
Lecture 7

Learning goals

• To remind yourself (or just learn) about the concepts of density matrix, pure
state, mixed state, and decoherence.

• To understand how the system-reservoir formalism is used for describing
the behaviour of a quantum system coupled to environment (i.e., an open
quantum system); phenomena such as decoherence and decay.

• To be able to derive the corresponding master equation and to solve it for
the case of harmonic oscillators.

• To understand how spontanous emission is predicted by the master equa-
tion technique, and how the quantum nature of the reservoir (the quantized
electromagnetic vacuum) plays a role there.

12 Open quantum systems and decoherence

Literature: P. Meystre and M. Sargent III, Elements of quantum optics (Springer),
Chapters 13.3, 14.1; S.M. Barnett and P.M. Radmore, Methods in Theoretical
Quantum Optics (Oxford University Press), Chapter 5.6

12.1 Density-matrix (recap)

The need for a density matrix can be motivated in the following way. One can have
a system (say, of two levels e and g) in several di↵erent states.
Case 1: A quantum superposition state:

1p
2
(|gi+ |ei).

This has 50% probability of being in the ground and in the excited states. In addi-
tion, it is a coherent superposition, i.e. quantum interference e↵ects etc. are possible.
Case 2: The system might be in a state that is probablistic, but totally classical:
we just have 50% of probability of being in the ground and excited states, but no
quantum coherence.
Case 3: The system has one more option, of being ”in between” Case 1 and Case 2.
How to describe all the Cases 1, 2 and 3? Wavefunctions only describe the Case 1.
Density matrices, instead, can describe all of them.

As an example, let us consider the system studied in previous lectures: a two-
level atom and a quantized field. The basis states used were |�i|ni ⌘ |�ni where
� 2 {e, g} and n 2 N is the photon number. The general form of the wavefunction
is

| (t)i =
X

�n

↵�n(t)|�ni. (12.1)

The expectation value of an operator A is

hA(t)i =
X

�,�0,n,m

↵⇤
�0m(t)↵n�(t)h�0m|A|�ni. (12.2)
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The density matrix of the state | (t)i is

⇢(t) =| (t)ih (t)|

=
X

�,�0,n,m

↵⇤
�0m(t)↵�n(t)|�nih�0m|

=
X

�,�0,n,m

⇢�,n,�0,m(t)|�nih�0m|.

(12.3)

The density matrix is clearly an operator. Comparing Equations (12.2) and (12.3),
the expectation value of an operator A can now be written in terms of the elements
of the density matrix and becomes

hA(t)i =
X

�,�0,n,m

⇢�,n,�0,m(t)h�0m|A|�ni =
X

�,�0,n,m

⇢�,n,�0,mA�0,m,�,n = Tr [A⇢(t)] .

(12.4)
That is, finding the expectation value of A is equal to calculating the trace of the
operator (or matrix) A⇢(t). Reminder: the trace of a matrixM is Tr[M ] =

P
n Mnn,

and the trace of an operator Ô is Tr[Ô] =
P

nhn|Ô|ni where the states |ni form a
complete basis.

The density matrix has several useful properties. It is Hermitian, normal-
ized and also the trace operation has convenient properties such as cyclicity and
invariance to unitarity transformations.

Physically, the density matrix has a simple interpretation. The diagonal el-
ements ⇢�,n,�,n give the probabilities (called populations) of being in state n� and
the o↵-diagonal elements describe the quantum coherence, e↵ectively telling how
’quantum’ the state really is. For instance, in a simple two-level system example,
the density matrix of the state a|ei+ b|gi is

⇢ =

✓
⇢ee ⇢eg
⇢ge ⇢gg

◆
=

✓
|a|2 ab⇤

ba⇤ |b|2
◆
. (12.5)

The diagonal elements ⇢ee and ⇢gg are the probablities |a|2 and |b|2. They are mean-
ingful also classically. The terms ab⇤ and ba⇤ are meaningful only in the quantum
case. In the totally classical (probablistic) case the density matrix would be

