
PHYS-E0420 Many-Body Quantum Mechanics

Spring 2024/Päivi Törmä

Outline of the course

What: Time-dependent perturbation theory (Lectures 1-2)
Why: Time-dependent perturbation theory is an integral part of a proper physicist
education. It provides the basic quantum mechanical description of a wide range
of responses, perturbations and measurements in physics. An example is transi-
tions between electronic states of an atom caused by light, that is, the basics of
spectroscopy.
What: Many-body quantum physics (Lectures 3-12)
Why: Many intriguing quantum phenomena that are either already at the applica-
tion stage or at the forefront of modern research cannot be explained using quantum
mechanics for a single system, that is, without taking into account the many-body
nature of the system. Examples of phenomena and fields where many-body effects
are important are quantized light, quantum optics, superconductivity, other many-
body quantum states of matter such as Mott insulators, quantum information, etc.
Methods: In this course, you will learn time-dependent perturbation theory, and
the basic many-body quantum methods, such as second quantization. The methods
will be systematically used, and used again, throughout the course, so that you will
master them by the end of the course.
Physical phenomena: What comes to physical phenomena, the aim is not the
same as with methods where we repeat the same things in order to learn them
thoroughly. We will not focus on one physical phenomenon or one research field
throughout the course, instead, we will give examples and snapshots of various
physical phenomena from different research fields. The idea is to give you a broad
perspective of the many interesting things that are happening in the present-day
studies of quantum many-body phenomena.

Lecture 1

Literature: R.L. Liboff, Introductory Quantum Mechanics (Fourth edition) (Addi-
son Wesley), Chapters 13.5-13.8

Learning goals

• To know the difference between Heisenberg, Schrödinger and Interaction
pictures; to be able to make calculations using them.

• To be able to calculate time-development of a quantum system using 1st
order perturbation theory; understand the physical meaning of the result for
harmonic and adiabatic perturbation.

1 Time-development of quantum systems

From previous courses, you know that the Schrödinger equation describes the time-
development of quantum systems. It is, however, in most practical cases impossible
to solve exactly. One approach to describe time-development in an approximative
way is time-dependent perturbation theory. It is, as the name indicates, similar to
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the time-independent perturbation theory that you have already learned in previous
courses.

Time-dependence and its perturbative treatment is of special interest when
we probe the system. We want to learn about the properties of a quantum system
by probing it, i.e. ”disturbing” it a bit and seeing how it reacts to it. This kind of
disturbance should be weak and not dramatically change the system so that we can
treat it as a small perturbation.

When considering time-dependence, it is useful to learn three different ways
of formulating the problem of quantum time-evolution: the Schrödinger, the Heisen-
berg, and the Interaction pictures. These are physically exactly equivalent. You can
view them just as the same old Schrödinger equation represented by using differ-
ent bases. However, from the practical point of view, depending on the system in
question, one of them can be the most convenient mathematical formulation of the
problem.

Once we have learned these three pictures, we will use the Interaction picture
to derive the basic results of time-dependent perturbation theory.

2 Schrödinger, Heisenberg and Interaction pictures

2.1 Schrödinger picture

Note: in these lecture notes, operators are usually not marked with a hat. For
instance the Hamiltonian which is marked just H not Ĥ. However, in some of the
lectures some operators are marked with the hat, this is in cases where it might be
slightly non-trivial to see what is an operator and what is not.

The Schrödinger picture is what you are the most familiar with from other
courses. The Schrödinger equation for the time evolution of the quantum state is

i~
d

dt
|Ψ(t)〉 = H(t)|Ψ(t)〉, (2.1)

where H(t) is the Hamiltonian operator that can, indeed, depend on time. For
clarity, we add a subindex (S,H,I) to refer to quantum states and operators in a
particular picture (Schrödinger, Heisenberg, Interaction):

i~
d

dt
|Ψ(t)〉S = HS(t)|Ψ(t)〉S . (2.2)

Formally one can solve the above equation as

|Ψ(t)〉S = U(t)|Ψ(0)〉S , (2.3)

where U(t) is the time-evolution operator that propagates the state from time 0 to
time t. If the Hamitonian is time-independent, i.e. H(t) = H, the form of U(t) is

U(t) = e−
i
~Ht. (2.4)

It is very easy to show (just insert Equations (2.3) and (2.4) into (2.2) and take
the time derivative) that this fulfills the Schrödiner equation. If the Hamiltonian is
time-dependent, one can write the equation (2.1) in the form

|Ψ(t)〉S = |Ψ(0)〉S −
i

~

∫ t

0

dt′H(t′)|Ψ(t′)〉S . (2.5)
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Then one can iterate this to obtain the series solution

|Ψ(t)〉S =

[
1− i

~

∫ t

0

dt′H(t′) +
i2

~2

∫ t

0

dt′
∫ t′

0

dt′′H(t′)H(t′′) + ...

