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Human genome

▶ Human genome is located in the nucleus
of each cell and contains the genetic
information of an individual

▶ Each individual has two copies of the
genome, inherited from both parents

▶ Genome consists of 23 chromosome pairs

▶ Genetic information is contained in the
chemical compound called
deoxyribonucleic acid (DNA)

Figure from Wikipedia
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Human genome

▶ DNA is a double-stranded molecule with each
strand being a linear sequence of nucleotides

▶ A nucleotide consists of a phosphate group,
sugar, and nucleoside

▶ A nucleoside is a nitrogenous base connected
to a deoxyribose sugar

▶ There are four different nucleotides depending
on the nucleoside: adenine (A), cytosine (C),
guanine (G), thymine (T)

▶ The nucleotides have a specific base pairing in
double-stranded DNA:
▶ Adenine pairs with thymine
▶ Cytosine pairs with guanine

▶ Total length: about 3 billion nucleotides
Figure from Wikipedia
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High-throughput sequencing technologies

Terminology: the current best sequencing technologies are called interchangeably as

▶ High-throughput sequencing (HTS)

▶ Next generation sequencing (NGS)

What it does: time- and cost-efficient sequence determination (DNA, RNA)

▶ Input: biological sample
▶ Biological sample contains a (large) collection of cells

▶ Output: short nucleotide sequences (also called“reads” )
▶ DNA (or RNA) content of the input sample in digital format
▶ Not the original long DNA/RNA sequences, but lots of short DNA/RNA sequences (long

DNA/RNA sequences are randomly fragmented) from randomly selected cells in the
biological input sample

▶ This is typically called“bulk”DNA or RNA-sequencing: one is not able to determine that
from which cell any of the measured DNA/RNA fragment comes from

▶ We will discuss single cell technologies later
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NGS technologies

▶ Sanger sequencing
▶ The grand old technology

▶ Illumina
▶ Illumina is currently by far the most commonly used
→ We will focus on Illumina sequencing technology

▶ Applied Life sciences: SOLiD

▶ Pacific Biosciences: PacBio

▶ Ion Torrent sequencing

▶ Nanopore
▶ A technology to measure an entire (long) DNA molecule
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Illumina: basics of NGS chemistry

▶ Three main steps

1. Library preparation
2. Cluster amplification (bridge amplification)
3. Sequencing by synthesis

▶ Next: cartoon guide to NGS chemistry
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Illumina: basics of NGS chemistry

Step 1: Library preparation

▶ Isolate DNA (or RNA) from cells in
a biological sample

▶ Sequencing library is prepared by
random fragmentation of the DNA
(or cDNA sample), followed by 5’
and 3’ adapter ligation

▶ Single stranded molecules

▶ Adapter-ligated fragments are then
PCR amplified and gel purified

– 5 –For Research Use Only. Not for use in diagnostic procedures.
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NGS library is prepared by fragmenting a gDNA sample and 
ligating specialized adapters to both fragment ends..

D. Alignment & Data Anaylsis
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Sequencing Cycles

Data is exported to an output file
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Cluster 1 > Read 1: GAGT...
Cluster 2 > Read 2: TTGA...
Cluster 3 > Read 3: CTAG...
Cluster 4 > Read 4: ATAC...

Reads

Reference 
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        ATGGC

 AGATGG ATTGCAATTTG       
ATGGCATTGCAATT

  GCATTGCAATTTGAC
GATGGC

  AGATGGT
 TGGC

C. Sequencing

A. Library Preparation
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Reads are aligned to a reference sequence with bioinformatics 
software. After alignment, differences between the reference 
genome and the newly sequenced reads can be identified.

AGATGGTATTGCAATTTGACAT

C

Text File

ATTGCAA
ATTG
ATTGCAATTTG
ATTGCAATTTGACAT

B. Cluster Amplification

Library is loaded into a flow cell and the fragments hybridize
to the flow cell surface. Each bound fragment is amplified into
a clonal cluster through bridge amplification. 

Sequencing reagents, including fluorescently labeled nucleo-
tides, are added and the first base is incorporated. The flow 
cell is imaged and the emission from each cluster is recorded.
The emission wavelength and intensity are used to identify 
the base. This cycle is repeated “n” times to create a read 
length of “n” bases.

Figure 3: Next-Generation Sequencing Chemistry Overview.

c. Advances in Sequencing Technology

Paired-End Sequencing
A major advance in NGS technology occurred with the development of paired-end (PE) sequencing (Figure 4). PE 
sequencing involves sequencing both ends of the DNA fragments in a sequencing library and aligning the forward 
and reverse reads as read pairs. In addition to producing twice the number of reads for the same time and effort 
in library preparation, sequences aligned as read pairs enable more accurate read alignment and the ability to 
detect indels, which is simply not possible with single-read data.8 Analysis of differential read-pair spacing also 
allows removal of PCR duplicates, a common artifact resulting from PCR amplification during library preparation. 

Figure from http://www.illumina.com/content/dam/illumina-marketing/documents/products/

illumina_sequencing_introduction.pdf

http://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf
http://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf
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Illumina: basics of NGS chemistry

Step 2: Cluster amplification

▶ The library is loaded into a flow cell
where fragments are captured on a
lawn of surface-bound oligos that
are complementary to the library
adapters

▶ Each fragment is then amplified
into distinct, clonal clusters through
bridge amplification

▶ When cluster generation is
complete, the templates (i.e., clonal
clusters) are ready for sequencing

▶ A flow cell contains millions of
clonal cluster

– 5 –For Research Use Only. Not for use in diagnostic procedures.
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A major advance in NGS technology occurred with the development of paired-end (PE) sequencing (Figure 4). PE 
sequencing involves sequencing both ends of the DNA fragments in a sequencing library and aligning the forward 
and reverse reads as read pairs. In addition to producing twice the number of reads for the same time and effort 
in library preparation, sequences aligned as read pairs enable more accurate read alignment and the ability to 
detect indels, which is simply not possible with single-read data.8 Analysis of differential read-pair spacing also 
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http://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf
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Illumina: clonally amplified templates

▶ Step 2: Cluster amplification

•Clonally amplified templates
Solid-phase amplification
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Illumina: basics of NGS chemistry

Step 3: Sequencing

▶ Illumina uses a terminator-based
method that detects single bases
as they are incorporated into
DNA template strands

▶ Each nucleotide (dNTP) has a
different fluorescent dye

▶ All 4 reversible terminator-bound
dNTPs are present during each
sequencing cycle

▶ Natural competition minimizes
incorporation bias and greatly
reduces raw error rates
compared to other technologies