⇢ =

✓
|a|2 0
0 |b|2

◆
. (12.6)

This could describe for instance the system at a finite temperature: the system has
the probability |b|2 of being in the ground state, but due to thermal fluctuations,
it has also the probability |a|2 of being in the excited state. Note that one can also
have ”intermediate”, ”partly quantum coherent” cases, where the density matrix is

⇢ =

✓
|a|2 c
c⇤ |b|2

◆
(12.7)

and 0 < |c| < |ab⇤| (also, c can have any phase).
The fully quantum coherent states for which the density matrix is of the form

(12.5) are called pure states. The condition for being in a pure state is Tr[⇢⇢] = 1.
One can easily see that, for Equation (12.7), the purity condition Tr[⇢⇢] = 1 is valid
only for the case c = ab⇤, and Tr[⇢⇢] < 1 for the ”not totally quantum coherent”
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Reservoir R

System S
Coupling V

Figure 15: The system - reservoir interaction. The quantum mechanical system of
interest (S) is coupled via some coupling (V) to a complicated larger system called
the reservoir (R).

case |c| < |ab⇤|. States of the form (12.6), and (12.7) with c 6= ab⇤, are called mixed
states. The process of pure states becoming mixed states, e.g. due to noise or other
external disturbance, is called decoherence.
QUIZ
QUIZ
QUIZ

12.2 Open quantum systems

An open quantum system refers to a situation where the quantum mechanical
system of interest (S) is not completely isolated from the environment. Instead,
there is some larger and more complicated system or environment, called a bath or
a reservoir (R), to which the system (S) is coupled to, see Fig. 15. Assuming that the
coupling (V) is weak, one can use perturbation theory to describe the interaction
between S and R.

Notice that this approach is connected to the semi-classical approximation
in which the reservoir (R) would be described fully classically and the system (S)
quantum mechanically. In the following, the reservoir (R) is also quantized but we
assume that its evolution is characterized by a short correlation (or coherence) time,
i.e. the reservoir (R) has no memory of past interactions with the system (S). This
is called the Markov approximation and it is a standard and important approx-
imation. In recent years, many methods that go beyond the Markov approximation
have been developed.

In general, there can be transfer of energy, momentum, particle number, etc.,
between the system and the reservoir. Although the combined entity, system (S)
+ reservoir (R), evolves according to unitary evolution, the evolution of the sys-
tem (S) can be non-unitary. The system-reservoir interactions can thus, for a large
enough reservoir, describe also non-unitary, non-coherent processes such as decay
for the system (S). One should thus naturally use the density matrix formalism
when describing system-reservoir interactions.
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We will now show how this approach can be used to describe system-reservoir
interactions in general, and how the method can be used for describing spontaneous
emission in particular (the two-level atom is the system, and the many modes of the
electro-magnetic vacuum is the reservoir). The Hamiltonian consists of the system,
reservoir, and interaction Hamiltonians:

H = HS +HR + V. (12.8)

We work in the interaction picture with

H0 = HS +HR. (12.9)

The equation of motion of a general density matrix in the interaction picture is
(derived in the Exercise set 7)

d⇢I
dt

= � i

~ [VI(t), ⇢I(t)]

= � i

~ [VI(t), ⇢I(0)]�
1

~2

Z t

0

dt0 [VI(t), [VI(t
0), ⇢I(t

0)]] . (12.10)

This is called the master equation and it is a very important starting point for
many calculations, as you will see also below. In our system-reservoir description,
this gives the master equation for the total density matrix ⇢TOT

d⇢TOT

dt
= � i

~ [VI(t), ⇢TOT (t)] . (12.11)