]
|Ψ(0)〉S . (2.6)

One can write the time-evolution operator in equation (2.3) in the form

U(t) = Te−
i
~
∫ t
0
dτ H(τ), (2.7)

where T is the so-called time-ordering operator. The time-ordering operator means
that all operators are arranged in such a way that the ones corresponding to earlier
times are on the right. As an example for an operator A at different times:

T [A(t1)A(t2)A(t3)] = A(t3)A(t1)A(t2) IF t3 > t1 > t2. (2.8)

You will derive the result of Equation (2.7) in the Exercise set 1. At the moment,
you can just think that is a formal way of writing the result of equation (2.6). In
general, we can also integrate the Schrödinger equation not from time 0 to time t,
but from arbitrary time t0 to time t. Then the time-evolution operator is denoted
by U(t, t0) and becomes:

U(t, t0) = Te
− i

~
∫ t
t0
dτ H(τ)

(2.9)

and
|Ψ(t)〉S = U(t, t0)|Ψ(t0)〉S . (2.10)

Ultimately we are interested in the observables and their expectation values
(i.e. results from the measurements). The expectation value of an observable related
to the operator A (AS in the Schrödinger picture), for instance position, momentum,
spin, etc. is

〈AS(t)〉 = S〈Ψ(t)|AS |Ψ(t)〉S . (2.11)

Since we are interested in how this expectation value varies in time, we calculate
the equation of motion

i~
d

dt
〈AS(t)〉 = i~

[(
d

dt
S〈Ψ(t)|

)
AS |Ψ(t)〉S + S〈Ψ(t)|AS

(
d

dt
|Ψ(t)〉S

)
+S 〈Ψ(t)|

(
dAS
dt

)
|Ψ(t)〉S

]
= S〈Ψ(t)| [AS , H(t)] |Ψ(t)〉S .

(2.12)

Here the observable AS is independent of time dAS
dt = 0. In the Schrödinger picture,

operators are always constants in time. But the expectation value does depend on
time since the state evolves in time.

However, one can make also another choice: to have the states constant in
time, and the operators evolving! This is the Heisenberg picture. This is possible
because in quantum mechanics, it is allowed to change the basis by a unitary trans-
formation: such a basis change does not change the physically meaningful quantities,
namely observables. Since the time-evolution operator is a unitary operator, we can
just apply its inverse, U−1 to the time-dependent states of the Schrödinger picture
and make them time-independent! However, we have to make the same basis change
to operators, and this will make them time-dependent. Let us look closer at this
so-called Heisenberg picture.
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2.2 Heisenberg picture

In the Heisenberg picture the state remains constant but the operators evolve.
We denote the state in the Heisenberg picture by |Ψ(t)〉H and define it from the
Schrödinger picture state as

|Ψ(t)〉H = U(t)−1|Ψ(t)〉S, (2.13)

where we use the basis transformation operator that is the inverse of the time
evolution operator, U(t)−1. Inserting the time-evolution of |Ψ(t)〉S = U(t)|Ψ(0)〉S
into this we see that the state in the Heisenberg representation is indeed independent
of time

|Ψ(t)〉H = |Ψ(0)〉S =: |Ψ〉H. (2.14)

What about the expectation values then? Since we have made a basis trans-
formation, the operators (and observables) also need to be transferred to the new
basis

AH(t) = U(t)−1ASU(t), (2.15)

where AS is the observable A discussed above in the Schrödinger representation.
The Hamiltonian operators have this relation as well:

HH(t) = U(t)−1HSU(t). (2.16)

Of course, for time-independent Hamiltonians, U(t) = e−
i
~HSt commutes with HS

and we have simply HH = HS . However, for time-dependent Hamiltonians, one
should use Equation (2.16) in case the Hamiltonians at different times do not com-
mute. It is easy to see that the time-evolution of the expectation value 〈A(t)〉 is
unchanged

H〈Ψ|AH(t)|Ψ〉H = S〈Ψ(t)|AS |Ψ(t)〉S. (2.17)

Also, the Schrödinger equation of motion for the state will be replaced by a
similar looking equation of motion for the operators

i~
d

dt
AH(t) = i~

d

dt

(
U(t)−1ASU(t)

)
= i~

(
d

dt
U(t)−1

)
ASU(t)+U(t)−1ASi~

(
d

dt
U(t)

)
.