▶ Laser excitation and imaging of
the emitted flourescence

•Sequencing
•Four color cyclic 
reversible termination
•Substitutions are the 
most common error type 
•AT-and GC-rich regions 
are underrepresented
•Short reads, fixed length
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Illumina: basics of NGS chemistry

▶ Step 3: Sequencing

– 5 –For Research Use Only. Not for use in diagnostic procedures.
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c. Advances in Sequencing Technology
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A major advance in NGS technology occurred with the development of paired-end (PE) sequencing (Figure 4). PE 
sequencing involves sequencing both ends of the DNA fragments in a sequencing library and aligning the forward 
and reverse reads as read pairs. In addition to producing twice the number of reads for the same time and effort 
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http://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf
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Illumina: basics of NGS chemistry

▶ Step 4: Data analysis

– 5 –For Research Use Only. Not for use in diagnostic procedures.
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c. Advances in Sequencing Technology

Paired-End Sequencing
A major advance in NGS technology occurred with the development of paired-end (PE) sequencing (Figure 4). PE 
sequencing involves sequencing both ends of the DNA fragments in a sequencing library and aligning the forward 
and reverse reads as read pairs. In addition to producing twice the number of reads for the same time and effort 
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http://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf
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Illumina Genome Analyzer: bridge amplification
Solexa pipeline: bridge amplification 

Source: http://www.illumina.com 17 

Figure from http://www.illumina.com
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Illumina Genome Analyzer: bridge amplification
Solexa pipeline: bridge amplification 

Repeat from step 3 Reverse strands are cleaved and washed away, 
leaving a cluster with forward strands only Source: http://www.illumina.com 18 Figure from http://www.illumina.com
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Illumina Genome Analyzer: sequencing by synthesisSolexa pipeline: sequencing by synthesis 

After image taken, detach  
terminators and fluorophores 

from nucleotides Source: http://www.illumina.com 
19 

Figure from http://www.illumina.com
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Illumina Genome Analyzer: sequencing by synthesisSolexa pipeline: sequencing by synthesis 

Source: http://www.illumina.com 20 Figure from http://www.illumina.com
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Differences between NGS technologies

▶ Template preparation
▶ Amplified templates from single DNA molecule (454, SOLiD, Illumina)
▶ Single DNA-molecule templates (PacBio, Nanopore)

▶ Sequencing
▶ Cyclic reversible termination (Illumina)
▶ Single-nucleotide addition (454)
▶ Single DNA-molecule templates (PacBio)
▶ Real-time sequencing (PacBio)
▶ Sequencing by ligation (SOLiD)
▶ Physical properties (Nanopore)

▶ Imaging
▶ Four-color imaging (Illumina, SOLiD, PacBio)
▶ Bioluminescense (454)

▶ Data analysis
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Differences between NGS technologies

▶ Differences
▶ Sequencing read length
▶ Raw read accuracy:

▶ Substitutions, insertions, deletions
▶ Error models (quality scores)

▶ Speed: nucleotide bases/second
▶ Costs:

▶ Nucleotide bases/e
▶ Equipment cost/maintanence

▶ Illumina, SOLiD
▶ De novo assembly
▶ Resequencing
▶ RNA-seq
▶ Non coding RNAs
▶ ChIP-seq
▶ etc.

▶ Sanger, PacBio, Nanopore
▶ De novo assembly
▶ Detection of large structural variants
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Contents

▶ High-throughput sequencing technologies

▶ Quality control

▶ Sequencing data alignment
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NGS sequencing data formats: FASTQ

▶ FASTQ format is the most commonly used text-based format for storing both a nucleotide
sequence and its corresponding quality scores
▶ Line 1: sequence identifier containing: instrument name, flowcell lane, tile number,

coordinates in a tile, etc.
▶ Line 2: The raw sequence letters: A, C, G, T, or N
▶ Line 3: +[sequence identifier]
▶ Line 4: The quality values for the sequence in Line 2

▶ An example
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Fastq quality scores

▶ Each nucleotide that has been sequenced is associated with a quality score Q

▶ Q is a function of the probability P that the corresponding base call is incorrect

Q = −10 log10 P

▶ This probability is estimated during the sequencing run (affected by e.g. the quality of
imaging, etc.)

▶ The score Q is mapped to an integer to reduce space
▶ E.g. using ASCII from 33 to 126 (encoding varies between versions)

▶ This is called the Phred quality score
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Fastq quality scores

▶ The Phred quality score table

15/09/16 16:05Phred quality score - Wikipedia, the free encyclopedia

Page 2 of 5https://en.wikipedia.org/wiki/Phred_quality_score

For example, if Phred assigns a quality score of 30 to a base, the chances that this base is called incorrectly
are 1 in 1000.

Phred quality scores are logarithmically linked to error probabilities
Phred Quality Score Probability of incorrect base call Base call accuracy
10 1 in 10 90%
20 1 in 100 99%
30 1 in 1000 99.9%
40 1 in 10,000 99.99%
50 1 in 100,000 99.999%
60 1 in 1,000,000 99.9999%

The phred quality score is the negative ratio of the error probability to the reference level of 
expressed in Decibel (dB).

History
The idea of sequence quality scores can be traced back to the original description of the SCF file format by
Staden's group in 1992.[5] In 1995, Bonfield and Staden proposed a method to use base-specific quality
scores to improve the accuracy of consensus sequences in DNA sequencing projects.[6]

However, early attempts to develop base-specific quality scores[7][8] had only limited success.

The first program to develop accurate and powerful base-specific quality scores was the program Phred.
Phred was able to calculate highly accurate quality scores that were logarithmically linked to the error
probabilities. Phred was quickly adopted by all the major genome sequencing centers as well as many other
laboratories; the vast majority of the DNA sequences produced during the Human Genome Project were
processed with Phred.

After Phred quality scores became the required standard in DNA sequencing, other manufacturers of DNA
sequencing instruments developed similar quality scoring metrics for their base calling software, including
Li-Cor and ABI.[9]

Methods
Phred's approach to base calling and calculating quality scores was outlined by Ewing et al.. To determine
quality scores, Phred first calculates several parameters related to peak shape and peak resolution at each
base. Phred then uses these parameters to look up a corresponding quality score in huge lookup tables. These
lookup tables were generated from sequence traces where the correct sequence was known, and are hard
coded in Phred; different lookup tables are used for different sequencing chemistries and machines. An
evaluation of the accuracy of Phred quality scores for a number of variations in sequencing chemistry and
instrumentation showed that Phred quality scores are highly accurate.[10]

Figure from https://en.wikipedia.org/wiki/FASTQ_format

https://en.wikipedia.org/wiki/FASTQ_format
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Quality control (QC) for sequencing data

▶ NGS experiments can generate hundreds of millions or billions of sequences in a single run

▶ Before analysing the data and drawing any biological conclusions, one should perform
some quality control checks to ensure that
▶ the raw data looks good overall, and
▶ there are no problems or biases in the data

▶ Most sequencing facilities will generate a quality control report as part of their analysis
pipeline
▶ These are typically limited to identifying and reporting overall problems that may have

happened during the laboratory work or sequencing experiment

▶ Many tools are available for more comprehensive sequence-level QC analysis that aim to
identify problems originating either in the sequencer or in the starting library material

▶ We will look at FastQC tool (Andrews, 2010)

▶ Note: quality control analysis depends on the particular NGS protocol: genome sequencing
(assumed here), RNA-seq, methylation sequencing, etc.
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Quality control (QC) for sequencing data

▶ Quality control criteria include e.g.

