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Chapter S Identical Particles

5.4 QUANTUM STATISTICAL MECHANICS

At absolute zero, a physical system occupies its lowest allowed energy configura-
tion. As we turn up the temperature, random thermal activity will begin to populate
the excited states, and this raises the following question: If we have a large number
N of particles, in thermal equilibrium at temperature T, what is the probability that
a particle, selected at random, would be found to have the specific energy, E;?
Note that the “probability” in question has nothing to do with quantum indeter-
minacy—exactly the same question arises in classical statistical mechanics. The
reason we must be content with a probabilistic answer is that we are typically
dealing with enormous numbers of particles, and we could not possibly expect
to keep track of each one separately, whether or not the underlying mechanics is
deterministic.

The fundamental assumption of statistical mechanics is that in thermal
equilibrium every distinct state with the same rotal energy, E, is equally proba-
ble. Random thermal motions constantly shift energy from one particle to another,
and from one form (rotational, kinetic, vibrational, etc.) to another, but (absent
external influences) the rotal is fixed by conservation of energy. The assumption
(and it’s a deep one, worth thinking about) is that this continual redistribution of
energy does not favor any particular state. The temperature, T, is simply a mea-
sure of the total energy of a system in thermal equilibrium. The only new twist
introduced by quantum mechanics has to do with how we count the distinct states
(it’s actually easier than in the classical theory, because the states are generally
discrete), and this depends critically on whether the particles involved are dis-
tinguishable, identical bosons, or identical fermions. The arguments are relatively
straightforward, but the arithmeric gets pretty dense, so I'm going to begin with
an absurdly simple example, so you’ll have a clear sense of what is at issue when
we come 1o the general case.

5.4.1 An Example

Suppose we have just three noninteracting particles (all of mass m) in the one-
dimensional infinite square well (Section 2.2). The total energy is

22
w-h
E=EA +EB+Ec=m(ni+n%+n%) [5.67]

&~

(see Equation 2.27), where na, ng, and nc are positive integers. Now suppose, for
the sake of argument, that E = 363(v2h?/2ma?), which is to say,

n% +n% +n% =363 [5.68]

There are, as it happens, 13 combinations of three positive integers, the sum
of whose squares is 363: All three could be 11, two could be 13 and one 5
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(which occurs in three permutations), one could be 19 and two 1 (again, three
permutations), or one could be 17, one 7, and one 5 (six permutations). Thus
(n4.npg,nc) is one of the following:

(11,11, 11).
(13,13,5), (13,5,13), (5,13,13).
(1,1.19), (1.19. 1), (19, 1.1).
5,7.17, 5,17.7. (7,5.17). (7.17.5). (17,5,7), (17,7,5).

If the particles are distinguishable, each of these represents a distinct quantum
state, and the fundamental assumption of statistical mechanics says that in thermal
equilibrium? they are all equally likely. But I'm not interested in knowing which
particle is in which (one-particle) state, only the total number of particles in each
state—the occupation number, N, for the state y,. The collection of all occu-
pation numbers for a given 3-particle state we will call the configuration. If all
three are in ;. the configuration is

(0,0,0,0.0,0,0.0.0,0,3.0,0,0,0,0,0.0....). [5.69]

(i.e., Nj; = 3, all others zero). If two are in Y3 and one is in s, the configura-
tion is

(0.0.0,0,1.0,0,0.0,0,0.0.2,0,0.0.0....), [5.70]

(i.e., N5 = 1, N3 = 2, all others zero). If two are in v and one is in Y9, the
configuration is

(2,0,0,0,0,0,0.0,0,0.0,0.0,0,0,0.0,0, 1, 0. ...), [5.71]

(i.e., N| = 2, Njg = 1, all others zero). And if there is one particle in s, one in
Y7, and one in V7, the configuration is

(0.0.0,0.1.0.1,0.0.0,0,0.0.0.0,0,1.0.0,...). [5.72]

(i.e., Ns = N7 = Ny7 = 1, all others zero.) Of these, the last is the most probable
configuration, because it can be achieved in six different ways, whereas the middle
two occur three ways, and the first only one.

