
Lecture 2

4 Fermi’s golden rule

Literature: R.L. Liboff, Introductory Quantum Mechanics (Fourth edition) (Addi-
son Wesley), Chapter 13.6

Learning goals

• To know Fermi’s golden rule: what does it describe, when is it valid.
• To be able to derive Fermi’s golden rule.
• To know the semiclassical description of atom-light interation at the micro-

scopic level and understand the approximations used in the description.
• To be aware of the existence of sum rules.
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Figure 1: Example of a transition from an energy state E0 to a continuum of states
E(k): the ionization of an atom. The electron, when removed from the atom, may
have any momentum k. The possible energy states are given by the continuum
dispersion of a free particle E(k).
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Figure 2: An energy state E0 and an energy band characterized by some dispersion
E(k).

A particularly important result from the TDPT is the Fermi’s golden rule
(also called the Golden Rule). It gives transition rates in case the perturbation
couples a state into a continuum, or a band, of states. This can be the case for
instance when an atom is ionized, i.e. the electron is transferred from an electronic
ground state of an atom into a free electron state which can have a continuum of
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possible momentum states. Another example is a molecule in an electronic ground
state, coupled by light field with a band of electronic and vibrational states. There
would be an endless list of examples; this is actually what made the famous physicist
Enrico Fermi to call this result as ”Golden Rule”.

Important: Fermi’s golden rule is based on first order perturbation theory. So,
it assumes that the perturbation is weak. For strong perturbations (strong coupling)
it may not be valid any more.

Let us derive Fermi’s golden rule. In Lecture 1, we obtained the first order
TD perturbation theory result, in case of harmonic perturbation, from the transition
probability amplitude from the state l to the state k (we now include λ in H ′kl, i.e.
H ′kl ≡ λH ′kl):

〈k|ψ(t)〉I ≈ −i2H ′kl

[
ei(Ek−El−~ω)t/(2~) sin

(
Ek−El−~ω

2~ t
)

Ek − El − ~ω
+
ei(Ek−El+~ω)t/(2~) sin

(
Ek−El+~ω

2~ t
)

Ek − El + ~ω

]
.

(4.1)
We now include the coupling λ in H ′kl, i.e. H ′kl ≡ λH ′kl. We discussed the resonant
and non-resonant terms. Let us consider only the resonant processes. Note that
whenever we are considering only two states and the resonant processes, we are doing
the so-called two-level approximation. It assumes that it is sufficient to consider only
two of the many possible electronic transitions in an atom/molecule/semiconductor
if the frequency of the field is sufficiently close to only one of the transition energies,
see Figure 3.

The transition probability becomes (let us denote (Ek − El)/~ = ωkl)

Plk ≈
4|H ′kl|2

~2(ωkl − ω)2
sin2

(
1

2
(ωkl − ω)t

)
. (4.2)

Now, we want to consider not only the transition from the state l to the
state k, but the transition from the state l to a continuous band of energy states.
The number of states within an energy interval from Ek to Ek + dEk is given by

dN = g(Ek)dEk, (4.3)

where g(Ek) is the density of states. The probability that a transition occurs to a
state in a band of width 2∆ centered at Ek is

P̄lk =

∫ Ek+∆

Ek−∆

g(E′k)PlkdE
′
k. (4.4)

Now we can insert Plk from Equation (4.2). With the definition 2~β ≡ (E′k − El −
~ω)t = ~(ωkl − ω)t the result becomes

P̄lk =

∫ Ek+∆

Ek−∆

g(E′k)
|H ′kl|2

~2

sin2 β

β2/t2
dE′k. (4.5)

When El, t and ω are fixed, we have

dE′k =
2~dβ
t

. (4.6)

Furthermore, with this change of variable the integration limits become

±δ ≡ (Ek − El − ~ω ±∆)t

2~
=

(ω − ωkl)t
2

± ∆t

2~
. (4.7)
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Figure 3: The two-level approximation: the energy ~ω corresponding to the field of
frequency ω is close to only one of the possible transition energies. Note that even
when the field frequency ω can be slightly detuned from the transition in question,
i.e. the detuning δ = ω − (Ee − Eg) is non-zero, the field frequency can still be
so far from the other electronic transitions that the two-level approximation stays
valid. Similar approximation can be done also when one has energy bands, not only
energy levels.