(2.18)
In the Exercise set 1, you will show that this leads to the so-called Heisenberg
equation of motion:

i~
d

dt
AH(t) = −HH(t)AH(t) +AH(t)HH(t) = [AH, HH] . (2.19)

QUIZ
QUIZ
QUIZ

2.3 Interaction picture

Quite often one part of the Hamiltonian H corresponds to a system that we can
exactly solve, let us denote it H0, and another part, say V (t), to some features that
make the system complicated:

H = H0 + V (t). (2.20)
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For instance, H0 could describe a particle in a box, a problem to which the solution
is exactly known. The other part V could then correspond to, e.g., the interactions
of the particle with something else, which in general makes the problem hard to
solve. In some cases one can also view that H0 is the system of interest and V
a small perturbation used for probing it. It is often quite practical to solve time-
development in such a way that H0 and V are treated differently. We can make a
choice where H0 gives the time dependence to operators, as in Heisenberg picture,
but V then acts like the Hamiltonian in the Schrödinger picture. This approach is
called the Interaction picture.

In the Interaction picture, one defines a time-evolution operator U0 that
corresponds to the H0 part of the Hamiltonian:

U0(t) = Te−
i
~
∫ t
0
dτ H0(τ). (2.21)

The operators are evolved according to this, i.e., according to only part of the
Hamiltonian. Quite often H0(t) is actually time-independent because energy (time-
dependence) is given by the perturbation V (t); in the following we will assume so,
that is, H0(t) = H0. In the Heisenberg picture, the quantum state wavefunction
became independent of time when such a basis transformation was applied, see
Equation (2.14). In the Interaction picture, the wavefunction is not independent of
time because U0 contains only part of the Hamiltonian, i.e. it cannot cancel all the
time development of the Schrödinger picture wavefunction:

|ψ(t)〉I = eiH0t/~|ψ(t)〉S
= eiH0t/~Te−

i
~
∫ t
0
dτ H(τ)|ψ(0)〉S

= eiH0t/~Te−
i
~
∫ t
0
dτ H(τ)|ψ(0)〉I.

(2.22)

Let us calculate the time derivative of the state

i~
d

dt
|ψ(t)〉I = i~

d

dt

(
eiH0t/~Te−

i
~
∫ t
0
dτ H(τ)|ψ(0)〉I

)
= −H0e

iH0t/~Te−
i
~
∫ t
0
dτ H(τ)|ψ(0)〉I + eiH0t/~H(t)Te−

i
~
∫ t
0
dτ H(τ)|ψ(0)〉I

= −H0|ψ(t)〉I +HI(t)|ψ(t)〉I
= VI(t)|ψ(t)〉I,

(2.23)

where HI and VI are the operators H and V in the interaction picture, obtained
through the relation

OI(t) = eiH0t/~Oe−iH0t/~. (2.24)

The usefulness of the interaction picture comes apparent when one actually
tries to solve the time-evolution of the state. Solving the above differential equation
(2.23) yields the time evolution

|Ψ(t)〉I = UI(t)|Ψ(0)〉I, (2.25)

where the interaction picture time evolution operator is UI(t) = Te−
i
~
∫ t
0
dτ VI(τ). To

see explicitly the terms of different order in the series expansion, we write V = λH ′
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(see Exercise set 1):

UI(t) = 1 +

∞∑
n=1

(
−iλ
~

)n ∫ t

0

dτn

∫ τn

0

dτn−1 . . .

∫ τ2

0

dτ1

U0(0, τn)H ′S(τn)U0(τn, τn−1)H ′S(τn−1) . . . U0(τ2, τ1)H ′S(τ1)U0(τ1, 0).