20How the particles maintain thermal cquilibrium. if they really don’t interact at all. is a problem
I'd rather not worry about—maybe God reaches in periodically and stirs things up (being careful not
10 add or remove any energy). In real life, of course, the continual redistribution of encrgy is caused
precisely by interactions between the particles. so ii’ you don’t approve of divine intervention let there
be extremely weak interactions—sufficient 1o thermalize the system (at least, over long time periods).
bul 1o small w0 alter the stationary states and the allowed energies appreciably.
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Returning now to my original question, if we select one of these three particles
at random, what is the probability (P,) of getting a specific (allowed) energy E,?
The only way you can get E, is if it’s in the third configuration (Equation 5.71); the
chances of the system being in that configuration are 3 in 13, and in that config-
uration the probability of getting E; is 2/3, so P| = (3/13) x (2/3) = 2/13.
You could get Es either from configuration 2 (Equation 5.70)—chances 3 in
13—with probability 1/3, or from configuration 4 (Equation 5.72)—chances 6
in 13—with probability 1/3, so Ps = (3/13) x (1/3) + (6/13) x (1/3) = 3/13.
You can only get E; from configuration 4;: P; = (6/13) x (1/3) = 2/13. Like-
wise, E|| comes only from the first configuration (Equation 5.69)—chances 1 in
13—with probability 1: P;; = (1/13). Similarly, P13 = (3/13) x (2/3) = 2/13,
Pi7 = (6/13) x (1/3) = 2/13, and Pjg = (3/13) x (1/3) = 1/13. As a check,
note that

Pi+ Ps+ Prot Pl + Pt P+ Plo = b b b e b e = 1
SR I I P = TR T T T T T

That's when the particles are distinguishable. If in fact they are identical
fermions, the antisymmetrization requirement (leaving aside spin, for simplicity—or
assuming they are all in the same spin state, if you prefer) excludes the first three
configurations (which assign two—or, worse still, three—particles to the same
state), and there is just one state in the fourth configuration (see Problem 5.22(a)).
For identical fermions, then, Ps = Py = Py7 = 1/3 (and again the sum of the
probabilities is 1). On the other hand, if they are identical bosons the symmetriza-
tion requirement allows for one state in each configuration (see Problem 5.22(b)),
so P = (1/4) x (2/3) = 1/6, Ps = (1/4) x (1/3) + (1/4) x (1/3) = 1/6,
Py = (1/4) x(1/3) = 1/12, P;y = (1/4) x (1) = 1/4, P13 = (1/4) x (2/3) = 1/6,
Py7; = (1/4) x (1/3) = 1/12, and Pig = (1/4) x (1/3) = 1/12. As always, the
sum is 1.

The purpose of this example was to show you how the counting of states
depends on the nature of the particles. In one respect it was actually more compli-
cated than the realistic situation, in which N is a huge number. For as N grows,
the most probable configuration (in this example, N5 = N7 = N7 = 1, for the case
of distinguishable particles) becomes overwhelmingly more likely than its competi-
tors, so that, for statistical purposes, we can afford to ignore the others altogether:?!
The distribution of individual particle energies, at equilibrium, is simply their dis-
tribution in the most probable configuration. (If this were true for N = 3—which,
obviously, it is not—we would conclude that Ps = P; = P17 = 1/3 for the case
of distinguishable particles.) I'll return to this point in Section 5.4.3, but first we
need to generalize the counting procedure itself.

2! This is an astonishing and counterintuitive fact about the statistics of large numbers. For a good
discussion see Ralph Baicrlein, Thermal Physics. Cambridge U.P. (1999). Scction 2.1.




Section 5.4: Quantum Statistical Mechanics 233

*Problem 5.22

(a) Construct the completely antisymmetric wave function ¥ (x4.xp,x¢) for
three identical fermions, one in the state 15, one in the state 7, and one in
the state ¥7.

(b) Construct the completely symmetric wave function ¥ (xa. xp. xc) for three
identical bosons, (i) if all three are in state vy, (ii) if two are in state ¥,
and one is in state 19, and (iii) if one is in the state Vs, one in the state ¥,
and one in the state 7.

*Problem 5.23 Suppose you had three (noninteracting) particles, in thermal equi-
librium, in a one-dimensional harmonic oscillator potential, with a total energy
E = 9/2Q)hw.