1. Per base quality
2. Per sequence quality
3. Per base content
4. Sequence duplication levels
5. Overrepresented sequences
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1. Per base quality

▶ The accuracy of reading the
nucleotides tends to decrease
towards the end of the sequences

▶ It is useful to quantify if the quality
scores decrease more than expected
or to decide where to trim / cut the
sequences

▶ Sequencing machine can also
output N read-out to indicate that
the sequencing machine was not
able to make decision of the base

▶ Boxplots of quality scores Q for
each base position across all reads

▶ Example of good quality data

16/09/16 00:37good_sequence_short.txt FastQC Report

Page 2 of 11http://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc.html

Per base sequence quality

Per tile sequence quality

Figure from http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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1. Per base quality

▶ An example of low quality data

▶ A solution: keep only the first k
nucleotides for each sequence and
cut out nucleotides at positions
[k + 1, . . . , n], where n is the
sequencing read length

16/09/16 00:36bad_sequence.txt FastQC Report

Page 2 of 14http://www.bioinformatics.babraham.ac.uk/projects/fastqc/bad_sequence_fastqc.html

Per base sequence quality

Per tile sequence quality

Figure from http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


28/ 53

2. Per sequence quality

▶ Quantify if a sequence has overall
lower quality using the mean quality
score

▶ Low quality sequences should
represent only a small percentage of
the total sequencing data

▶ Example of good quality data

16/09/16 00:37good_sequence_short.txt FastQC Report

Page 4 of 11http://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc.html

Per base sequence content

Figure from http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


29/ 53

2. Per sequence quality

▶ An example of a sample where a
subset of the sequences have lower
quality

▶ A solution: remove sequencing
reads that have mean quality score
below a threshold and continue the
analysis with the good quality
sequences

16/09/16 00:36bad_sequence.txt FastQC Report

Page 4 of 14http://www.bioinformatics.babraham.ac.uk/projects/fastqc/bad_sequence_fastqc.html

Per base sequence content

Figure from http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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3. Per base content

▶ In a good quality random DNA library you
would expect to see little or no variation in
sequence/GC/N content across the bases

▶ E.g.: the relative amount of each base
should reflect the overall amount of these
bases in a genome
▶ Deviations from genome-wide averages

indicates lower quality e.g. due to biases
in sample preparation

▶ Strong biases at selected bases can
indicate e.g. a contamination of
overrepresented sequences, power
outage, etc.

▶ Some variation at the first nucleotides is
not so uncommon though

▶ An example of a good quality library

16/09/16 00:37good_sequence_short.txt FastQC Report

Page 5 of 11http://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc.html

Per sequence GC content

Figure from http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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3. Per base content

▶ An example of a good quality library based
on GC content

▶ Solutions for a low quality library depends
on the application: in the worst case
ignore the data altogether

In a random library you would expect that there would be little to no difference between 
the different bases of a sequence run, so the lines in this plot should run parallel with each 
other. The relative amount of each base should reflect the overall amount of these bases 
in your genome, but in any case they should not be hugely imbalanced from each other. 

If you see strong biases which change in different bases then this usually indicates an 
overrepresented sequence which is contaminating your library. A bias which is consistent 
across all bases either indicates that the original library was sequence biased, or that 
there was a systematic problem during the sequencing of the library. 

Warning 

This module issues a warning if the difference between A and T, or G and C is greater 
than 10% in any position. 

Failure 

This module will fail if the difference between A and T, or G and C is greater than 20% in 
any position. 

3.5 Per Base GC Content 
Summary 

Per Base GC Content plots out the GC content of each base position in a file. 

 

Figure from http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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4. Sequence duplication levels

▶ In a complex (complex=good) DNA library most sequences will occur only once
▶ This applies e.g. to DNA genome sequencing
▶ Think about randomly fragmenting the 3 billion long human genome into fragments and

sequencing those DNA fragments
▶ It is realistic to assume that such fragments from different cells / chromosome copies will be

mostly different
→ Unlikely to measure the same DNA fragment more than once
▶ Note: there are also sequencing applications where this assumption does not hold

▶ A high level of sequence duplication may indicate some kind of enrichment bias (e.g. PCR
over-amplification during library preparation).

▶ Plot the relative number of sequences with different degrees of duplication
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4. Sequence duplication levels

▶ An example of a library with
suspicious duplication levels

▶ Note: this looks at the sequence
similarity only, not the location
where they come from
▶ For example: two reads may have

nucleotide read errors and thus
are non-identical, but map to the
same location in a genome

→ Detection of duplicate reads can
also be done after read alignment

▶ A solution: keep only one copy of
each duplicated read

16/09/16 00:36bad_sequence.txt FastQC Report

Page 9 of 14http://www.bioinformatics.babraham.ac.uk/projects/fastqc/bad_sequence_fastqc.html

Overrepresented sequences
Sequence Count Percentage Possible

Source

AGAGTTTTATCGCTTCCATGACGCAGAAGTTAACACTTTC 2065 0.5224039181558763 No Hit

GATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCCATG 2047 0.5178502762542754 No Hit

ATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCCATGA 2014 0.5095019327680071 No Hit

CGATAAAAATGATTGGCGTATCCAACCTGCAGAGTTTTAT 1913 0.4839509420979134 No Hit

GTATCCAACCTGCAGAGTTTTATCGCTTCCATGACGCAGA 1879 0.47534961850600066 No Hit

AAAAATGATTGGCGTATCCAACCTGCAGAGTTTTATCGCT 1846 0.4670012750197325 No Hit

Figure from http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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5. Overrepresented sequences

▶ A good quality, complex library will
contain a diverse set of sequences

▶ No individual sequence should be
overrepresented

▶ Finding a few overrepresented sequences
may indicate that the library is
contaminated

▶ These overrepresented sequences may also
correspond to adapter sequences, in which
case there is typically less reason to worry

▶ An example of a library that contains
overrepresented sequences (>0.1%)

