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We study whether long-term cumulative exposure to airborne small particulate matter (PM2.5)
affects the probability that an individual receives a new diagnosis of Alzheimer’s disease or related
dementias. We track the health, residential location, and PM2.5 exposures of Americans aged sixty-five
and above from 2001 through 2013. The expansion of Clean Air Act regulations led to quasi-random
variation in individuals’ subsequent exposures to PM2.5. We leverage these regulations to construct
instrumental variables for individual-level decadal PM2.5 that we use within flexible probit models that
also account for any potential sample selection based on survival. We find that a 1 µg/m3 increase in
decadal PM2.5 increases the probability of a new dementia diagnosis by an average of 2.15 percentage
points (pp). All else equal, we find larger effects for women, older people, and people with more clinical
risk factors for dementia. These effects persist below current regulatory thresholds.
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1. INTRODUCTION

Research shows that airborne particulate matter (PM) increases mortality. This effect persists
around the world and over time, from the historically high exposures in London in the 1960s
(McMillan and Murphy, 2017) and China in the 2000s (Li et al., 2019) to the historically low
exposures in the U.S. in the 2000s (Deryugina et al., 2019). Research also shows that air pollu-
tion constrains the production and the productivity of human capital (Graff-Zivin and Neidell,
2013). For instance, daily pollution spikes have been found to reduce students’ scores on high-
stakes exams (Ebenstein et al., 2016). Among working-age adults, daily pollution spikes have
been found to reduce performance of both manual and cognitive tasks (Chang et al., 2016; Arch-
smith et al., 2018). However, prior research has not applied causal methods to evaluate whether
airborne PM degrades human capital later in life apart from mortality.

Our study is the first to use a causal research design to evaluate whether long-term, later-
in-life exposure to airborne small particulates (i.e. PM2.5, particulates smaller than 2.5 microns
in diameter) plays a role in causing dementia. Medical research has documented associations
between long-term, later-in-life exposure to PM2.5 specifically and the probability of individuals
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receiving a new dementia diagnosis; although as with other suspected causes of dementia, the
precise mechanisms remain unknown (Block et al., 2012; Underwood, 2017; Peters et al., 2019).
Furthermore, these associations may not be causal due to omitted variables, errors in measuring
individuals’ pollution exposures, or selection bias.

We develop a research design to account for potential biases due to prior residential sorting
(driven by pollution, health, and/or preferences), measurement error in pollution, and selection
on survival. Specifically, we estimate the effects of individuals’ later-in-life exposure to PM2.5

for up to a decade, the longest duration of quasi-random variation available to us. This condition-
ally exogenous variation resulted from the Environmental Protection Agency’s (EPA) expansion
of the Clean Air Act (CAA). Based on air quality monitor readings from 2001 to 2003, the EPA
began to enforce a maximum threshold on PM2.5, prompting local regulators to cleanup polluted
areas beginning in 2004. The regulatory incentives for cleanup were larger in nonattainment
counties that exceeded the maximum threshold on PM2.5. The incentives caused differences
within counties as well. As a result, individuals with the same PM2.5 exposures from 2001 to
2003 experienced different PM2.5 exposures over the next decade.

We use this individual-level variation from the EPA’s nonattainment designations as instru-
ments to identify how cumulative PM2.5 exposure from 2004 to 2013 affected the probability
of receiving a new diagnosis of dementia during this period among Medicare beneficiaries aged
sixty-five and above who did not have dementia in 2004. Specifically, we use county nonattain-
ment status flexibly interacted with individual-level PM2.5 from 2001 to 2003 as instruments for
the individual’s cumulative PM2.5 exposure from 2004 to 2013. In addition to addressing bias
from omitted variables, including genetics, earlier-in-life exposure, and other latent risk fac-
tors for dementia, our estimators also address the inevitable error in measuring an individual’s
pollution exposure.

We apply this design to thirteen years of individual-level data on a random sample of millions
of Americans aged sixty-five and above. These data track their diagnosis dates for many illnesses
including Alzheimer’s disease and related dementias, their demographics, and their sequence
of residential addresses from 2001 through 2013. We use these residential addresses to link to
measures of individual-level PM2.5 exposure using data from EPA air quality monitors.