(a) If they are distinguishable particles (but all with the same mass), what are
the possible occupation-number configurations, and how many distinct (three-
particle) states are there for each one? What is the most probable configura-
tion? If you picked a particle at random and measured its energy, what values
might you get, and what is the probability of each one? What is the most
probable energy?

(b) Do the same for the case of identical fermions (ignoring spin, as we did in
Section 5.4.1).

(c) Do the same for the case of identical bosons (ignoring spin).

5.4.2 The General Case

Now consider an arbitrary potential, for which the one-particle energies are E|, E3,
Es. ..., with degeneracies d), da,ds. ... (ie., there are d, distinct one-particle
states with energy E,). Suppose we put N particles (all with the same mass) into
this potential; we are interested in the configuration (N;. N2, N3....), for which
there are N, particles with energy E|, N, particles with energy E», and so on.
Question: How many different ways can this be achieved (or, more precisely,
how many distinct states correspond to this particular configuration)? The answer,
Q(N), Na. Ns....), depends on whether the particles are distinguishable, identical
fermions, or identical bosons, so we’ll treat the three cases separately.?

First, assume the particles are distinguishable. How many ways are there to
select (from the N available candidates) the N; to be placed in the first “bin”?

2The presentation here follows closely that of Amnon Yariv, An Introduction to Theory and
Applications of Quantum Mechanics. Wiley. New York (1982).
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Answer: the binomial coefficient, “N choose Ni,”

NYo N
(Nl) = NN =NV [5.73]

For there are N ways to pick the first particle, leaving (N — 1) for the second, and

SO on: NI

N(N—l)(N—2)...(N—N1+l)=(W—_Tl)!.

However, this counts separately the N;! different permutations of the N particles,
whereas we don’t care whether number 37 was picked on the first draw, or on
the 29th draw; so we divide by N;!, confirming Equation 5.73. Now, how many
different ways can those N, particles be arranged within the first bin? Well, there
are d; states in the bin, so each particle has d| choices; evidently there are dpHM
possibilities in all. Thus the number of ways to put N particles, selected from a
total population of N, into a bin containing 4, distinct options, is

Nl
NY(N = NV

The same goes for bin 2, of course, except that there are now only (N — Nj)
particles left to work with:

(N =N
N>!(N — Nj — Np)V'

and so on. It follows that

O(Ny.N3.N3,...)

N (N — Ny)da" (N — Ny — Np)dj?

~ N)Y(N = N)! NaY(N — Ny — N2)! N3!(N — N; — N2 — N3)!
dVaNgh © N

= N1l 23 =N'TT=2. 5.74
N|'N3!IN3! ... N H N,! : ]

n=l

(You should pause right now and check this result, for the example in Section 5.4.1—
see Problem 5.24.)

The problem is a lot easier for identical fermions. Because they are indis-
tinguishable, it doesn’t matter which particles are in which states—the antisym-
metrization requirement means that there is just one N-particle state in which a
specific set of one-particle states are occupied. Moreover, only one particle can
occupy any given state. There are

()
NH
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ways to choose the N,, occupied states in the nth bin,?? so

Nyl dy — Nyl [5.73]

o0 d !
Q(N1, N2 Ns...) =] n
n=l
(Check it for the example in Section 5.4.1—see Problem 5.24.)

The calculation is hardest for the case of identical bosons. Again, the sym-
metrization requirement means that there is just one N-particle state in which a
specific set of one-particle states are occupied, but this time there is no restriction
on the number of particles that can share the same one-particle state. For the nth
bin, the question becomes: How many different ways can we assign N, identical
particles to d), different slots? There are many tricks to solve this combinatorial
problem; an especially clever method is as follows: Let dots represent particles and
crosses represent partitions, so that, for example, if d, =5 and N, =7,

e e X 0 Xeo o X o X

would indicate that there are two particles in the first state, one in the second, three
in the third, one in the fourth, and none in the fifth. Note that there are N, dots,
and (d, — 1) crosses (partitioning the dots into d, groups). If the individual dots
and crosses were labeled, there would be (N, + d,, — 1)! different ways to arrange
them. But for our purposes the dots are all equivalent— permuting them (N, ! ways)
does not change the state. Likewise, the crosses are all equivalent—permuting them
((dy — 1)! ways) changes nothing. So there are in fact

(Ny +dy — D! _ (Nn +d,; — l)

Ny!(dy — 1)! N, [5.76]

distinct ways of assigning the N, particles to the d), one-particle states in the nth
bin, and we conclude that

(2%
(Nll +dn - ])!
Q(Ni, N3, N3....) = ]_I (5.77]
n=1 N"!(d" - 1)!