16/09/16 00:36bad_sequence.txt FastQC Report

Page 9 of 14http://www.bioinformatics.babraham.ac.uk/projects/fastqc/bad_sequence_fastqc.html

Overrepresented sequences
Sequence Count Percentage Possible

Source

AGAGTTTTATCGCTTCCATGACGCAGAAGTTAACACTTTC 2065 0.5224039181558763 No Hit

GATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCCATG 2047 0.5178502762542754 No Hit

ATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCCATGA 2014 0.5095019327680071 No Hit

CGATAAAAATGATTGGCGTATCCAACCTGCAGAGTTTTAT 1913 0.4839509420979134 No Hit

GTATCCAACCTGCAGAGTTTTATCGCTTCCATGACGCAGA 1879 0.47534961850600066 No Hit

AAAAATGATTGGCGTATCCAACCTGCAGAGTTTTATCGCT 1846 0.4670012750197325 No Hit

Figure from http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Sequencing data

▶ Current sequencing technologies produce huge amounts of short sequencing read data
▶ The obtained sequences are typically short ∼25-250bp
▶ A sequencing run produces batches of, say, 10M to 1B sequences

▶ Challenge: make sense of all these short reads

▶ Some obvious questions:
▶ From which genomic positions / chromosome in a given reference genome the reads

originate?
▶ Can you construct the original “full length”genome from the measured short sequencing

reads?
▶ De novo assembly of a genome

▶ For a primer in short read data alignment, see (Trapnell & Salzberg, 2009)
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Short read alignment

Many of the HTS sequencing applications involve a task of finding the origin of a short
sequence in a large reference sequence

▶ E.g. identify the location of a 50bp read in a ∼100,000,000bp human chromosome or in
any of the chromosomes with total size of ∼3,000,000,000bp

▶ Dynamic programming based local sequence alignment (Smith-Waterman algorithm)
would provide an optimal sequence alignment (assuming substitution and gap-penalties)

▶ Asymptotic time complexity for aligning a single short sequence is O(nm) for sequences of
length n (reference genome) and m (a short read)

Challenges in short read alignment

▶ The volume of data / length of the reference sequence is often so large that performance
is a real concern

▶ Although many of the currently available sequencing machines are relatively accurate,
short reads contains errors, i.e., some bases are read incorrectly (technical noise)

▶ Similarly, variation between individuals cause a mismatch between the obtained reads and
a single reference genome (biological “noise”)

▶ Parts of e.g. the human genome is repetitive which causes mapping ambiguity
▶ Reads are short; if they fall in repetitive areas, it’s hard to know where they truly map
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Short read alignment

▶ Classical sequence alignment methods, such as Smith-Waterman and BLAST algorithms,
are too slow and faster alignment methods have been developed

▶ The most important ingredient is an index: a look-up structure to rapidly find short
sub-sequences
▶ Hash table based methods
▶ Burrows-Wheeler transform

▶ An index is constructed
▶ For the reads
▶ For the reference genome(s)
▶ Or for both
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Hash table aligners

▶ Extensions of the idea of BLAST: seed-and-extend

▶ Two steps: indexing and alignment

▶ E.g. Maq tool (Li et al, 2008)

▶ Indexing for sequencing reads: divide short sequencing reads of length L into bins based on
their first n nucleotides

Aligners based on hash tables 
• Extensions of the idea of BLAST: seed-and-extend. 
• Two steps: indexing and alignment 

 
• Indexing: divide reads of length L into bins based on their first n nucleotides 

 
 
 

 
 
 

• In practice, n is roughly 20 => 420 = 1.1*1012 bins 

n 
bin 1 bin 2 bin 3 

First n nucleotides: key 

L 

9 

▶ In practice, n can be e.g. 20 → 420 = 1.1× 1012 bins
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Hash table aligners

Alignment:

▶ For each position p in the reference genome
▶ Consider the next L nucleotides in the reference sequence
▶ Seed: Find the appropriate bin using the first n nucleotides (out of L)
▶ Extend: Match the remaining reference sequence to reads in that bin
▶ Some methods allow gaps, others don’t

Aligners based on hash tables 

• Alignment:  
•For each position p in the reference genome: 

• Consider the next L nucleotides in the reference sequence 
• Seed: Find the appropriate bin using the first n nucleotides (out of L) 
• Extend: Match the remaining reference sequence to reads in the bin. 
• Some methods allow gaps, others don’t 

n 

L 
p 

10 
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Hash table aligners

▶ Spaced seed: allow a number of mismatches in an alignment (e.g. at most 2) using several
seeds / keys in parallel

▶ Example: Maq method divides each read into 4 seeds of equal length
▶ Reasoning: Two mismatches will fall into at most two seed segments, leaving the other two

to match perfectly
▶ Procedure:

▶ Find candidate locations by looking up all 6 possible pairs of seeds (for each read) in index
▶ Then check remaining segments for candidates and remove candidates with too many

mismatches
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Hash table aligners
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Short-read mappers
Such programs as Maq and Bowtie (Table 1) 
use a computational strategy known as ‘index-
ing’ to speed up their mapping algorithms. Like 
the index at the end of a book, an index of a 
large DNA sequence allows one to rapidly find 
shorter sequences embedded within it. Maq is 
based on a straightforward but effective strategy 
called spaced seed indexing6 (Fig. 1a). In this 
strategy, a read is divided into four segments of 
equal length, called the ‘seeds’. If the entire read 
aligns perfectly to the reference genome, then 
clearly all of the seeds will also align perfectly. 
If there is one mismatch, however, perhaps due 
to a single-nucleotide polymorphism (SNP), 
then it must fall within one of the four seeds, 
but the other three will still match perfectly. 
Using similar reasoning, two mismatches will 
fall in at most two seeds, leaving the other two 
to match perfectly. Thus, by aligning all pos-
sible pairs of seeds (six possible pairs) against 
the reference, it is possible to winnow the list of 
candidate locations within the reference where 
the full read may map, allowing at most two 
mismatches. Maq’s spaced seed index enables 
it to perform this winnowing operation very 
efficiently. The resulting set of candidate reads 
is typically small enough that the rest of the 
read—that is, the other two seeds that might 
contain the mismatches—may be individually 
checked against the reference.