We estimate year-specific probit models that allow for heterogeneity in the effects of PM2.5

across individuals and across exposure duration while flexibly controlling for individual char-
acteristics associated with dementia risk, including race, gender-by-integer-age interactions,
baseline medical expenditures, baseline exposure to PM2.5, fully interacted sets of baseline med-
ical conditions, and the socioeconomic composition of individuals’ baseline neighbourhoods
(defined as a U.S. Census block group). Furthermore, we include core-based statistical area
(CBSA) fixed effects to absorb spatial variation in diagnostic standards, health care quality and
access, and latent environmental quality. Finally, we account for the fact that our main estima-
tion sample is limited to individuals who survived through the model year following Heckman
(1979). Specifically, we estimate the probability of survival in a separate first stage, using addi-
tional instruments constructed from data on individuals’ diagnoses of cancers that, based on
medical literature, are unrelated to dementia.

We find that a 1 µg/m3 increase in average PM2.5 concentrations increases the probability of
receiving a new dementia diagnosis by the end of the decade by an average of 2.15 percentage
points (pp). For reference, a 1 µg/m3 increase in average PM2.5 was 9.1% of the decadal mean
and 59% of the decadal standard deviation during the period 2004–13. The estimated marginal
effects are larger at lower levels of PM2.5. We also find that the estimated marginal effects of
PM2.5 increase with age, illness, and duration of exposure, and that they are larger for women
relative to men and larger for Black or African-American individuals relative to non-Hispanic
White individuals.
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2190 REVIEW OF ECONOMIC STUDIES

We conduct additional analyses to explore the possibility that nonattainment designations
are conditionally associated with unobserved earlier-in-life factors that cause dementia, which
would violate the exclusion restriction assumption of our instrumental variables. First, we esti-
mate a model with dementia in 2004 as the outcome. The point estimate is negative, small
in absolute value, and statistically indistinguishable from zero. This suggests that our model
is unlikely to be confounded by unobserved differences in earlier-in-life or other factors that
contribute to differences in dementia diagnoses and are conditionally associated with our instru-
ments. Second, we evaluate other placebo health outcomes that may be linked to earlier-in-life
factors but have no known link to PM2.5. We do not find a relationship between these placebo
outcomes and individuals’ cumulative PM2.5 exposures.1 Third, our results persist across a wide
range of alternative modelling decisions including controlling for ancillary measures of air
pollution exposure.

These findings indicate that air pollution’s effects on dementia make its detriments to health
and human capital substantially larger than previously realised. Incorporating these effects
will be important for comprehensively evaluating the ongoing efforts to improve air quality
worldwide.

2. LATER-IN-LIFE PM2.5 EXPOSURE AND NEW DEMENTIA DIAGNOSES

2.1. Existing knowledge from the medical literature

Recent research has documented a positive association between long-term cumulative exposure
to fine-particulate air pollution later in life and dementia (Block et al., 2012; Underwood, 2017;
Peters et al., 2019). In addition, the literature has identified a number of potential pathways to
explain this association, even if the details of the accumulation process remain yet unknown.
Two physiological hallmarks of Alzheimer’s disease specifically are the accumulation of tau
protein and amyloid beta (Iaccarino et al., 2021), and recent research has established a link
between this accumulation and PM2.5 exposure (Park et al., 2021). Research has also found rela-
tionships consistent with other potential neurological mechanisms underlying the link between
PM2.5 and dementia and/or Alzheimer’s disease (Alemany et al., 2021), including neuroinflam-
mation caused by accumulation of PM2.5 in brain tissue (Maher et al., 2016; Kang et al., 2021),
and associations between long-term, later-in-life exposure to PM2.5 and accumulated PM2.5 in
the brain, smaller brain volume, and higher rates of brain infarcts or areas of necrosis and accel-
erated rates of brain atrophy, which is predictive of Alzheimer’s disease (Wilker et al., 2015;
Younan et al., 2020).