(Check it for the Example in Section 5.4.1—see Problem 5.24.)

*Problem 5.24 Check Equations 5.74, 5.75, and 5.77, for the example in Sec-
tion 5.4.1.

* *Problem 5.25 Obtain Equation 5.76 by induction. The combinatorial question is
this: How many different ways can you put N identical balls into d baskets (never

23This should be zero. of course, if Ny > dy. and it is, provided we consider the factorial of a
negative integer to be infinite.
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mind the subscript n for this problem). You could stick all N of them into the third
basket, or all but one in the second basket and one in the fifth, or two in the first
and three in the third and all the rest in the seventh, etc. Work it out explicitly for
the cases N =1, N =2, N =3, and N = 4; by that stage you should be able to
deduce the general formula.

5.4.3 The Most Probable Configuration

In thermal equilibrium, every state with a given total energy E and a given particle
number N is equally likely. So the most probable configuration (N|, N2. N3, ...)
is the one that can be achieved in the largest number of different ways—it is that
particular configuration for which Q(N;, N2, N3....) is a maximum, subject to
the constraints

o 0]
D Nu=N, [5.78]

n=I

and

.w
Y N.E,=E. [5.79]

n=|

The problem of maximizing a function F(x. x3, x3, ...) of several variables,
subject 1o the constraints f)(xy, x2.x3....) = 0, fa(x;, x2,x3....) =0, etc,, is
most conveniently handled by the method of Lagrange multipliers.2* We introduce
the new function

G(x|.x2. X3. . ... . MoAr . Y=F4+MA+Afit -, [5.80]

and set all its derivatives equal to zero:

aG aG
— =0 =

=0 —=0, 5.81
0xy iy : ]

In our case it’s a little easier to work with the logarithm of Q, instead of
Q itself—this turns the products into sums. Since the logarithm is a monotonic
function of its argument, the maxima of Q and In(Q) occur at the same point. So

we let w -
G =In(Q) +a [N—}:N,,} +8 [E—ZN,,E,CI. [5.82]

n=1 n=I

HSee. for example, Mary Boas. Mathematical Methods in the Physical Sciences, 2nd ed.. Wiley.
New York (1983), Chapter 4, Section 9.
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where o and B are the Lagrange multipliers. Setting the derivatives with respect
to o and B equal to zero merely reproduces the constraints (Equations 5.78 and
5.79); it remains, then, to set the derivative with respect to N, equal to zero.

If the particles are distinguishable, then Q is given by Equation 5.74, and we
have

G =In(N!) + ) [Ny In(dy) — In(N, )]

n=lI

+a[N—§:N,,i|+ﬁ|:E—iN,,E,,:I.

n=| n=l1

[5.83]

Assuming the relevant occupation numbers (N,,) are large, we can invoke Stirling’s
approximation:?
In(z) = zIn(z) —z forz>> 1, [5.84]

to write

00
G= Z [Ny In(dy) — Ny In(N,,) + Ny — aNy — BE;N,]

n=l1
+In(N!)+aN + BE. [5.85]
It follows that 9G
N = In(dy) — In(N,) —a — BE,. [5.86]
Ny

Setting this equal to zero, and solving for N,, we conclude that the most probable
occupation numbers, for distinguishable particles, are

Ny = dye™@tFEn, [5.87]

If the particles are identical fermions, then Q is given by Equation 5.75, and
we have

o
G =) {In(d,") = In(N,") = In[(dy — N:)']}

n=I

-|—a|:N-—§:N,,:| +ﬁ[E—iN,,E,,]

n=l1 n=l

[5.88]

