
Lecture 8 Bose-Einstein condensation, Ultracold quantum
gases

Learning goals

• To understand deeply the concept of Bose-Einstein condensation of non-
interacting bosons; to be able to derive the result and understand the details
of the calculation.

• To get an idea of how an interacting Bose-Einstein condensate can be de-
scribed theoretically.

• To get a brief overview of ultracold quantum gases.

Literature: P. Törmä and K. Sengstock (Eds.), Quantum Gas Experiments – Ex-
ploring Many-Body States, Imperial College Press (available as an ebook at Aalto
library!); C.J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases,
Cambridge University Press

13 General remarks

Ultracold atomic Bose and Fermi gases are systems under intensive experimental
and theoretical research at the moment. They provide an excellent setup to study
many-body quantum physics. In the lectures 9-12, we will consider concepts like
Bose-Einstein condensation, Fermi liquids, quantum phase transitions and super-
fluidity/superconductivity in the context of these ultracold gases. However, the
concepts and the theoretical descriptions are of more general significance; they can
be applied in various other fields of modern physics where many-body phenomena
occur (condensed matter physics of solid state metallic, semiconductors, organic ma-
terials; nanophysics in general; nuclear physics; high energy physics). In addition
to these general concepts, we will get a quick overview on issues specific to ultra-
cold gases: trapping and manipulation of atoms by electromagnetic fields, imaging
techniques, and recent experiments in the field.

14 Bose-Einstein condensation

14.1 Bose-Einstein condensation – a simple approach

Consider non-interacting particles (bosons) in a box
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For non-interacting particles, one does not have the usual interaction term
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For a particle in a box, the single particle wavefunction and energies are
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eikn·r (14.3)
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We define N̂ , i.e. the particle number, in this basis. The field operators  (x) can
be expressed using this basis (see lectures on second quantization). The particle
number is defined

N̂ =
X

n

â†nân. (14.6)

The grand canonical density operator is

⇢̂ =
1

Z
e��(Ĥ�µN̂), (14.7)

where Z = Tr[e��(Ĥ�µN̂)], � = 1

kBT , and µ is the chemical potential.
Now the expectation value (average number) of particles in the state (mode)
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where z = eµ� . For more information see a course/book in statistical physics (e.g.
the chapter 8.6 in Kerson Huang, Quantum Statistical Mechanics, Wiley, 2nd edi-
tion). Let us calculate the total density of the particles
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The second term in the above equation is, for large N ,

1

L3

X

n 6=0

ze��En

1� ze��En
⇡ 1

L3

Z
+1

�1

Z
+1

�1

Z
+1

�1
dnxdnydnz

ze
��

✓
~2(2⇡)2

2mL2 n2

◆

1� ze
��

⇣ ~2(2⇡)2

2mL2 n2
⌘ .

(14.10)

Let A = � ~2
(2⇡)2

2mL2 . Let us make a variable transformation:
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and let us use spherical coordinates in the variable n0 (and drop the prime). Then
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and � is the thermal de Broglie wavelength
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= �dB . (14.14)

Here z = eµ� , therefore (for µ  0, which is the case now; in general, µ cannot
exceed the energy of the lowest state since otherwise the Bose distribution function
f(En) = 1/(e(En�µ)/(kT ) � 1) would be negative)
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(14.15)
That is, the density of the particles in the states n 6= 0 is bounded from
above!! (at fixed T ) The maximum density in other than the ground state is
2.612/�3, and the maximum number of particles in those states is 2.612L3/�3.
) This must mean that, if particles are added, z

1�z grows. Particles accumulate to
n = 0 state!!

fixed T, N grows
or

fixed N, T decreases

9
=

; ) BEC (14.16)

Note: In reality, the bosons are always at least weakly interacting. Further-
more, they might be confined by a nontrivial potential, not just a box. The theoret-
ical description then changes, but the above simple argument gives the basic idea
of Bose-Einstein condensation.
QUIZ
QUIZ
QUIZ

14.2 How to describe the condensate of weakly interacting bosons –
the Gross-Pitaevskii equation

Assume that the temperature is low enough so that the system has reached Bose-
Einstein condensation. How can we describe the BEC of weakly interacting
bosons in a simple way? One simple but yet powerful approach is the so called
Gross-Pitaevskii equation. We derive it by starting from the full Hamiltonian for
the many-body system, and we consider a Bose gas at T = 0:

Ĥ = Ĥ0 + ĤI (14.17)
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Here VT (x) describes the external confining potential for the particles (e.g., a har-
monic trapping potential for the atoms, created by electric/magnetic/laser fields),
and as is the scattering length.