The initial condition is taken to be

⇢TOT (0) = ⇢(0)⌦ ⇢R(0), (12.12)

where
⇢(t) = TrR (⇢TOT (t)) (12.13)

is the reduced density matrix of the system (S), i.e. the reservoir degrees of
freedom have been traced out. Similarly, ⇢R is the reduced density matrix of the
reservoir where the system (S) degrees of freedom have been traced out. Note that
it is only in the beginning (time zero) that one can assume the direct product
form of Equation (12.12); later, due to the interaction, the system and the reservoir
become entangled and one can no longer assume such a simple decomposition.
(Entanglement: for instance, | i = a|aiS |a0iR + b|biS |b0iR cannot be expressed as
a direct product of the system and reservoir wavefunctions | iS |�iR. Tracing out
R would give TrR[| ih |] = |a|2|aiSSha| + |b|2|biSShb| whereas if the system was
in a pure state a|aiS + b|biS the density matrix would contain also the coherence
terms ab⇤, a⇤b, not only |a|2, |b|2. In other words, entanglement (correlations) with
the reservoir and then tracing out the reservoir may destroy coherence, partially or
completely.)

As usual, one can integrate and iterate Equation (12.11) to obtain

⇢TOT (t) = ⇢TOT (0)

+
1X

n=1

✓
�i

~

◆n Z t

0

dt1

Z t1

0

dt2 · · ·
Z tn�1

0

dtn [VI(t1), [VI(t2), · · · [VI(tn), ⇢TOT (0)]]] .

(12.14)
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In the system-reservoir treatment, one is primarily interested in the evolution of
the system only. Thus we trace out the reservoir degrees of freedom to obtain the
evolution of the reduced density matrix of the system (S):

⇢(t) = ⇢(0)

+
1X

n=1

✓
�i

~

◆n Z t

0

dt1

Z t1

0

dt2 · · ·
Z tn�1

0

dtnTrR ([VI(t1), [VI(t2), · · · [VI(tn), ⇢R(0)⌦ ⇢(0)]]]) .

(12.15)

One can write this formally as

⇢(t) = (1 + U1(t) + U2(t) + · · · ) ⇢(0) ⌘ U(t)⇢(0). (12.16)

Now take the time derivative

d⇢(t)

dt
= U̇(t)⇢(0) = U̇(t)U�1(t)⇢(t) =

⇣
U̇1(t) + U̇2(t) + · · ·

⌘
U�1(t)⇢(t). (12.17)

The term U̇1 is in usual cases zero. It is proportional to terms of the form TrR(V (t)⇢R),
and typically V (t) creates or destroys an excitation in the reservoir, therefore the
trace becomes zero if there are no special correlations in the reservoir. Now we as-
sume a reservoir for which TrR(V (t)⇢R) = 0 and thus U̇1 = 0. We are aiming at
doing perturbation theory with respect to V , so next we observe that U̇2 / V 2 and
U�1(t) / 1 + V + V 2 + · · · . Thus the perturbation theory up to second order gives
the result

d⇢(t)

dt
' U̇2(t)⇢(t) =

�1

~2

Z t

0

dt1TrR ([VI(t), [VI(t1), ⇢R ⌦ ⇢(t)]]) . (12.18)

QUIZ
QUIZ
QUIZ

12.2.1 Example: the damped harmonic oscillator

Now we will calculate what the second order master equation (12.18) actually gives
for a specific example where the system S is a harmonic oscillator of the frequency
!0 and the reservoir R (also called the bath) is formed by a large number of other
oscillators with the frequencies !j . This is a basic model that can be easily expanded
to describe many physical situations. The interaction Hamiltonian in the interaction
picture is