B Stirling's approximation can be improved by including more terms in the Stirling series, but
the first two will suffice for our purposes. See George Arfken and Hans-Jurgen Weber, Mathematical
Methods for Physicists, 5th ed.. Academic Press, Orlando (2000). Section 10,3, If the relevant occupation
numbers are not large—as in Section 5.4.1 —then statistical mechanics simply doesn’t apply. The whole
point is to deal with such enormous numbers that statistical inference is a reliable predictor. Of course,
there will always be one-particle states of extremely high energy that are not populated at ali: fortunately.
Stirling’s approximation holds also for z = 0. I use the word “relevant” to exclude any stray states right
at the margin, for which N}, is neither huge nor zero.
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This time we must assume not only that N, is large, but also that d,, > N, 26 50
that Stirling’s approximation applies to both terms. In that case

oo
G Z[ln(dn ) — Ny In(N,) + N, — (dy — Ny) In(d,, — N,,)
n=1| [5.89]

+ (dy — Ny) —aN, — ﬁEMNn] +aN +ﬁE‘

SO

G

N, = —In(N,) +In(dy — Ny) —a — BE,,. [5.90]

Setting this equal to zero, and solving for N,,, we find the most probable occupation
numbers for identical fermions:

dﬂ

Nn = e(a'i'ﬂEn} ...i... l‘

[5.91]

Finally, if the particles are identical bosons, then Q is given by Equation 5.77,
and we have

G =) (In[(Ny +dy — D! — In(N,!) — In[(dy — D]}

n=lI

[5.92]
o [=0]
+a I:N - ZNniI + B I:E - ZNMEM] .
n=I1 n=|
Assuming (as always) that N, > 1, and using Stirling’s approximation:
o0
G~ Y ((Ny +dy — DIn(Ny +dy — 1) = (Ny + dy — 1) = Ny In(Ny) |
n=| [5.93]
+ Ny —In[(dy — 1)!] —aN, — BE;N,} +aN + BE,
S0
G
N =In(N, +d, — 1) —In(N,) —a — BE,. [5.94]
n

201 one dimension the encrgies are nondegenerate (see Problem 2.45), but in three dimensions
dy lypically increases rapidly with increasing n (for example, in the case of hydrogen, dy = n?). So
it is not unrcasonable to assume that for most of the occupied states dy >> 1. On the other hand,
dy is certainly not much greater than N, at absolutc zero, where all states up to the Fermi level are
filled. and hence dy, = N,,. Here again we are rescued by the fact that Stirling's formula holds also for

=
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Setting this equal to zero, and solving for N,,, we find the most probable occupation
numbers for identical bosons:

dn_‘l

No = arpEr— 1

[5.95]

(For consistency with the approximation already invoked in the case of fermions,
we should really drop the 1 in the numerator, and I shall do so from now on.)

Problem 5.26 Use the method of Lagrange multipliers to find the rectangle of
largest area, with sides parallel to the axes, that can be inscribed in the ellipse
(x /a)2 + (_\'/b)2 = 1. What is that maximum area?

Problem 5.27

(a) Find the percent error in Stirling’s approximation for z = 10.

(b) What is the smallest integer z such that the error is less than 1%?

5.4.4 Physical Significance of o and 8

The parameters o and 8 came into the story as Lagrange multipliers, associated
with the total number of particles and the total energy, respectively. Mathemati-
cally, they are determined by substituting the occupation numbers (Equations 5.87,
5.91, and 5.95) back into the constraints (Equations 5.78 and 5.79). To carry out
the summation, however, we need to know the allowed energies (E,), and their
degeneracies (d,), for the potential in question. As an example, I'll work out the
case of an ideal gas—a large number of noninteracting particles, all with the same
mass, in the three dimensional infinite square well. This will motivate the physical
interpretation of o and .
In Section 5.3.1 we found the allowed energies (Equation 5.39):

= h_2k2
2m

E [5.96]

TNy TNy TN
k= 3 ; .
()

-

where

As before, we convert the sum into an integral, treating k as a continuous variable,
with one state (or, for spin s, 25 + 1 states) per volume 73/ V of k-space. Taking
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as our “bins” the spherical shells in the first octant (see Figure 5.4), the “degener-
acy” (that is, the number of states in the bin) is

1 47 k? dk v ,
= — =1 'dk. 5.
8 (w3/V) Zﬂzk [>:97]

For distinguishable particles (Equation 5.87), the first constraint (Equation 5.78)

k

becomes
3/2
N = -L)—e"‘a fooe"‘phzkz/bﬂkz dk = Ve @ ( m 7) / .
m= Jo 27 Bh?
o) .
N (2rnBr*\""
ew=—(nﬁ) : [5.98]
14 m

The second constraint (Equation 5.79) says

14 B [ 2.2 3V m \/?
E= — —-a___f —ﬂl‘l-k'/2mk4 dk = —e™ @ ( ) .
2% om 0 ¢ 28 ¢ 2mBh?

or, putting in Equation 5.98 for e™“:

_w
=25
(If you include the spin factor, 25+ 1, in Equation 5.97, it cancels out at this point,
so Equation 5.99 is correct for all spins.)