To find the wave-function of the BEC using the variational principle, we
want to calculate the expectation value of the Hamiltonian (the energy, or to be
accurate, the Grand Potential) in the condensed state |�i

h�| Ĥ � µN̂ |�i . (14.20)

Consider the non-interacting case. The ground state of the system is N
bosons in the lowest energy state of the potential VT . In that case,
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However, now the interactions will change the wavefunctions of the states.
We expand the field operators as

 (x) =
X

n

an'n (x) (14.24)

where the wavefunctions 'n (x) are at the moment unknown. We now assume that
the gas is condensed, that is, all the particles are in the lowest energy state:
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where in |N, 0, 0, . . .i the notation goes asN(|N, 0, 0, . . .i ) is for '0 (x), 0(|N, 0, 0, . . .i
) is for '1 (x), and so on. (Remember that a†

0
=
R
d3x'0 (x) † (x).) We will then de-

rive the Gross-Pitaevskii equation from which the condensate wave function '0 (x)
can be solved. The expectation value of the Hamiltonian now becomes (Exercise
Set 9)
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Note that in quantum theory the Lagrangian density L (x) is proportional to Ĥ�µN̂
in the way stated in the above equation. This is in contrast to classical mechanics
where the Lagrangian equals the kinetic energy minus the potential energy. The
di↵erence is because in quantum theory one uses the variational principle to find
the wavefunction (or quantum field) rather than the particle trajectory as in classical
mechanics. Using the Euler-Lagrange equations
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= 0 (14.27)

(same for the complex conjugate)
one obtains (Exercise Set 9) the Gross-Pitaevskii equation:
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This equation determines the ground state wavefunction of the BEC, '0 (x).
The excitations of the condensate can be described, e.g., by using the Bogoliubov
theory, as was discussed in Lecture 4 for bosons. In Lecture 10, the Bogoliubov
theory will be considered again but in the context of Fermions.

15 Ultracold atoms: alkali and others

The research on ultracold atoms started with alkali atoms:
Only one electron at the outermost shell; existence of suitable electronic transitions
for laser cooling and trapping.
Typically: Li, Na, K, Rb, Cs (bosonic or fermionic isotopes)
More recently, also other atoms have been trapped and cooled to quantum degeneracy:
Sr, Cr, Yb, Er, Dy, etc.
Note: also ultracold molecules can be produced.

The relevant electronic states of the (alkali) atoms are determined by the
quantum number n related to the state of the outermost electron, the angular
momentum L and the spin S of that electron, and the nuclear spin I.

I

LS

Good and useful quantum numbers are obtained by combining them

J = S+ L (15.1)

F = J+ I. (15.2)

This gives the basis
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|n, J, F,mF i (15.3)

The di↵erent F states are called the hyperfine states. The states corresponding to
di↵erent mF are called Zeeman sublevels of the hyperfine states. Atoms in ultracold
gases can be prepared into one internal state, that is, one hyperfine state (and
even to a certain Zeeman sublevel, whose degeneracy is lifted in a magnetic field).
Also gases where part of the atoms are in internal state (e.g. Zeeman sublevel)
and the rest of the particles in some other(s) can be prepared. The particles in
di↵erent internal states are distinguishable. Therefore they can be understood as
particles with a di↵erent ”pseudospin”. One can also talk about a gas with many
”components”. Particles in these di↵erent pseudospin states can be used to simulate,
for instance, electrons with di↵erent spins that feel a certain lattice potential and
interactions.