Each of these potential pathways between cumulative PM2.5 exposure and a diagnosis of
dementia is potentially moderated by a number of factors. These factors may include differ-
ences in PM2.5 chemical composition (Li et al., 2020), earlier-in-life exposure, cardiovascular
risk (Grande et al., 2020), and genetics. While less than half of the genetic factors that con-
tribute to late-onset dementia have been identified (Ridge et al., 2016), recent research has found
that genes play a role in moderating environmental factors’ relationship to cognitive decline
and dementia, including moderating the relationship between PM2.5 and dementia, specifically
(Cacciottolo et al., 2017; Kulick et al., 2020; Alemany et al., 2021).2

1. In contrast, we find statistically significant positive effects for two outcomes with known links to PM2.5
(chronic obstructive pulmonary disease (COPD) and chronic kidney disorder).

2. These issues make it difficult to allocate the shares of dementia cases due to genetic risk factors for dementia
itself and due to environmental factors directly. Earlier research (e.g. Gatz et al., 1997) provided such shares under the
strong assumption of additive separability between environmental factors and genetics.
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2.2. An overview of our research design

The medical literature described above, along with our data and policy setting, described in
Sections 3 and 4, respectively, inform several aspects of our research design. We preview this
research design here.

We follow prior medical studies and assess the role of later-in-life, long-term exposure
to PM2.5 as measured by single- or multiple-year annual average ambient concentrations in
explaining new diagnoses of dementia (Cacciottolo et al., 2017; Grande, 2020; Shi et al., 2020;
Mortimais et al., 2021; Ran et al., 2021; Shi et al., 2021; Li et al., 2022; Wang et al., 2022).3

Specifically, we observe the timing of individuals’ initial diagnosis (or lack thereof) and how it
relates to thirteen years (2001–13) of annual average exposure to PM2.5 for them individually
based on their precise residential locations each year, allowing us to measure individual-specific
exposure histories.4

We depart from the prior medical literature by employing a causal research design to account
for potential sources of confounding. Specifically, we observe quasi-random variation in individ-
uals’ PM2.5 exposures beginning in 2004. As a result, we are able to model the effects of PM2.5

exposure across a full decade (2004–13), conditional on baseline levels of PM2.5 (2001–3).
In Section 5, we present a flexible probit model of how cumulative exposure to PM2.5 affects

the probability of an individual receiving a new dementia diagnosis. We allow for heterogeneity
by letting this effect vary flexibly with the level of cumulative PM2.5 exposure over the sample
and with the levels of the other controls. We feature models using increasing durations of PM2.5

exposure. Finally, we include an extensive set of individual and neighbourhood characteristics
that may be correlated with new dementia diagnoses. These controls are described in detail in
Section 3.

Even with this extensive set of controls, identifying the effect of cumulative PM2.5 expo-
sure on a new diagnosis of dementia presents several challenges. These include scope for
measurement error in PM2.5 exposure, the potential for sorting on latent health, genetics,
and earlier-in-life pollution exposures, and selection on survival. Our econometric approach,
described in Section 5, is designed to account for each of these challenges.

First, to address measurement error in PM2.5 exposure and any geographic differentials
in unobserved factors, we follow prior work (Chay and Greenstone, 2005; Auffhammer et
al., 2009) and develop instrumental variables from the quasi-random variation in PM2.5 expo-
sures (conditional on baseline) that was induced by the CAA regulations. Our control function
approach (Rivers and Vuong, 1988) relies on the familiar assumptions of relevance and exogene-
ity for two-stage least squares (2SLS). The policy environment and the variation-inducing CAA
regulations are described in detail in Section 4.

Second, to address selection based on survival, we employ a selection-correction approach
(Heckman, 1979; Heckman and Robb, 1986). To implement this approach, we use a set of
additional instruments from the medical literature that are correlated with survival, but inde-
pendent of the unobserved determinants of dementia. We also present a Lee (2009)-style bounds
approach in Supplementary Material, Appendix H that does not rely on this additional set of
instruments.

3. Like nearly all of the large-scale studies using secondary data, we cannot observe progression or severity of
dementia over time. Clinical research commonly refers to this as “incident dementia” or “incidence of dementia.” Peters
et al. (2019) provide a review.