The probability is now

P̄lk =
2t

~

∫ +δ

−δ
g(E′k)|H ′kl|2

sin2 β

β2
dβ. (4.8)

Since sin2 β
β2 is a rapidly decaying function in β, c.f. Figure 4, we can approxi-

mate the integration limits ±δ by ±∞. Note that in δ, the term ω−ωkl can become
small when we are reasonably close to the resonance, ω ∼ ωkl. The approximation
of setting the intergration limits to infinity is the better the longer is the time of
probing t and/or larger the bandwidth ∆. Having large bandwidth (continuum) and
long probing times is thus essential when applying the Fermi’s golden rule. Often the
density of states g(E′k) and the transition matrix element |H ′kl|2 are slowly varying
functions of E′k and can therefore be taken out of the integration. The remaining
integral can be calculated analytically and gives simply π. We have thus derived
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Figure 4: Rapid decay of a function of the form sin2(x)/x2.

the Fermi’s golden rule result for the transition probability:

P̄lk =
2πt

~
g(Ek)|H ′kl|2. (4.9)

And the transition rate Γ̄lk = P̄lk/t becomes

Γ̄lk =
2π

~
g(Ek)|H ′kl|2. (4.10)

QUIZ
QUIZ
QUIZ

5 Atom-Radiation Interaction

Literature: R.L. Liboff, Introductory Quantum Mechanics (Fourth edition) (Addi-
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son Wesley), Chapter 13.9
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Figure 5: Electromagnetic radiation can cause the electron of an atom to go from
one electronic state to another. If the radiation carries angular momentum, e.g.
circularly polarized light, corresponding angular momentum change should occur
also in the transition.

Now we will consider, microscopically, the interaction between radiation and
atoms (can be easily extended for molecules, semiconductors, etc.). Frequencies
from radio frequencies up to ultraviolet typically match the energies between the
electronic energy levels of the atom. So we consider the interaction of the electrons
of the atom with the radiation. An electron in an electromagnetic field with vector
potential A and electric potential V (r) has the Hamiltonian

Ĥ =
1

2m
[p̂− eA (r, t)]

2
+ V (r). (5.1)

(Remember that the electric field E = −∇ϕ− ∂A
∂t , and the magnetic field B = ∇×A.

A change of the gauge can always be done A→ A +∇ψ, ϕ→ ϕ− ∂ψ
∂t .) Note: this

lecture follows the derivation in Liboff, but it is presented in SI units (which we
use throughout this lecture) while in Liboff cgs units are used. If one starts from
cgs units, the equivalent formula in SI units can be obtained by the replacements
E −→

√
4πε0E, B −→ c

√
4πε0B, J −→

√
4πε0J, ρ −→ ρ/

√
4πε0, q −→ q/

√
4πε0,

A −→ c
√

4πε0A, ϕ −→
√

4πε0ϕ, where the quantities are the electric and magnetic
fields, current density, charge density, charge, and the vector and scalar potentials,
respectively, and c is speed of light and ε0 the permittivity of free space.
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5.1 Semiclassical description

Here we first treat the electron in the atom quantum mechanically (i.e. it has dis-
crete energy states, the position and momentum of the electron are operators, etc.)
and the field classically (i.e. there are no operators associated with the field, only
complex numbers and vectors). This is called the semiclassical description. It is
sufficient for explaining a large number, even most, of the atom-radiation interac-
tion phenomena. Later in this course, however, we will treat also the field quantum
mechanically, and that will lead to important phenomena that cannot be described
semiclassically, like spontaneous emission. But let us now proceed with the semi-
classical approach.