The atoms (and nowadays also simple molecules) can be trapped with mag-
netic, electric and light fields, and cooled with laser cooling and evaporative cooling
(confining potential is not infinitely high and can be lowered: the hottest atoms can
escape) down to nanokelvin temperatures.
As a result, one can obtain trapped and ultracold gases! If you wish to learn more
(not part of the course) about basics of ultracold quantum gases, Chapter 2 of the
book P. Törmä and K. Sengstock (Eds.), Quantum Gas Experiments – Exploring
Many-Body States, Imperial College Press (available as an ebook at Aalto library)
is recommended.

16 Quantum gases of alkali atoms

16.1 What is a quantum gas?
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Gas:

Actually, each particle is associated with a wavefunction:


dB

The spatial scale of the wavefunction is given by the thermal deBroglie wavelength

�dB =

s
2⇡~2
mkBT

. (16.1)

If the particles are so close to each other that the wavefunctions start to overlap, it
begins to matter whether the particles are bosons or fermions!Quantum statistics
starts to play a role.

To achieve this, the gas should be either very cold or very dense.
Normally we do not see quantum gases because when matter gets colder or denser,
it usually forms molecules, liquids and solids.
However, the quantum gases realized by alkali atom gases are metastable systems,
living long enough (before solidifying etc.) in order to make experiments.
The gases are extremely dilute: 1013 atoms/cm3 - 1018 atoms/cm3 (c.f. density of
molecules in normal air is around 1021 atoms/cm3).
How cold should the gas then be to observe e↵ects of quantum statistics? ULTRA-
cold!!!

Interparticle distance = 1/(density)
1
3 =

1
3
p
n
. (16.2)

The interparticle distance should become comparable to the deBroglie wavelength
to have overlap of quantum wavefunctions and thereby the e↵ect of the quantum
statistics:

1
3
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mkBT

(16.3)
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◆ 3
2

(16.4)

e.g. (in SI units)
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m = 100 mp

~ = 10�34

kB = 10�23

n = 1015 1

cm3

9
>>=

>>;
) T ⇠ 1µK (16.5)

Typically in the experiments, T ⇠ 10nK�100µK.

4 K 70 K 140 K 300 K

1 µK 1 mK

He liquid Nitrogen liquid high T
C
 superconductors room temperature

evaporative cooling
laser coolinglaser cooling

Sr BEC by laser cooling below microKelvin 2013

16.2 Interactions in ultracold atomic gases

The interactions between the atoms are basically van der Waals interactions (the
electron clouds of two atoms are interacting). Now, because the gases are very cold,
the deBroglie wavelengths of the atoms are much larger than the range of the van der
Waals potential, thus the collisions are very low energy collisions, i.e. the relevant
momenta k are very small. Due to this, some important approximations can be done,
and one can show that: The s-wave scattering contribution, i.e. the partial wave
with orbital angular momentum l = 0, is the dominant one, and it is possible to
describe the whole scattering process by one number, the s-wave scattering length
as, that is, f (✓) ⇠ �as. This argument is true in most atomic systems studied so
far, however, with the research expanding beyond alkali atoms, cases where it is not
any more valid start to emerge, such as ultracold erbium.

The scattering length can often be calculated from the detailed shape of the
van der Waals potential, and also measured experimentally. One can then write the
many-body Hamiltonian of the interacting system using the scattering length only
and assuming contact interactions. This approximation is possible because the gases
are so cold, and in most cases the approximation provides a su�cient description
of the system.
Important:
There are also ways to tune the scattering length as, for instance by using the
phenomenon of Feshbach resonance. Using a Feshbach resonance (related to the
Fano resonance), the change of magnetic field can change the scattering length from
positive to negative and from weak to strong. If you wish to learn more (not part
of the course) about Feshbach resonances, Chapter 4 of the book P. Törmä and
K. Sengstock (Eds.), Quantum Gas Experiments – Exploring Many-Body States,
Imperial College Press (available as an ebook at Aalto library) is recommended.
QUIZ
QUIZ
QUIZ
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