4. Dementia is an absorbing state. Therefore, we model the occurrence of the initial diagnosis and exclude from
our sample those who had been diagnosed previously.
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2192 REVIEW OF ECONOMIC STUDIES

In addition, we consider the potential for sorting on genetics and omitted earlier-in-life
factors. Prior research found that individuals’ residential exposures to PM2.5 do not differ
by apolipoprotein E (APOE) genotypes (Cacciotolo et al., 2017). In addition, Shin et al. (2019)
find “no correlation between Alzheimer’s Disease polygenic risk score and net worth, housing
assets and nonfinancial assets.” This indicates that dementia-related genetics are not associated
with sorting into neighbourhoods based on economic status. These studies provide evidence that
genetic factors are unlikely to be correlated with our instrument. To test this directly, we examine
the estimates of instrumented PM2.5 exposure on the presence of a dementia diagnosis by 2004.
In addition to genetics, this assesses whether our results are likely to be explained by associa-
tion between our instruments and any omitted earlier-in-life factors including other clinical risk
factors, prior exposure to PM2.5, or different chemical compositions of PM2.5.

3. DATA AND MEASURES

3.1. Medicare data and sample

The U.S. Medicare programme provides universal health insurance for citizens over age sixty-
five.5 The U.S. Centers for Medicare and Medicaid Services (CMS) maintains a comprehensive
national database on beneficiaries, including their addresses at each point in time, medical claims
and diagnoses, and demographics. We track individuals from as early as 1999 through the end
of 2013.6 Our featured estimation sample starts with a random 20% sample of all traditional
Medicare (TM) beneficiaries who were sixty-five and older on 1 January 2004. We then limit
our sample to those who lived in counties with PM2.5 monitors, and for whom we can observe
their health and residential locations.7

3.2. Measuring dementia and its risk factors

CMS’s Chronic Conditions Data Warehouse (CCW) files use codes on Medicare insurance
claims to track if and when each individual is diagnosed with specific chronic medical condi-
tions. A dementia diagnosis is based on the presence of multiple symptoms of cognitive impair-
ment that significantly impact daily functioning.8 Examples include memory loss, impaired
judgement, loss of spatial awareness, depression, and behavioural changes. Alzheimer’s disease
is the primary type of dementia, accounting for 60–80% of all cases. Our claims-based approach
to identifying dementia diagnoses is well validated (Lee et al., 2019).

5. We analyse “traditional” Medicare (TM) administrative records from CMS. CMS manages and pays claims
for services provided to TM enrollees. Beneficiaries can opt out of TM and enroll in a private Medicare Advantage (MA)
managed care plan. MA enrollees are left out of most studies of Medicare because MA plans historically did not report
claims to CMS. We are able to overcome these limitations and include MA enrollees in some specifications described in
Supplementary Material, Appendix Table J2.

6. Due to the provenance of our data, we complement the random 20% sample with an independent, random
20% sample of those also aged sixty-five by 1 January 2004 who purchased standalone prescription drug insurance
plans through Medicare Part D at any point between 2006 and 2010 without the aid of low-income subsidies (Center for
Medicare and Medicaid Services 2022a, 2022b, 2022c).

7. We provide additional details about sample cuts and data definitions in Supplementary Material, Appendix A.
8. The International Classification of Diseases, 10th Revision (ICD-10) (World Health Organization (2011)

defines Alzheimer’s disease (G30) as “A degenerative disease of the brain characterized by the insidious onset of demen-
tia. Impairment of memory, judgment, attention span, and problem solving skills are followed by severe apraxias and a
global loss of cognitive abilities. The condition primarily occurs after age 60, and is marked pathologically by severe
cortical atrophy and the triad of senile plaques; neurofibrillary tangles; and neuropil threads.”
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FIGURE 1

Dementia diagnosis by age and gender in 2013.

Figure 1 shows how the fraction of individuals diagnosed with dementia in Medicare data
varies with age and gender in 2013. Diagnosis rates increase gradually with age through the mid-
70s before accelerating in the late 70s and beyond. The diagnosis rate is higher for women, and
this gender gap widens with age. Conditional on age, diagnosis rates also differ by race. Diagno-
sis rates are generally higher for people denoted by CMS as “Black or African-American” and
lower for “Asian/Pacific Islander” relative to “Hispanic” or “non-Hispanic White.” We account
for this heterogeneity by creating a vector of demographics, denoted Xi. This vector includes
race code indicators and indicators for each of the 52 possible sex-by-integer-age combinations
from age 75 through 100 in 2013.9