Bowtie takes an entirely different approach, 
borrowing a technique originally developed 
for compressing large files called the Burrows-
Wheeler transform. Using this transform, the 
index for the entire human genome fits into 
less than two gigabytes of memory (an amount 
that is commonly available on today’s desktop 
and even laptop computers)—in contrast to a 
spaced seed index, which may require over 50 
gigabytes—and yet reads can still be aligned 
efficiently. Bowtie aligns a read one character 
at a time to the Burrows-Wheeler–transformed 
genome (Fig. 1b). Each successively aligned 
new character allows Bowtie to winnow the 
list of positions to which the read might map. 
If Bowtie cannot find a location where a read 
aligns perfectly, the algorithm backtracks 
to a previous character of the read, makes a  
substitution and resumes the search. In effect, 
the Burrows-Wheeler transform enables 
Bowtie to conquer the mapping problem by 
first solving a simple subproblem—align one 
character—and then building on that solution 
to solve a slightly harder problem—align two 
characters—and then continuing on to three 
characters, and so on, until the entire read has 
been aligned. Bowtie’s alignment algorithm is 
substantially more complicated than Maq’s, but 
Bowtie’s alignment speed is more than 30-fold 
faster7.

using traditional alignment algorithms such as 
BLAST or BLAT, but such grids are not acces-
sible to everyone. To reduce the computing cost 
of analysis for sequencing-based assays and to 
make them available to all investigators, we and 
others have created a new generation of align-
ment programs capable of mapping hundreds 
of millions of short reads on a single desktop 
computer. Vendors of sequencing machines 
provide specialized mapping software, such as 
the ELAND program from Illumina, but in this 
article we focus on third-party packages, some of 
which are free and open source. These programs 
are built on algorithms that exploit features of 
short DNA sequencing reads to map millions of 
reads per hour while minimizing both process-
ing time and memory requirements.

alignment between the read and its true source 
in the genome may actually have more differ-
ences than the alignment between the read 
and some other copy of the repeat. The spliced 
mapping problem faces this same challenge but 
is further complicated by the possible presence 
of intron-sized gaps.

DNA sequencers from Illumina, ABI, Roche 
(of Basel, Switzerland), Helicos and other compa-
nies produce millions of reads per run. Complete 
assays may involve many runs, so an investigator 
may need to map millions or billions of reads 
to a genome. For example, the recent cancer 
genome sequencing project by Ley et al.5 gener-
ated nearly 8 billion reads from 132 sequencing 
runs. A large, expensive computer grid might 
map the reads from this experiment in a few days 

Burrows-Wheeler 
Reference genome

(> 3 gigabases)

Bowtie index
(~2 gigabytes)

Concatenate into
single string

Burrows-Wheeler
transform and indexing

ACTCCCGTACTCTAAT

AAT

AT

T

ACTCCCGTACTCTAAT

Convert each
hit back to
genome location

Position N

Position 2

Index seed pairs

Position 1

Seed index
(tens of gigabytes)

Hits identify positions
in genome where
spaced seed pair
is found

Look up each pair
of seeds in index

Six seed
pairs per
read/
fragment

Confirm hits
by checking
“****” positions

ACTC  CCGT  ACTC  TAAT

Report alignment to user

Chr1
Chr2
Chr3
Chr4

Spaced seeds
Reference genome

(> 3 gigabases)
Short read

Extract seeds

ACTCCCGTACTCTAAT

Short read

ACTCCCGTACTCTAAT

Look up
‘suffixes’
of read

Hits identify
positions in

genome where
read is found

1
2

3
4

5
6

CTGC CGTA AACT AATG

ACTG CCGT AAAC TAAT

ACTG **** AAAC ****

ACTG **** AAAC ****
**** CCGT **** TAAT

ACTG **** **** TAAT

**** **** AAAC TAAT

ACTG CCGT **** ****
**** CCGT AAAC ****

**** CCGT **** TAAT

ACTG **** **** TAAT

**** CCGT AAAC ****

ba

Chr1
Chr2
Chr3
Chr4

Figure 1  Two recent algorithmic approaches for aligning short (20–200-bp) sequencing reads.  
(a) Algorithms based on spaced-seed indexing, such as Maq, index the reads as follows: each position 
in the reference is cut into equal-sized pieces, called ‘seeds’ and these seeds are paired and stored 
in a lookup table. Each read is also cut up according to this scheme, and pairs of seeds are used as 
keys to look up matching positions in the reference. Because seed indices can be very large, some 
algorithms (including Maq) index the reads in batches and treat substrings of the reference as queries. 
(b) Algorithms based on the Burrows-Wheeler transform, such as Bowtie, store a memory-efficient 
representation of the reference genome. Reads are aligned character by character from right to left 
against the transformed string. With each new character, the algorithm updates an interval (indicated 
by blue ‘beams’) in the transformed string. When all characters in the read have been processed, 
alignments are represented by any positions within the interval. Burrows-Wheeler–based algorithms can 
run substantially faster than spaced seed approaches, primarily owing to the memory efficiency of the 
Burrows-Wheeler search. Chr., chromosome.
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Figure from (Trapnell & Salzberg, 2009)
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Hash table aligners

▶ By choosing proper seed lengths hash table index aligners can be very sensitive, but that
may decrease the performance
▶ Short seeds → false positives that slow down the (later) mapping process
▶ Longer seeds → more seeds needed → more memory

▶ Comprehensive hash tables take lots of memory, which degrades performance in practical
implementations

▶ Depending on the application, we may want to sacrifice sensitivity for performance, or
limit mismatches
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Burrows-Wheeler transform

▶ Creates a transformation of the reference sequence that
▶ Contains the same information as the original sequence
▶ Can be compressed more efficiently
▶ Allows fast lookup of substrings
▶ Can be back-transformed

▶ Burrows-Wheeler Transform
▶ Suffix array
▶ Memory-efficient (∼1GB for human genome)
▶ Used by e.g. Bowtie (Langmead et al., 2009) and BWA
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Suffix and prefix

▶ Definitions:
▶ A prefix of a string S is a substring of S that occurs at the beginning of S
▶ A suffix of a string S is a substring that occurs at the end of S

▶ By using certain representations of suffix/prefix tries the alignment of a sequencing read to
multiple identical copies of a substring in the reference is done only once
▶ All identical copies collapse on a single path in the trie
▶ When using a typical hash table index, the alignment must be performed for each individual

genome position

▶ Many of the current aligners use the so-called Burrows-Wheeler Transform (BWT)



46/ 53

Burrows-Wheeler transform: example

▶ Sequence: X = ACAACG

▶ Add the dollar symbol (or some other symbol) to mark the end of the string
▶ $ is considered to be lexicographically smaller than all the other symbols

▶ Create all cyclic permutations of the sequence X$ = ACAACG$ and then sort them in
lexicographic order

▶ BWT of the sequence corresponds to the concatenation of the last character of each line
in sorted list, here: BWT(ACAACG$)=GC$AAAC

Burrows-Wheeler transform: Example 

• Sequence:  ACAACG 
• Add  the dollar symbol to mark the end of the string; $ is considered to be 

lexicographically smaller than all the other symbols.  
• Create all cyclic permutations of the sequence ACAACG$ and then sort them in 

lexicographic order 
 
 
 