If the vector potential A is taken as a classical field, the approach is called
the semiclassical description. Now let us divide the Hamiltonian (5.1) into three
parts:

Ĥ = Ĥ(0) + Ĥ ′ + Ĥ”. (5.2)

Here, the unperturbed Hamiltonian is

Ĥ(0) ≡ p̂2

2m
+ V (r). (5.3)

The perturbation is

Ĥ ′ ≡ − e

2m
[p̂ ·A + A · p̂] . (5.4)

We neglect the constant

Ĥ” ≡ e2

2m
A2. (5.5)

The matrix elements of Ĥ ′ (important, e.g., in perturbation theory) are

〈n′| Ĥ ′ |n〉 = − e

2m

∫
ψ∗n′ (p̂ ·A + A · p̂)ψndr. (5.6)

Remember that

p̂ ·Aψn =
~
i
∇ · (Aψn) =

~
i

[ψn (∇ ·A) + (A · ∇)ψn] . (5.7)

In the Coulomb gauge this means

∇ ·A = 0⇒ p̂ ·Aψn =
~
i

(A · ∇)ψn (5.8)

so that

〈n′| Ĥ ′ |n〉 = − e

m

∫
ψ∗n′A · p̂ψndr. (5.9)

〈n′| Ĥ ′ |n〉 = − e

m

∫
ψ∗n′ p̂ ·Aψndr (5.10)

If we now take A to be associated with the wavefunction of a photon with
an energy E = ~ω we get (quantization of the field will be done later in the course
but let us already use the concept of a photon, i.e. quantum of the field)

Emission:
〈n′| Ĥ ′ |n〉 → − e

m
〈n′; ~ω| p̂ |n〉 . (5.11)

Absorption:

〈n′| Ĥ ′ |n〉 → − e

m
〈n′| p̂ |~ω;n〉 . (5.12)
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5.2 Interaction with a plane electromagnetic wave

We now consider a typical case for the form (spatial and time dependence) of the
radiation, namely the plane electromagnetic wave:

A(r, t) = eA0 cos(k · r− ωt). (5.13)

Here e is a unit polarisation vector, and A0 chosen so that the corresponding wave
carries one photon per unit volume. Let us now do this normalization. The time-
averaged energy density is

〈U〉 =
1

µ0

〈
B2
〉

= ε0
〈
E2
〉
. (5.14)

Here µ0 is the permeability of free space. With B = ∇×A ∼ . . . ezA0kx cos(k · r−
ωt) + . . ., the energy density is 〈U〉 = 1

2µ0
k2A2

0. If we have one photon per volume,

then Equation (5.14) has to satisfy the conditions

〈U〉 =
~ω
V

=
k2A2

0

2µ0
. (5.15)

With ω = ck and c2 = 1/(µ0ε0) it leads to

A2
0 =

2~
ωV ε0

. (5.16)

We set V = 1 here.
Also, we split the field A into two parts:

A =
A0

2
e
[
ei(k·r−ωt) + e−i(k·r−ωt)

]
≡ A+ + A−, (5.17)

where

A± =
A0

2
ee±i(k·r−ωt) =

(
~

2ωε0

) 1
2

ee±i(k·r−ωt). (5.18)

We define Ĥ±(r) as
Ĥ ′ = Ĥ±(r)e∓iωt (5.19)

and, like in Equations (5.11) and (5.12),

〈n′| Ĥ± |n〉 = − e

m

(
~

2ωε0

) 1
2

〈n′| e · p̂e±ik·r |n〉 . (5.20)

Now we have the transition matrix element in a form that can be further evaluated.
In the following, some approximations will be used in calculating it.
QUIZ
QUIZ
QUIZ
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Figure 6: When the wavelength of the radiation is much larger than the scale of
electronic orbitals in the atom, one can do the dipole approximation, that is, ap-
proximate the electric field amplitude at position r by the field amplitude at the
atom center-of-mass position R.