We further utilise the administrative CCW files to measure clinical risk factors. Specifically,
we create a vector of health characteristics, denoted Hi. This includes indicators for whether the
individual in 2004 had each one of the 32 possible combinations of hypertension, diabetes, con-
gestive heart failure, ischaemic heart disease, and stroke. These are the known diagnostic risks
for dementia (Alzheimer’s Association, 2019). We further measure baseline health by includ-
ing in Hi a fourth-order polynomial function of total expenditures on all services covered by
Medicare Parts A and B in 2004.10

U.S. Census data provide socioeconomic characteristics of the Census block group where
the individual lived in 2004 according to CMS records.11 We define neighbourhood as the indi-
vidual’s Census block group and create a vector of neighbourhood characteristics, denoted Wi.
This vector includes median household income, per-capita income, mean and median house
value, median rent, median house age, fractions of the housing stock that are owner occupied,
renter occupied, and vacant, fraction of residents over age 65, fractions of residents who report
being White, Black, and Hispanic, and the fractions of residents in each of seven educational-
attainment bins.12 These variables account for non-clinical factors associated with different risks

9. Seventy-five is the minimum age in 2013 within our estimation sample because that sample is limited to
people who were sixty-five or older on 1 January 2004. Centenarians are grouped into two gender-specific bins because
their small numbers prevent us from precisely estimating age-specific coefficients. Our results are unaffected by adding
age-specific bins beyond age 100.

10. Medicare Parts A and B cover virtually all medical services aside from prescription drugs and long-term care.
This includes doctors’ services, preventive care, durable medical equipment, hospital outpatient services, laboratory
tests, imaging, hospital inpatient services, nursing facilities, and hospice care.

11. A block group contains 600–3000 residents on average (U.S. Census).
12. United States Census Bureau (2022) and Geolytics (2022).
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of dementia. Supplementary Material, Appendix Table A1 provides summary statistics for each
of the variables represented in Xi, Hi, and Wi.

Finally, we create indicators (denoted Ci,t) for the geographic regions where individuals lived
in each year of our model. Specifically, we include 977 indicators for the U.S. Census Bureau’s
CBSAs and the non-CBSA rural areas of each state.13 In our model, these indicators will absorb
the effects of otherwise unobserved factors. First, they help to absorb any effects of residential
sorting across CBSAs on the basis of latent risk factors for dementia. Second, they help to
absorb the effects of environmental factors that could be spatially correlated with both PM2.5 and
dementia, e.g. the presence of lead pipes or extreme temperatures which may cause morbidities
that are risk factors for dementia. Third, they absorb all differences between geographic areas
in health care delivery that might contribute to differences in diagnostic decisions, including
patients’ access to medical care and physicians’ treatment styles.

3.3. Measuring PM2.5 exposure

In 1997, the EPA established monitoring protocols for PM2.5, and by 1999, an initial national
network of regulatory-grade PM2.5 monitors was put into place. We use annual average PM2.5

concentrations recorded at each of these monitors from 2001 through 2013 (United States Envi-
ronmental Protection Agency 2022a, 2022b). We use data from a balanced panel of 485 monitors
that operated continuously through our study period to avoid measurement error that could be
introduced if new monitors tend to be located in more or less polluted areas (Grainger and
Schreiber, 2019).14 In a sensitivity check, we instead use data from all 1722 monitors.

We measure an individual’s exposure to PM2.5 in year t, PM2.5i,t, based on concentrations at
their residential address in that year. The CMS data include ZIP + 4 Codes for each individual’s
sequence of addresses from 2004 to 2013.15 We use this information to measure the individual’s
cumulative exposure to PM2.5 incorporating changes in PM2.5 experienced as a result of mov-
ing.16 Individuals in our data live in 2.7 million distinct ZIP + 4 Codes during 2004–13. We use
the latitude and longitude coordinates of each monitor and each ZIP + 4 to assign the annual
average concentration at each residence.17 Specifically, we calculate the geographical distance
between each ZIP + 4 centroid and each monitor. Then, for each centroid-year combination, we
calculate a weighted average of concentrations recorded at all monitors with the weights given

13. There are 927 CBSAs in the U.S., which are defined by the Office of Management and Budget as one or
more counties anchored by an urban center of at least 10,000 people plus adjacent counties that are socioeconomically
tied to the urban center by commuting. For people living outside of CBSAs, we create an additional 50 state-specific,
rural dummy variables.