 
 

• BWT of the sequence = concatenation of the last character of each line in 
sorted list, here: GC$AAAC 

• Suffix array: list of the original row  numbers (6,2,0,3,1,4,5) 
• The suffix array A of a string S is an array of integers providing the starting 

positions of suffixes of S in lexicographical order.  
• A[i] =the starting position of the i-th smallest suffix in S 

 
15 
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Burrows-Wheeler transform: example

▶ Suffix array: list of the original row numbers A = (6, 2, 0, 3, 1, 4, 5)
▶ The suffix array A of a string X is an array of integers providing the starting positions of

suffixes of S in lexicographical order
▶ A[i ] = the starting position of the ith smallest suffix in S

Burrows-Wheeler transform: Example 

• Sequence:  ACAACG 
• Add  the dollar symbol to mark the end of the string; $ is considered to be 

lexicographically smaller than all the other symbols.  
• Create all cyclic permutations of the sequence ACAACG$ and then sort them in 

lexicographic order 
 
 
 
 
 

• BWT of the sequence = concatenation of the last character of each line in 
sorted list, here: GC$AAAC 

• Suffix array: list of the original row  numbers (6,2,0,3,1,4,5) 
• The suffix array A of a string S is an array of integers providing the starting 

positions of suffixes of S in lexicographical order.  
• A[i] =the starting position of the i-th smallest suffix in S 

 
15 
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Reversing the BWT

▶ The BW matrix has the property of“last first (LF) mapping”
▶ The ith occurrence of character C in the last column corresponds to the same character in

the original string X as the ith occurrence of C in the first column

▶ We can use this property to reverse the transformation
▶ Example: X = acaacg$, BWT(X) = gc$aaac

http://genomebiology.com/2009/10/3/R25 Genome Biology 2009,     Volume 10, Issue 3, Article R25       Langmead et al. R25.3

Genome Biology 2009, 10:R25

of minimizing mismatches in the seed portion of the read,
although this option incurs additional computational cost.

With its default options, Bowtie's sensitivity measured in
terms of reads aligned is equal to SOAP's and somewhat less
than Maq's. Command line options allow the user to increase
sensitivity at the cost of greater running time, and to enable
Bowtie to report multiple hits for a read. Bowtie can align
reads as short as four bases and as long as 1,024 bases. The
input to a single run of Bowtie may comprise a mixture of
reads with different lengths.

Bowtie description and results
Bowtie indexes the reference genome using a scheme based
on the Burrows-Wheeler transform (BWT) [17] and the FM
index [18,19]. A Bowtie index for the human genome fits in
2.2 GB on disk and has a memory footprint of as little as 1.3
GB at alignment time, allowing it to be queried on a worksta-
tion with under 2 GB of RAM.

The common method for searching in an FM index is the
exact-matching algorithm of Ferragina and Manzini [18].
Bowtie does not simply adopt this algorithm because exact
matching does not allow for sequencing errors or genetic var-
iations. We introduce two novel extensions that make the
technique applicable to short read alignment: a quality-aware
backtracking algorithm that allows mismatches and favors
high-quality alignments; and 'double indexing', a strategy to

avoid excessive backtracking. The Bowtie aligner follows a
policy similar to Maq's, in that it allows a small number of
mismatches within the high-quality end of each read, and it
places an upper limit on the sum of the quality values at mis-
matched alignment positions.

Burrows-Wheeler indexing
The BWT is a reversible permutation of the characters in a
text. Although originally developed within the context of data
compression, BWT-based indexing allows large texts to be
searched efficiently in a small memory footprint. It has been
applied to bioinformatics applications, including oligomer
counting [20], whole-genome alignment [21], tiling microar-
ray probe design [22], and Smith-Waterman alignment to a
human-sized reference [23].

The Burrows-Wheeler transformation of a text T, BWT(T), is
constructed as follows. The character $ is appended to T,
where $ is not in T and is lexicographically less than all char-
acters in T. The Burrows-Wheeler matrix of T is constructed
as the matrix whose rows comprise all cyclic rotations of T$.
The rows are then sorted lexicographically. BWT(T) is the
sequence of characters in the rightmost column of the Bur-
rows-Wheeler matrix (Figure 1a). BWT(T) has the same
length as the original text T.

This matrix has a property called 'last first (LF) mapping'. The
ith occurrence of character X in the last column corresponds to
the same text character as the ith occurrence of X in the first

Burrows-Wheeler transformFigure 1
Burrows-Wheeler transform. (a) The Burrows-Wheeler matrix and transformation for 'acaacg'. (b) Steps taken by EXACTMATCH to identify the range 
of rows, and thus the set of reference suffixes, prefixed by 'aac'. (c) UNPERMUTE repeatedly applies the last first (LF) mapping to recover the original text 
(in red on the top line) from the Burrows-Wheeler transform (in black in the rightmost column).

(a)

(b)

(c)

Figure from (Langmead et al., 2008)

▶ Thus, BWT−1(BWT(X)) = acaacg$ = X
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Reversing the BWT

▶ The BW matrix has the property of“last first (LF) mapping”
▶ The ith occurrence of character C in the last column corresponds to the same character in

the original string X as the ith occurrence of C in the first column

▶ We can use this property to reverse the transformation
▶ Example: X = acaacg$, BWT(X) = gc$aaac
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of minimizing mismatches in the seed portion of the read,
although this option incurs additional computational cost.

With its default options, Bowtie's sensitivity measured in
terms of reads aligned is equal to SOAP's and somewhat less
than Maq's. Command line options allow the user to increase
sensitivity at the cost of greater running time, and to enable
Bowtie to report multiple hits for a read. Bowtie can align
reads as short as four bases and as long as 1,024 bases. The
input to a single run of Bowtie may comprise a mixture of
reads with different lengths.

Bowtie description and results
Bowtie indexes the reference genome using a scheme based
on the Burrows-Wheeler transform (BWT) [17] and the FM
index [18,19]. A Bowtie index for the human genome fits in
2.2 GB on disk and has a memory footprint of as little as 1.3
GB at alignment time, allowing it to be queried on a worksta-
tion with under 2 GB of RAM.

The common method for searching in an FM index is the
exact-matching algorithm of Ferragina and Manzini [18].
Bowtie does not simply adopt this algorithm because exact
matching does not allow for sequencing errors or genetic var-
iations. We introduce two novel extensions that make the
technique applicable to short read alignment: a quality-aware
backtracking algorithm that allows mismatches and favors
high-quality alignments; and 'double indexing', a strategy to

avoid excessive backtracking. The Bowtie aligner follows a
policy similar to Maq's, in that it allows a small number of
mismatches within the high-quality end of each read, and it
places an upper limit on the sum of the quality values at mis-
matched alignment positions.