5.3 The dipole approximation

For typical electronic transitions in atoms, the wavelength of the radiation is such
that λ � a0 where λ the light wavelength, a0 Bohr radius. For the electron of the
atom, the variation of the field over the radius of the atom is thus negligible, and
one can replace eik·r by eik·R where R is the center of mass position coordinate
of the atom. This factor then becomes a simple constant instead of containing the
position of the electron r and can be taken out of the matrix element in Equation
(5.20). This is called the dipole approximation. For the purposes of this lecture, we
can assume the center of mass position of the atom fixed and choose R = 0. Then
the dipole approximation and the choice R = 0 amounts to saying that

eik·r ' eik·R = 1. (5.21)

Therefore, Equation (5.20) becomes

〈n′| Ĥ± |n〉 = − e

m

(
~

2ωε0

) 1
2

〈n′| e · p̂ |n〉 . (5.22)

Let us use r̂ instead of p̂. (Note that r̂ is now an operator as well, namely the position
operator for the electron. In this course, we do not always use hats for operators:
you are supposed to think/remember yourself what is an operator, what is just a
number. Sometimes we, however, emphasize that something is an operator by using
the hat-symbol, like here; this hopefully helps you to separate the electron position
which is a quantum mechanical operator from the coordinate of the electromagnetic
field, which is just a number when the field is treated classically (the semiclassical
approximation).) For conjugate operators one has [x̂, p̂2

x] = 2i~p̂x (Exercise set 2).
Noting also that now Ĥ(0) contains a term proportional to p̂2 and the term V (r)
which commutes with r̂, one can write:

p̂ =
im

~

[
Ĥ(0), r̂

]
(5.23)

〈n′| p̂ |n〉 =
im

~
〈n′| Ĥ(0)r̂− r̂Ĥ(0) |n〉 =

(|n〉 is an eigenstate of Ĥ(0))

=
−im
~

(
E(0)
n − E

(0)
n′

)
〈n′| r̂ |n〉 = −imωnn′ 〈n′| r̂ |n〉 (5.24)
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Here we choose the convention ωnn′ > 0, i.e. assume E
(0)
n > E

(0)
n′ . If we had E

(0)
n <

E
(0)
n′ , we would replace ωnn′ by −ωn′n.

Now we take into use a notation where in the state |n,k〉 k is a label, indi-
cating absorption/emission. Equation (5.20) is then written as

〈n′| Ĥ+ |n,k〉 = 〈n′,k| Ĥ− |n〉 = ie
(
~ω2

nn′/(2ωε0)
) 1

2 〈n′| e · r̂ |n〉 ≡ Hnn′ . (5.25)

We now use the Golden Rule of Equation (4.10)

Γl→k =
2π

~
g (Ek) |H ′kl|

2
. (5.26)

Transition probability rate within the solid angle dΩ is

dΓnn′ =
∑
ei

2π

~
|Hn′n|2 g (Ek) dΩ, (5.27)

where g (E) dΩ is the density of states of photons emitted into the solid angle
dΩ (these relations you can find from previous courses on electromagnetism or in
textbooks)

V g(ν)dν = 2

[
V

∫
g (E) dΩ

]
dE ⇒ g(ν) = 2g (E)

∫
dΩ

dE

dν
. (5.28)

(Note that for an electromagnetic field in a box, the following holds: g(ν) = 8πν2/c3 =
2ω2/(πc3), E = hν = ~ω, dE/dν = ∂(hν)/∂ν = h.) From Equation (5.28):

g (E) =
2ω2

πc3
1

2h

1

4π
=

ω2

~(2πc)3
(5.29)

and, returning to Equation (5.27):

dΓnn′ =
∑
ei

e2ω2
nn′ω

8π2~c3ε0
|〈n′,k| ei · r̂ |n〉|

2
dΩ

=
∑
ei

e2ω2
nn′ω

8π2~c3ε0
|ei · 〈n′,k |r̂|n〉|

2
dΩ. (5.30)

In the appendix is shown a figure which explains the integration over a solid angle
in this case. The result becomes

dΓnn′ =
e2ω2

nn′ω

8π2~c3ε0
|〈n′,k| r̂ |n〉|2 sin2 ϑdΩ. (5.31)