14. Following the literature, we drop individuals living in unmonitored counties. See Supplementary Material,
Appendix A for details.

15. ZIP + 4 Codes are close to street addresses in terms of spatial precision: each code corresponds to a single
mail delivery point such as a house, one floor of an apartment building, or one side of a street on a city block.

16. Thirty-one percent of individuals in our data move at least once, 17% move between counties, and 10% move
between states. These rates are similar to those reported by the Census Bureau for individuals aged sixty-five and above.
We are unable to observe seasonal migration by people with more than one residence because we only observe the
residential address on record with CMS. Fortunately, the scope for measurement error is small. Jeffery (2015) estimates
that seasonal migrators only account for 2–4.1% of the Medicare population based on addresses on Medicare claims for
primary care and emergency room visits.

17. Geographic coordinates of ZIP + 4 centroids were purchased from GeoLytics, which created them from the
Census Bureau’s TIGER/line Shapefiles and U.S. Postal Service records.
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FIGURE 2
Average residential concentration of PM2.5 by year

Notes: The figure reports the annual average concentrations of fine-PM based on place of residence for people aged sixty-five and above
on Medicare.

by the square of the inverse distance.18 Thus, as the distance from a ZIP + 4 centroid to a monitor
increases, the weight assigned to that monitor decreases.

Figure 2 shows that annual average concentrations of PM2.5 at the residences of the U.S.
Medicare population declined substantially during the 2000s, from over 13 µg/m3 (micrograms
per cubic metre of air) in 2001 to about 9 µg/m3 in 2013. This is true regardless of whether
we measure exposure using the balanced panel of monitors (the dashed line) or the full set of
monitors (solid line).

We denote our measure of interest, the individual’s average cumulative exposure to PM2.5

from 2004 to year t, as durPMi,t. We construct it by combining the described ZIP + 4-specific
annual PM2.5 concentrations with individuals’ residential ZIP + 4 histories from 2004 to t
according to durPMi,t = ∑t

s=2004 PM2.5i,s/(t − 2004). Finally, we create a measure of the base-
line PM2.5 concentrations at the locations where individuals lived in 2004. We denote this
measure as basePMi and construct it as the average concentration over the three years 2001–
3. These three years are the years that the EPA based its nonattainment designations on, as
discussed in the next section.

4. CAA REGULATION OF PM2.5

The CAA of 1970 established national standards for concentrations of regulated air pollutants.
The EPA designated counties containing monitors that exceeded these standards as nonattain-
ment. States with nonattainment counties were required to coordinate with local regulators to
bring those counties into compliance with the standards. States that failed to bring their counties
into attainment faced penalties including loss of federal highway funds.

Due to its pernicious effects on human health, PM has been subject to sustained and evolv-
ing federal regulation (US EPA, 2005). Beginning in 1971, the EPA regulated total suspended
particulates (TSPs). In light of evidence that health effects were driven by the smallest particu-
lates, the EPA replaced the TSP standard with a standard on PM10 (particulates smaller than 10
microns in diameter) in 1987 and a standard on PM2.5 in 1997. Each new standard was followed

18. This method of interpolation, with weights given by the distance raised to a negative exponent, is a
predominant method in the environmental economics literature.
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FIGURE 3
Post-regulatory PM2.5 exposure 2004–13, by county attainment status and pre-regulatory exposure 2001–3

Notes: The nonattainment and attainment lines represent estimates from regressing individual exposure from 2004 to 2013 on indicators
for 0.10 µg/m3 bins of baseline exposure from 2001 to 2003 interacted with county attainment status. Additional covariates include CBSA
dummies.

by new nonattainment designations. These designations have the ability to affect pollution in
both nonattainment and attainment counties because pollution travels across county boundaries.
However, the designations for PM have induced relatively larger pollution reductions in nonat-
tainment counties. Prior research used the TSP standard (Chay and Greenstone, 2005; Isen et al.,
2017) and the PM10 standard (Bento et al., 2015) to create instruments for TSP and PM10 expo-
sures, respectively. In this paper, we use the PM2.5 standard to develop instruments for PM2.5

exposures.
In 1997, the EPA set the regulatory standard for average annual PM2.5 concentrations at

15.05 µg/m3. In April 2003, state and local regulators were given a February 2004 deadline to
provide PM2.5 monitor data from the years 2001 to 2003 and to self-report any nonattainment
monitors to the EPA, where nonattainment was defined by the monitor’s three-year average
PM2.5 concentrations from 2001 to 2003. Based on these reports, the EPA formally defined
each monitored county to be in attainment or nonattainment in January 2005.19 For counties
with multiple monitors, the designations were based on the monitor with the highest three-year
average from 2001 to 2003.