Burrows-Wheeler indexing
The BWT is a reversible permutation of the characters in a
text. Although originally developed within the context of data
compression, BWT-based indexing allows large texts to be
searched efficiently in a small memory footprint. It has been
applied to bioinformatics applications, including oligomer
counting [20], whole-genome alignment [21], tiling microar-
ray probe design [22], and Smith-Waterman alignment to a
human-sized reference [23].

The Burrows-Wheeler transformation of a text T, BWT(T), is
constructed as follows. The character $ is appended to T,
where $ is not in T and is lexicographically less than all char-
acters in T. The Burrows-Wheeler matrix of T is constructed
as the matrix whose rows comprise all cyclic rotations of T$.
The rows are then sorted lexicographically. BWT(T) is the
sequence of characters in the rightmost column of the Bur-
rows-Wheeler matrix (Figure 1a). BWT(T) has the same
length as the original text T.

This matrix has a property called 'last first (LF) mapping'. The
ith occurrence of character X in the last column corresponds to
the same text character as the ith occurrence of X in the first

Burrows-Wheeler transformFigure 1
Burrows-Wheeler transform. (a) The Burrows-Wheeler matrix and transformation for 'acaacg'. (b) Steps taken by EXACTMATCH to identify the range 
of rows, and thus the set of reference suffixes, prefixed by 'aac'. (c) UNPERMUTE repeatedly applies the last first (LF) mapping to recover the original text 
(in red on the top line) from the Burrows-Wheeler transform (in black in the rightmost column).

(a)

(b)

(c)

Figure from (Langmead et al., 2008)

▶ Thus, BWT−1(BWT(X)) = acaacg$ = X
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Suffix array interval

▶ Suffix array values store the positions of the occurrences of suffixes in the string in
lexicographical order

→ All suffixes that have a given substring W as prefix appear on consecutive rows

▶ All occurrences of a substring W in X appear in an interval (consecutive indices) in suffix
array

▶ Examples: W = AC → [2,3], W = A → [1,3]

Suffix array interval 

• Suffix array values store the positions of the 
occurrences of suffixes in the string 

• All suffixes that have a given substring W as prefix 
appear on consecutive rows 

• All occurrences of a substring W in X appear in an 
interval (consecutive indices) in suffix array 

• Examples: W=AC -> [2,3], W=A -> [1,3] X=ACAACG 

17 
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Short read aligment using BWT

The LF and suffix array intervals are used in exact matching of substrings/short reads

▶ The range of matrix rows beginning with successively longer suffixes of the query/read are
back-tracked

▶ At each step, the size of the range either decreases or remains the same

▶ When the algorithm completes, rows beginning with the entire query correspond to exact
occurrences of the query in the text

▶ If the range is empty, the text does not contain the query

▶ Example query: AAC

http://genomebiology.com/2009/10/3/R25 Genome Biology 2009,     Volume 10, Issue 3, Article R25       Langmead et al. R25.3

Genome Biology 2009, 10:R25

of minimizing mismatches in the seed portion of the read,
although this option incurs additional computational cost.

With its default options, Bowtie's sensitivity measured in
terms of reads aligned is equal to SOAP's and somewhat less
than Maq's. Command line options allow the user to increase
sensitivity at the cost of greater running time, and to enable
Bowtie to report multiple hits for a read. Bowtie can align
reads as short as four bases and as long as 1,024 bases. The
input to a single run of Bowtie may comprise a mixture of
reads with different lengths.

Bowtie description and results
Bowtie indexes the reference genome using a scheme based
on the Burrows-Wheeler transform (BWT) [17] and the FM
index [18,19]. A Bowtie index for the human genome fits in
2.2 GB on disk and has a memory footprint of as little as 1.3
GB at alignment time, allowing it to be queried on a worksta-
tion with under 2 GB of RAM.

The common method for searching in an FM index is the
exact-matching algorithm of Ferragina and Manzini [18].
Bowtie does not simply adopt this algorithm because exact
matching does not allow for sequencing errors or genetic var-
iations. We introduce two novel extensions that make the
technique applicable to short read alignment: a quality-aware
backtracking algorithm that allows mismatches and favors
high-quality alignments; and 'double indexing', a strategy to

avoid excessive backtracking. The Bowtie aligner follows a
policy similar to Maq's, in that it allows a small number of
mismatches within the high-quality end of each read, and it
places an upper limit on the sum of the quality values at mis-
matched alignment positions.

Burrows-Wheeler indexing
The BWT is a reversible permutation of the characters in a
text. Although originally developed within the context of data
compression, BWT-based indexing allows large texts to be
searched efficiently in a small memory footprint. It has been
applied to bioinformatics applications, including oligomer
counting [20], whole-genome alignment [21], tiling microar-
ray probe design [22], and Smith-Waterman alignment to a
human-sized reference [23].

The Burrows-Wheeler transformation of a text T, BWT(T), is
constructed as follows. The character $ is appended to T,
where $ is not in T and is lexicographically less than all char-
acters in T. The Burrows-Wheeler matrix of T is constructed
as the matrix whose rows comprise all cyclic rotations of T$.
The rows are then sorted lexicographically. BWT(T) is the
sequence of characters in the rightmost column of the Bur-
rows-Wheeler matrix (Figure 1a). BWT(T) has the same
length as the original text T.

This matrix has a property called 'last first (LF) mapping'. The
ith occurrence of character X in the last column corresponds to
the same text character as the ith occurrence of X in the first

Burrows-Wheeler transformFigure 1
Burrows-Wheeler transform. (a) The Burrows-Wheeler matrix and transformation for 'acaacg'. (b) Steps taken by EXACTMATCH to identify the range 
of rows, and thus the set of reference suffixes, prefixed by 'aac'. (c) UNPERMUTE repeatedly applies the last first (LF) mapping to recover the original text 
(in red on the top line) from the Burrows-Wheeler transform (in black in the rightmost column).

(a)

(b)

(c)

Figure from (Langmead et al., 2008)
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Short-read mappers
Such programs as Maq and Bowtie (Table 1) 
use a computational strategy known as ‘index-
ing’ to speed up their mapping algorithms. Like 
the index at the end of a book, an index of a 
large DNA sequence allows one to rapidly find 
shorter sequences embedded within it. Maq is 
based on a straightforward but effective strategy 
called spaced seed indexing6 (Fig. 1a). In this 
strategy, a read is divided into four segments of 
equal length, called the ‘seeds’. If the entire read 
aligns perfectly to the reference genome, then 
clearly all of the seeds will also align perfectly. 
If there is one mismatch, however, perhaps due 
to a single-nucleotide polymorphism (SNP), 
then it must fall within one of the four seeds, 
but the other three will still match perfectly. 
Using similar reasoning, two mismatches will 
fall in at most two seeds, leaving the other two 
to match perfectly. Thus, by aligning all pos-
sible pairs of seeds (six possible pairs) against 
the reference, it is possible to winnow the list of 
candidate locations within the reference where 
the full read may map, allowing at most two 
mismatches. Maq’s spaced seed index enables 
it to perform this winnowing operation very 
efficiently. The resulting set of candidate reads 
is typically small enough that the rest of the 
read—that is, the other two seeds that might 
contain the mismatches—may be individually 
checked against the reference.

