ ~a $

a a _ac a a a
—>

> a ¢ a ¢ a

c a ¢ a ¢ a

g9 c g c g9 c

Figure from (Langmead et al., 2008)



BWT aligners

a Spaced seeds b Burrows-Wheeler
Reference genome Short read Reference genome Short read
(> 3 gigabases) (> 3 gigabases)
Chr1 1 ACTCCCGTACTCTAAT
Chr2
Chr3 ===
Chr4
Concatenate into
Extract seeds single string
— Burrows-Wheeler
Position 2 transform and indexing
CTGC CGTA AACT ANTG
e Bowtie index
Position 1 . )
16 coor awe r rore coor soro w72 01080YIeS) rcrcocamercmar

ACTG 43+ AMAC sors

ssxs 0CGT +aee AT || Six seed Look up
ACTG +ass sswe TAAT pairs per ‘suffixes’
axxs s AMAC TAAT read/ of read
ACTG COGT sx wans fragment LS5
sree COGT ARAC wvev 5
Index seed pairs Hits identify
positions in
Seed index genome where
(tens of gigabytes) Look up each pair read is found =

of seeds in index
ACTG #ssn AAAG wner

Hits identify positions
in genome where
spaced seed pair

is found

ACTG wass suws TAAT Confirm hits
ssss CCGT AAAC wawv by checking
“xxx+” positions

Convert each
hit back to
genome location

O
T Report alignment to user €—



Inexact alignment with BWT

» The search proceeds similarly to exact alignment

> |f the range becomes empty (a suffix does not occur in the text), then the algorithm may
select an already-matched query position and substitute a different base there, introducing
a mismatch into the alignment

» The exact alignment search resumes from just after the substituted position

» The algorithm selects only those substitutions which yield a modified suffix that occurs at
least once in the text (and that are consistent with the alignment policy)

» If there are multiple candidate substitution positions, then the algorithm greedily selects a
position with a minimal quality value

» More recent methods, such as Bowtie2, also allow indels, e.g.
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Additional reading

» Lecture slides by Ben Langmead https:
//www.cs.jhu.edu/"langmea/resources/lecture_notes/bwt_and_fm_index.pdf
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