VI(t) = ~
�
a†�(t)ei!0t + a�†(t)e�i!0t

�
, (12.19)

where �(t) =
P

j gjbje
�i!jt, a and bj are the annihilation operators for the system

and the reservoir excitations, respectively, and gj are the coupling constants between
the system and the jth reservoir mode. Here � are also sometimes called the noise
operators, because the reservoir interaction describes noise from the point of view
of the system S. Inserting this VI into Equation (12.18) one obtains terms with
di↵erent orderings of the operators a, a† and ⇢(t), due to the commutators, and the
terms are multiplied by the integrals Ii given below (c.f. Exercise Set 7). Note
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the trace over the reservoir degrees of freedom, therefore the noise operators � lead
simply to some complex numbers after taking the trace. In other words,

d⇢(t)

dt
= �1

~f(a, a
†, ⇢(t), Ii), (12.20)

where the form of f is derived in the exercises. The integrals are

I1 =

Z t

0

dt1h�(t)�(t1)iRei!0(t+t1) (12.21)

I2 =

Z t

0

dt1h�†(t)�†(t1)iRe�i!0(t+t1) (12.22)

I3 =

Z t

0

dt1h�(t)�†(t1)iRei!0(t�t1) (12.23)

I4 =

Z t

0

dt1h�†(t)�(t1)iRe�i!0(t�t1). (12.24)

One can write explicitly the correlators, e.g.

h�†(t)�(t1)iR =
X

i,j

gigjhb†i bjiRei(!it�!jt1). (12.25)

For a usual thermal reservoir hbibjiR = TrR[bibj⇢R] = 0 and hb†i b
†
jiR = 0, thus I1 =

I2 = 0 (this could be di↵erent for some exotic reservoirs with special correlations,
e.g. a ”squeezed reservoir”). For a thermal reservoir of harmonic oscillators, one has

hb†i bjiR = TrR[b
†
i bj⇢R] = n̄i�ij (12.26)

hbib†jiR = TrR[bib
†
j⇢R] = (n̄i + 1)�ij . (12.27)

Here n̄ is the average occupation number. The reservoir is assumed to be large
and thus one can replace the discrete summations and quantities by ones that are
continuous in frequency, e.g. n̄i ! n̄(!) and gi ! g(!). The integrals become
(derivation in Exercise Set 7)

I3 =
�

2
(n̄(!0) + 1)� i� (12.28)

I4 =
�

2
n̄(!0)� i�0. (12.29)

Here
� = ⇢dos(!0)g

2(!0), (12.30)

⇢dos is the density of states that enters when changing the summations into integrals
(please do not confuse it with some density matrix...), and

� = P

Z 1

�1

d✏

2⇡

1

✏
⇢dos(✏+ !0)g

2(✏+ !0)(n̄(✏+ !0) + 1)

�
, (12.31)

where P denotes the principal value (�0 is similar, but the ”1” is missing from
(n̄(✏+!0)+1)). The � (�0) is the Lamb shift and is usually very small; it will be
neglegted in this lecture from now on (it would simply shift the energy levels of the
system S slightly due to the reservoir interaction). As said before, n̄ is the average
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occupation number in a thermal (temperature T ) reservoir of harmonic oscillators,
that is, n̄(!0) = 1/(e~!0/(kT ) � 1).

Combining the above, one obtains the final result for the master equation:

d⇢

dt
=

�

2
(n̄(!0) + 1)

�
2a⇢a† � a†a⇢� ⇢a†a

�

+
�

2
n̄(!0)

�
2a†⇢a� aa†⇢� ⇢aa†

�
. (12.32)

This is a very important basic result and can be used in various contexts to describe
system-reservoir interactions and, e.g., decay processes.

One can now easily calculate the time evolution of various quantities. For
instance, the expectation value hai behaves as (derivation in Exercise Set 7)

dhai
dt

=
d

dt
Tr(a⇢) = Tr

✓
a
d⇢

dt

◆
= ��

2
Tr(a⇢), (12.33)

which gives
ha(t)i = ha(0)ie��t/2. (12.34)