(2.26)

This forms a convenient basis for the time-dependent perturbation theory:
• H0 is simple so that U0(t) is easy to calculate
• all complications go into V = λH ′

• one can do perturbative theory using the above series expansion, to any order
in λ

• First-order (time-dependent) perturbation theory for the wavefunction is ob-
tained by keeping (only) the zero (λ0) and first (λ1) order terms in the series
expansion of the wavefunction. Note that when calculating any observables
in general, one has to take care that all terms in the wavefunction expan-
sion that may lead to an Nth order contribution λN are included in the
expansion; this will be discussed more in the Section 3.2 below.

QUIZ
QUIZ
QUIZ

In practice the interaction picture may well be the preferred picture since
we can seldom handle the time-evolution nonperturbatively. But there are uses for
the other pictures too. For some simple systems the time-evolution can be solved
exactly, using simply the Schrödinger or Heisenberg equations of motions.

3 Time-dependent perturbation theory

The time-independent perturbation theory (PT) has already been covered in a
previous course(s). PT yields the leading order corrections (up to a chosen order) to
the eigenstates and the eigenenergies. Time-dependent perturbation theory (TDPT)
supplements the time-independent PT by allowing the study of quantum dynamics,
or time-evolution, in the presence of a weak perturbation V (t). In particular, it gives
the transition rates between different eigenstates of the unperturbed Hamiltonian
H0, for instance, transition rates for transitions between electronic states of an atom
when it is perturbed by a light field.

It is important to understand this difference of time-independent and time-
dependent perturbation theories. In the case of a time-independent perturbation
V (t) = V , PT gives the approximate eigenstates of the full Hamiltonian H0 + V
whereas TDPT gives the time-evolution.

The basic results of TDPT can be derived in various ways. One can, as is
done for instance in Liboff 13.5. and in D.J. Griffiths, Introduction to Quantum
Mechanics, calculate the time-evolution of the wavefunction, projecting it to the
eigenbasis of H0 and keeping only terms with low-order in V . An alternative ap-
proach is to use the time-evolution of the state in the interaction picture. We use
that approach here.
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3.1 Interaction picture

The Hamiltonian is written as

H = H0 + V (t), (3.1)

where H0 is simple enough so that we know its eigenstates and V (t) is sufficiently
small that treating it using a low-order perturbation theory is justifiable.

The time-evolution of the state (or wavefunction) in the interaction picture
|ψ(t)〉I is

|ψ(t)〉I = UI(t, t0)|ψ(t0)〉I, (3.2)

where we assume that the state at time t0 is known and is not affected by the
perturbation (thus we assume V (t) = 0, for t < t0).

The time-evolution operator is given by

UI(t, t0) = 1 +
1

i~

∫ t

t0

dt′ VI(t
′) +

(
1

i~

)2 ∫ t

t0

dt′ VI(t
′)

∫ t′

t0

dt′′ VI(t
′′) + . . . , (3.3)

where VI(t
′) = eiH0(t′−t0)/~V (t′)e−iH0(t′−t0)/~. This series can be written as

UI(t, t0) = Te
− i

~
∫ t
t0
dt′ VI(t

′)
. (3.4)

The series representation for the time-evolution operator yields the time-dependent
perturbation theory. In particular, the first-order time-dependent perturbation the-
ory result for UI is obtained by approximating

UI(t, t0) ≈ 1 +
1

i~

∫ t

t0

dt′ VI(t
′), (3.5)

and higher order perturbation theories can be generated in the same way. As with
PT, if the second order term does not yield good enough results, it is probably best
to try some completely different approach instead of going to third or higher order.
But often the first, or at most the second, order theory is sufficient to describe weak
perturbations.

3.2 First-order time-dependent perturbation theory

Thus, we obtain the first-order time-dependent perturbation theory result for the
wave function

|ψ(t)〉I ≈
[
1 +

1

i~

∫ t

t0

dt′ VI(t
′) +O((VI)

2)

]
|ψ(t0)〉I. (3.6)

We are interested in transition probabilities (or probability amplitudes) between
different eigenstates of H0. These eigenstates yield a nice basis for the interaction
picture time-evolution. Assuming that initially the system is in an eigenstate of the
unperturbed Hamiltonian H0: |ψ(t0)〉I = |ψ(t0)〉 = |l〉, the probability amplitude
for state |k〉 (also an eigenstate of H0) at time t is

〈k|ψ(t)〉I ≈ 〈k|l〉+
1

i~

∫ t

t0

dt′ 〈k|VI(t
′)|l〉+O((VI)

2). (3.7)

Let us assume that the time-dependence of the perturbation V (t) is factorable,
i.e. we can write V (t) = λH ′f(t), where H ′ is an operator but f(t) is simply a
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complex valued function. Now we have VI(t
′) = eiH0(t′−t0)/~λH ′f(t′)e−iH0(t′−t0)/~.