This result (Equation 5.99) is reminiscent of the classical formula for the
average kinetic energy of an atom at temperature 7:%’

E [5.99]

E 3
— = —kgT, 5.100
N = 5*8T [ ]
where kp is the Boltzmann constant. This suggests that § is related to the temper-
ature: i
= —. 5.101
B %aT [5.101]

To prove that this holds in general, and not simply for distinguishable particles
in the three-dimensional infinite square well, we would have to demonstrate that
different substances in thermal equilibrium with one another have the same value of
B. The argument is sketched in many books,2® but I shall not reproduce it here—1
will simply adopt Equation 5.101 as the definition of T.

278ce, for example. David Halliday, Robert Resnick. and Jearl Walker. Fundamentals of Physics.
5th ed., Wiley, New York (1997), Section 20-5.

28See. for example. Yariv (footnote 22). Section 15.4.
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It is customary to replace o (which, as is clear from the special case of
Equation 5.98, is a function of T') by the so-called chemical potential,

u(T) = —akpT, [5.102]

and rewrite Equations 5.87, 5.91, and 5.95 as formulas for the most probable
number of particles in a particular (one-particle) state with energy € (to go from
the number of particles with a given energy to the number of particles in a
particular state with that energy, we simply divide by the degeneracy of the
state):

[ o—(e—m)/kaT MAXWELL-BOLTZMANN

]
n(e) = 1 e mlkaT 1 1 FERMI-DIRAC [5.103]
]

| efle—m)/ kT _ |

BOSE-EINSTEIN

The Maxwell-Boltzmann distribution is the classical result, for distinguishable
particles; the Fermi-Dirac distribution applies to identical fermions, and the Bose-
Einstein distribution is for identical bosons.

The Fermi-Dirac distribution has a particularly simple behavior as T — 0:

(e=p)/ ks T 0. if e < u(0).
¢ - { oo, if € > (0.

S0
1. if e < u(0).

niE=> l 0, if € > u(0). EAL
All states are filled, up to an energy u(0), and none are occupied for energies above
this (Figure 5.8). Evidently the chemical potential at absolute zero is precisely the
Fermi energy:

w(0) = EF. [5.105]

As the temperature rises, the Fermi-Dirac distribution “softens” the cutoff, as indi-
cated by the rounded curve in Figure 5.8.

Returning now to the special case of an ideal gas, for distinguishable particles
we found that the total energy at temperature T is (Equation 5.99)

El= ;NkBT. [5.106)
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n(e) A

Ep=u(0) &

FIGURE 5.8: Fermi-Dirac distribution for T = 0 and for T somewhat above zero.

while (from Equation 5.98) the chemical potential is

N\ 3 2 h?
u(T)=kpT |:1n <7> + Eln (kaT)] . [5.107])

1 would like to work out the corresponding formulas for an ideal gas of identical
fermions and bosons, using Equations 5.91 and 5.95 in place of Equation 5.87. The
first constraint (Equation 5.78) becomes

Vv [ k2
Tl )y AR m-wl/kaT + |

N [5.108]

(with the plus sign for fermions and minus for bosons), and the second constraint
(Equation 5.79) reads

A k*

E=—— -
2n22m Jo  elh/2m—p)/kpT + |

dk. [5.109]

The first of these determines u(T), and the second determines E(T) (from the
latter we obtain, for instance, the heat capacity: C = 9 E/0T ). Unfortunately, these
integrals cannot be evaluated in terms of elementary functions, and I shall leave it
for you to explore the matter further (see Problems 5.28 and 5.29).

Problem 5.28 Evaluate the integrals (Equations 5.108 and 5.109) for the case of
identical fermions at absolute zero. Compare your results with Equations 5.43 and
5.45. (Note that for electrons there is an extra factor of 2 in Equations 5.108 and
5.109, to account for the spin degeneracy.)