We define 2004 as the start of the regulatory period because local regulators learned which
counties would be nonattainment between April 2003, when they received the EPA’s request for
data, and February 2004, when they were required to submit their status. EPA monitor data show
PM2.5 concentrations declining at a similar rate in both attainment and nonattainment counties
prior to 2004, and then declining at a faster rate in nonattainment counties after 2004. These

19. Supplementary Material, Appendix Figure B1 shows the locations of attainment and nonattainment counties
with air quality monitors. In 2005, 132 of the monitored counties containing approximately 27% of the U.S. popula-
tion were classified as nonattainment. Another 528 counties containing 43% of the U.S. population were classified as
attainment. The remaining counties lacked monitoring data and were designated “unclassifiable” and not subjected to
additional regulation. Supplementary Material, Appendix Figure B2 shows the location of the monitors.
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trends, shown in Supplementary Material, Appendix Figure C1, are analogous to the evidence
that Chay and Greenstone (2005) first presented on the validity of using CAA regulation of PM
as a quasi-experiment.

Figure 3 provides the intuition for how we use county nonattainment designations to isolate
quasi-random variation in individuals’ average PM2.5 exposures from 2004 to 2013, conditional
on baseline concentrations from 2001 to 2003.20 The nonattainment and attainment lines plot
the coefficients obtained by regressing the individual-level measure of decadal PM2.5 exposure,
durPMi,2013, on indicators for 0.1 µg/m3 bins of basePMi interacted with county attainment sta-
tus, after absorbing CBSA dummies. Comparing the nonattainment and attainment lines with
the 45° line shows that post-regulatory reductions in PM2.5 were larger, on average, for individ-
uals with larger baseline concentrations. This pattern is consistent with prior studies that used
CAA regulatory standards to develop instruments for PM exposures.

The key insight from Figure 3 is that the nonattainment line lies below the attainment line for
all levels of average PM2.5 from 2001 to 2003. This difference is statistically significant at the 1%
level. This shows that when we compare individuals in the same CBSA who were in the same
residential PM2.5 bin for pre-regulatory exposure (2001–3), those who lived in nonattainment
counties were subsequently exposed to lower PM2.5 during 2004–13 than those in attainment
counties. This follows from the incentives that regulators faced to target their mitigation efforts at
nonattainment counties (Chay and Greenstone, 2005; Isen et al., 2017). In addition, the vertical
distance between the nonattainment and attainment lines decreases with baseline PM2.5 concen-
trations from 2001 to 2003.21 This follows from the EPA policy in which a county’s attainment
status is linked to its dirtiest monitor, thus incentivizing local regulators to target pollution “hot
spots” (Auffhammer et al., 2009; Bento et al., 2015).

5. ESTIMATING THE CAUSAL IMPACT OF DECADAL PM2.5 ON DEMENTIA

We model how cumulative exposure to PM2.5 over the decade from 2004 to 2013 affects the
probability of an individual receiving a new dementia diagnosis. First, we consider a contempo-
raneous, decadal model where the decade is treated as a single time period. Second, we extend
this framework to instead aggregate cumulative, year-specific impacts over the decade.

5.1. Decadal model of new dementia diagnoses

Let yi,t indicate whether individual i has received a dementia diagnosis by the end of year t
and let �yi = yi,2013 − yi,2004 denote the change in dementia status between 2004 and 2013.
Because dementia has no cure, it is an absorbing state and, by definition, �yi is equal to zero
for anyone with dementia in 2004. Therefore, we model whether individual i is newly diagnosed
with dementia by the end of 2013, conditional on having not received a dementia diagnosis
before the end of 2004.22

20. As noted in Chay and Greenstone (2005), attainment status does not induce quasi-random variation in pollu-
tion levels, but rather quasi-random variation in changes in pollution. Equivalently, in our case, attainment status induces
quasi-random variation in decadal pollution exposure, conditional on pre-regulatory baseline pollution.