The quantity ha(t)i tells about the phase coherence of the oscillator. Thus, the result
given by the master equation says that, due to the coupling to the reservoir, the
phase coherence, i.e. the quantum coherence, of the system S decays exponentially
with the rate �/2 (reminder: � contains the density of states in the reservoir and
the strength of the system-reservoir coupling, so the result is intuitive). This decay
describes the process of decoherence: when a small quantum system is coupled
to a much larger reservoir (in some contexts one can call the reservoir ”noise”),
the quantum coherence of the system decays, and initial pure states become mixed
states. The exponential form of the decay basically follows from assuming that the
reservoir is large, i.e. that the system is coupled to a continuum of reservoir states.
With some other structure of the reservoir states, the time-dependence of the decay
could be non-exponential. Similarly, one can show (Exercise Set 7) by considering
dhn(t)i

dt = d
dtTr

�
a†a⇢

�
that the mean occupation number will exponentially approach

that of the reservoir:

hn(t)i = hn(0)ie��t + n̄(1� e��t). (12.35)

This is also intuitive: the mean occupation number is related to the energy, and
by interacting with the reservoir, the system S becomes thermalized with it and
obtains the same average energy.
QUIZ
QUIZ
QUIZ

12.2.2 Spontaneous emission

To describe spontaneous emission, one can use the above treatment but with cer-
tain modifications. First, the system S is now the two-level atom, not a harmonic
oscillator. In our treatment of the two-level atom interacting with the quantized
field in Lecture 6, we described the interaction between the atom and one mode
(one frequency) of the light field. In reality, the atom is often interacting with a
continuum of light modes (except when one uses e.g. an optical cavity that restricts
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the modes, or monochromatic laser light); in particular, this is the case in sponta-
neous emission where the atom interacts with the continuum of the available modes
in the quantized electromagnetic vacuum field. This continuum of modes is now the
reservoir. Now, the reservoir is at zero temperature and its average photon number
is zero. The Hamiltonian of the system is (c.f. Lecture 6)

H =
1

2
~!0�z +

X

j

~!jb
†
jbj + ~(�+�+ ���

†). (12.36)

Here we have denoted !0 = !eg, � =
P

j gjbj , and !j are the frequencies of the
quantized vacuum field modes. The Hamiltonian is the same as the starting point of
the harmonic oscillator example above, with the replacement a ! ��. Furthermore,
we now have zero average photons in the reservoir (T = 0), that is, n̄ = 0. The
master equation can thus be directly written based on the harmonic oscillator result
(12.32) and using n̄ = 0:

d⇢

dt
=
�

2
(2��⇢�+ � �+��⇢� ⇢�+��) . (12.37)

Like in the harmonic oscillator example, the coherence term ⇢ge = h��i
becomes

h��(t)i = e�
�

2 th��(0)i, (12.38)

i.e. there is again decoherence: the coherence term decays exponentially with the
rate �/2. And the probability of being in the upper state

Pee(t) = ⇢ee(t) = h�+(t)��(t)i = e��tPe(0). (12.39)

This means that the population of the excited state decays exponentially with the
rate �. Note that this spontaneous emission occurs also at zero temperature and
for the vacuum field, i.e. zero average photon number in the reservoir. Remem-
ber that the master equation (12.32) has two terms, proportional to (n̄(!0) + 1)
and n̄(!0). The ”1” in the former comes solely from quantizing the vacuum field,
that is, from the orderings of the reservoir operators b and b† within the integrals
(12.23) and (12.24), see Equations (12.26) and (12.27). Since n̄ = 0 for the zero
temperature vacuum, without the ”1” there would not be any decay of the excited
state population. The quantization of the electromagnetic field is thus required to
explain spontaneous emission. Spontaneous emission is the phenomenon on which
LEDs are based, and it also gives the fundamental quantum noise limit of lasers and
amplifiers. Using the master equation techniques, also the spectrum of spontaneous
emission could be calculated. Note that spontaneous emission can be modified (en-
hanced, suppressed, spectrally changed) by modifying the available reservoir modes,
for instance by placing the atom in a cavity supporting only selected modes. For
instance, the modification of spontaneous emission rate due to an optical cavity is
known under the name Purcell e↵ect.
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