Assuming also that k 6= l, i.e. 〈k|l〉 = 0, we get the probability amplitude

〈k|ψ(t)〉I ≈
λ〈k|H ′|l〉

i~

∫ t

t0

dt′ ei(Ek−El)(t
′−t0)/~f(t′) +O((VI)

2), (3.8)

where Ek and El are the unperturbed eigenenergies (according to H0) of the states
|k〉 and |l〉. The probability for the transition is the absolute value squared of this
(we also choose t0 = 0):

|〈k|ψ(t)〉I|2 ≈
λ2|〈k|H ′|l〉|2

~2

∣∣∣∣∫ t

0

dt′ ei(Ek−El)t
′/~f(t′)

∣∣∣∣2 +O((VI)
3). (3.9)

This equation is the same as Eq.13.52 in Liboff (with t0 = −∞). Note that the
assumption 〈k|l〉 = 0 was essential: if that is not valid, one should include explicitly
the term of the order V 2

I in the wavefunction expansion (3.6) because it would
contribute to the result (3.9) when multiplied with the zeroth order term 〈k|l〉. This
is an example of what was already stated above: when calculating any observables
in general, one has to take care that all terms in the wavefunction expansion that
may lead to an Nth order contribution λN are included in the expansion. Next we
will consider a few important examples.

3.3 Harmonic perturbation

Harmonic perturbation is a very typical one in many contexts, a famous exam-
ple is light or other electromagnetic radiation (harmonic dependence on frequency,
cos(ωt)) interacting with matter. Assume that the time-dependence of the pertur-
bation is of the form f(t) = 2 cosωt, for t ≥ 0 and f(t) = 0, for t < 0. (That is, we
can define t0 = 0.) Now we get the transition probability amplitude

〈k|ψ(t)〉I ≈
λ〈k|H ′|l〉

i~

∫ t

0

dt′ ei(Ek−El)t
′/~
(
eiωt

′
+ e−iωt

′
)
, (3.10)

which yields

〈k|ψ(t)〉I ≈ −i2λH ′kl

[
ei(Ek−El−~ω)t/(2~) sin

(
Ek−El−~ω

2~ t
)

Ek − El − ~ω
+
ei(Ek−El+~ω)t/(2~) sin

(
Ek−El+~ω

2~ t
)

Ek − El + ~ω

]
.

(3.11)
The harmonic perturbation λH ′ cosωt is a semi-classical approximation of the pho-
ton absorption/emission process for a single atom. The first term in the transition
probability describes absorption of the photon of energy ~ω and the latter term
descibes emission of the photon. We could also calculate the transition probability
amplitude k → l by simply swapping k and l states. This gives the full semiclassical
picture of a two-level atom in the presence of the photon field (we are still missing
spontaneous emission which is an effect that comes about when we quantize also
the light field, as will be done later in this course), with transitions k → l + photon
emission/absorption and l → k + photon emission/absorption. Out of these four
processes usually only two are (nearly) resonant (in the sense of energy conserva-
tion) and two are clearly non-resonant. To understand the relation to time-energy
uncertainty, see Exercise set 1.
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3.4 Adiabatic perturbation

Integrating the Eq. (3.8) by parts one obtains (and assuming f(t0) = 0)

〈k|ψ(t)〉I ≈ −
λ〈k|H ′|l〉
Ek − El

[
f(t)ei(Ek−El)(t−t0)/~ −

∫ t

t0

dt′ ei(Ek−El)t
′/~ ∂

∂t′
f(t′)

]
.

(3.12)
If the perturbation is slowly varying, the first term on the right dominates and we
obtain

〈k|ψ(t)〉I ≈ −
λ〈k|H ′|l〉f(t)

Ek − El
ei(Ek−El)(t−t0)/~. (3.13)

This is precisely (assuming f(t) almost constant for a particular time interval) the
result obtained from time-independent perturbation theory, except for the time-
dependent phase factor. The region of validity of the adiabatic approximation will
be discussed in Exercise set 2.
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