The integrated transition rate is

Ann′ =

∫
dΓnn′ =

1

3πε0

e2ω2
nn′ω

~c3
|〈n′| r̂ |n〉|2 =

1

3πε0

ω2
nn′ω

~c3
d2
nn′ . (5.32)

Note that here the notation |〈n′| r̂ |n〉|2 = |〈n′| x̂ |n〉|2 + |〈n′| ŷ |n〉|2 + |〈n′| ẑ |n〉|2 is
used. In Equation (5.32) the dipole matrix element is defined as

d2
nn′ = e2| 〈n′| r̂ |n〉 |2. (5.33)
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Quite often it is assumed that the field frequency ω and the transition frequency
ωnn′ are very close to each other, and one sets ω = ωnn′ which makes the transition
rate to be of the form

Ann′ =
1

3πε0

ω3

~c3
d2
nn′ . (5.34)

For an atom with Z electrons, the total dipole matrix element becomes

dnn′ = e 〈n′| r̂ |n〉 → e 〈n′|
Z∑
i=1

r̂i |n〉 . (5.35)

The values of dipole matrix elements depend on the transition in question, and can
be calculated if the wavefunctions of the states n′ and n are known. Knowing the
dipole matrix element dnn′ and the field frequency ω (transition frequency ωnn′),
the transition probability rate is then simply given by Equation (5.34) (or (5.32)).

5.4 Oscillator strength

Instead of the dipole matrix element, in some fields of physics and chemistry people
often talk about the oscillator strength. They are related by a simple definition, the
oscillator strength, where dnn′ is from Equation (5.33), is the following:

fnn′ =
2mωn′n

3~
|〈n′| r̂ |n〉|2 =

2mωn′n
3~e2

d2
nn′ . (5.36)

There exists the so called Thomas-Reiche-Kuhn sum rule which states∑
n′

fnn′ = 1. (5.37)

Compared to the dipole matrix element, the oscillator strength is normalized in a
nice way such that the sum rule sums up to unity and not some constant. Sum
rules are a very important concept in physics. They give general restrictions to
quantities like transition rates. For instance, if one obtains, by some approximate
methods, transition rates that do not sum up like the sum rules states, one knows
that the approximation is not valid.

Let us derive the sum rule (5.37); many other sum rules are derived using a
similar thinking:

〈n| [x̂, p̂x] |n〉 = i~ (5.38)∑
n′

[〈n| x̂ |n′〉 〈n′| p̂x |n〉 − 〈n| p̂x |n′〉 〈n′| x̂ |n〉] = i~ (5.39)

c.f. Equations (5.23) and (5.24)∑
n′

[
imωn′n |〈n′| x̂ |n〉|

2 − imωnn′ |〈n′| x̂ |n〉|
2
]

= i~ (5.40)

∑
n′

2mωn′n
~

|〈n′| x̂ |n〉|2 = 1⇒ (5.41)

∑
n′

2mωn′n
3~

|〈n′| r̂ |n〉|2 =
∑
n′

fnn′ = 1. (5.42)

For Z electrons, using Equation (5.35):∑
n′

fnn′ = Z. (5.43)
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Appendix A: Solid angle
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Figure 7: Configuration for summation over ei. The propagation vector k defines
the direction of the differential of the solid angle dΩ. The vector e2 is orthogonal
to the plane spanned by r and k.

e1 · r = ex1rx + ey1ry + ez1rz (5.44)

Use polar coordinates and define the direction of r along the z axis: r = rz. If
one has three orthogonal vectors k, e1, e2 (like x, y, z), then one can always notate
this so that the vector r fits into one plane (and the third direction is orthogonal).

k = k sinϑ cosϕx + k sinϑ sinϕy + k cosϑz (5.45)

Here x, y and z are unit vectors in the corresponding directions.

r = rz (5.46)

k · e1 = 0 (5.47)

e1 = − cosϑ cosϕx− cosϑ sinϕy + sinϑz, ((cos (90o − ϑ) z) = sinϑz) (5.48)

e1 · r = r sinϑ (5.49)

e2 = − sinϕx + cosϕy (5.50)

e2 · r = 0 (5.51)
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