Bowtie takes an entirely different approach, 
borrowing a technique originally developed 
for compressing large files called the Burrows-
Wheeler transform. Using this transform, the 
index for the entire human genome fits into 
less than two gigabytes of memory (an amount 
that is commonly available on today’s desktop 
and even laptop computers)—in contrast to a 
spaced seed index, which may require over 50 
gigabytes—and yet reads can still be aligned 
efficiently. Bowtie aligns a read one character 
at a time to the Burrows-Wheeler–transformed 
genome (Fig. 1b). Each successively aligned 
new character allows Bowtie to winnow the 
list of positions to which the read might map. 
If Bowtie cannot find a location where a read 
aligns perfectly, the algorithm backtracks 
to a previous character of the read, makes a  
substitution and resumes the search. In effect, 
the Burrows-Wheeler transform enables 
Bowtie to conquer the mapping problem by 
first solving a simple subproblem—align one 
character—and then building on that solution 
to solve a slightly harder problem—align two 
characters—and then continuing on to three 
characters, and so on, until the entire read has 
been aligned. Bowtie’s alignment algorithm is 
substantially more complicated than Maq’s, but 
Bowtie’s alignment speed is more than 30-fold 
faster7.

using traditional alignment algorithms such as 
BLAST or BLAT, but such grids are not acces-
sible to everyone. To reduce the computing cost 
of analysis for sequencing-based assays and to 
make them available to all investigators, we and 
others have created a new generation of align-
ment programs capable of mapping hundreds 
of millions of short reads on a single desktop 
computer. Vendors of sequencing machines 
provide specialized mapping software, such as 
the ELAND program from Illumina, but in this 
article we focus on third-party packages, some of 
which are free and open source. These programs 
are built on algorithms that exploit features of 
short DNA sequencing reads to map millions of 
reads per hour while minimizing both process-
ing time and memory requirements.

alignment between the read and its true source 
in the genome may actually have more differ-
ences than the alignment between the read 
and some other copy of the repeat. The spliced 
mapping problem faces this same challenge but 
is further complicated by the possible presence 
of intron-sized gaps.

DNA sequencers from Illumina, ABI, Roche 
(of Basel, Switzerland), Helicos and other compa-
nies produce millions of reads per run. Complete 
assays may involve many runs, so an investigator 
may need to map millions or billions of reads 
to a genome. For example, the recent cancer 
genome sequencing project by Ley et al.5 gener-
ated nearly 8 billion reads from 132 sequencing 
runs. A large, expensive computer grid might 
map the reads from this experiment in a few days 

Burrows-Wheeler 
Reference genome

(> 3 gigabases)

Bowtie index
(~2 gigabytes)

Concatenate into
single string

Burrows-Wheeler
transform and indexing

ACTCCCGTACTCTAAT

AAT

AT

T

ACTCCCGTACTCTAAT

Convert each
hit back to
genome location

Position N

Position 2

Index seed pairs

Position 1

Seed index
(tens of gigabytes)

Hits identify positions
in genome where
spaced seed pair
is found

Look up each pair
of seeds in index

Six seed
pairs per
read/
fragment

Confirm hits
by checking
“****” positions

ACTC  CCGT  ACTC  TAAT

Report alignment to user

Chr1
Chr2
Chr3
Chr4

Spaced seeds
Reference genome

(> 3 gigabases)
Short read

Extract seeds

ACTCCCGTACTCTAAT

Short read

ACTCCCGTACTCTAAT

Look up
‘suffixes’
of read

Hits identify
positions in

genome where
read is found

1
2

3
4

5
6

CTGC CGTA AACT AATG

ACTG CCGT AAAC TAAT

ACTG **** AAAC ****

ACTG **** AAAC ****
**** CCGT **** TAAT

ACTG **** **** TAAT

**** **** AAAC TAAT

ACTG CCGT **** ****
**** CCGT AAAC ****

**** CCGT **** TAAT

ACTG **** **** TAAT

**** CCGT AAAC ****

ba

Chr1
Chr2
Chr3
Chr4

Figure 1  Two recent algorithmic approaches for aligning short (20–200-bp) sequencing reads.  
(a) Algorithms based on spaced-seed indexing, such as Maq, index the reads as follows: each position 
in the reference is cut into equal-sized pieces, called ‘seeds’ and these seeds are paired and stored 
in a lookup table. Each read is also cut up according to this scheme, and pairs of seeds are used as 
keys to look up matching positions in the reference. Because seed indices can be very large, some 
algorithms (including Maq) index the reads in batches and treat substrings of the reference as queries. 
(b) Algorithms based on the Burrows-Wheeler transform, such as Bowtie, store a memory-efficient 
representation of the reference genome. Reads are aligned character by character from right to left 
against the transformed string. With each new character, the algorithm updates an interval (indicated 
by blue ‘beams’) in the transformed string. When all characters in the read have been processed, 
alignments are represented by any positions within the interval. Burrows-Wheeler–based algorithms can 
run substantially faster than spaced seed approaches, primarily owing to the memory efficiency of the 
Burrows-Wheeler search. Chr., chromosome.
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Figure from (Trapnell & Salzberg, 2009)



52/ 53

Inexact alignment with BWT

▶ The search proceeds similarly to exact alignment

▶ If the range becomes empty (a suffix does not occur in the text), then the algorithm may
select an already-matched query position and substitute a different base there, introducing
a mismatch into the alignment

▶ The exact alignment search resumes from just after the substituted position

▶ The algorithm selects only those substitutions which yield a modified suffix that occurs at
least once in the text (and that are consistent with the alignment policy)

▶ If there are multiple candidate substitution positions, then the algorithm greedily selects a
position with a minimal quality value

▶ More recent methods, such as Bowtie2, also allow indels, e.g.
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Additional reading

▶ Lecture slides by Ben Langmead https:

//www.cs.jhu.edu/~langmea/resources/lecture_notes/bwt_and_fm_index.pdf

▶ A book by Veli MÃ¤kinen et al. “Genome-Scale Algorithm Design”, Cambridge Univ.
Press, 2015. http://www.genome-scale.info
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