21. The scaling of the vertical axis in Figure 3 makes this trend hard to discern. It is easier to discern in Figure 4.
Fitting a linear trend to the vertical distance between the nonattainment and attainment lines in Figure 3 reveals that a
1 µg/m3 increase in baseline exposure is associated with a 0.02 µg/m3 reduction in the vertical distance between the lines.

22. We begin with a model of new diagnosis of dementia, which is standard in clinical research on dementia. In
principle, we could instead begin with a model describing an individual’s dementia status in both 2004 and 2013 to derive
equation (4.1). Such a model is shown in Supplementary Material, Appendix G. Our discussion of identification below
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We model a new dementia diagnosis using a probit model where �y∗
i denotes the latent

propensity to become newly diagnosed with dementia:

�y∗
i = h(durPMi,2013;αi ) + ηi ,

and where an individual is diagnosed with dementia if their latent propensity is positive, i.e.
�yi = 1[�y∗

i > 0].
The parameter of interest, αi, represents the causal effect of decadal exposure to PM2.5 on

�y∗
i , holding all other factors constant.23 All other factors that determine �y∗

i are denoted by
the error ηi. Following Angrist and Pischke (2009), we decompose ηi into a linear function of
observable controls, Xi, Hi, Wi, Ci, basePMi, and an error, ei:

ηi = βx Xi + βH Hi + βW Wi + βC Ci,2013 + f (basePMi ;βbasePM) + ei .

Combining the two previous equations yields our equation of interest:

�y∗
i = h(durPMi,2013;αi ) + βx Xi + βH Hi + βW Wi + βC Ci,2013 + f (basePMi ;βbasePM) + ei .

(4.1)

In the simplest specification of this model, we specify h(durPMi,2013;αi) = α durPMi,2013. In a
more flexible specification of the decadal model, discussed in Section 5.2, we allow for non-
linearities and heterogeneity along observable dimensions in the impact of durPMi,2013 on the
probability of a new diagnosis of dementia. In Section 5.3, we present a model that allows for
additional non-linearity and heterogeneity with respect to the duration of exposure to PM2.5.

We use α together with the other model parameters to recover the average marginal effect
(AME) of changes in durPMi,2013 on the probability of a new diagnosis, Prob(�yi = 1). We
discuss the controls, X, H, W, C, basePM, and the error, e, in the following paragraphs.

In Section 3, we defined the vectors of controls X, H, W, and C. The vector Xi includes
indicators for race and gender-specific indicators for each integer age. Hi includes indicators
for each unique combination of pre-existing clinical risk factors for dementia (hypertension,
diabetes, congestive heart failure, ischaemic heart disease, and stroke) and a fourth-order poly-
nomial function of individual medical spending in 2004. Wi includes Census block group
variables describing the socioeconomic characteristics of individuals living in individual i’s
neighbourhood in 2004. Finally, Ci,2013 is a vector of indicators for each individual’s 2013
CBSA.

The final control is a fourth-order polynomial function, f ( · ), of basePMi. This controls for
any residual effects of pre-regulatory sorting into more polluted neighbourhoods by individu-
als who are more likely to receive a future dementia diagnosis. In addition, the inclusion of
f (basePMi) means that α specifically measures how cumulative PM2.5 exposure from 2004 to
2013 affects the probability of a new dementia diagnosis, conditional on pre-regulatory, baseline
concentrations.

Finally, ei is an error term that represents any other determinants of a new dementia diagnosis
that are not controlled for by a linear function of Xi, Hi, Wi, Ci,2013, and f (basePMi). The model
imposes no assumption about the relationship between our variable of interest, durPMi,2013,

explicitly accounts for the fact that the error in equation (4.1) captures changes in unobserved dementia determinants,
conditional on not having dementia in 2004.

23. Epidemiological “stress” models that consider life histories are discussed in Deaton and Paxson (1998).
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and ei.24 In fact, ei most likely contains factors that would lead it to be correlated with
durPMi,2013, coming from (i) omitted variables, (ii) measurement error, and (iii) factors related
to selection.

One example of an omitted variable in ei that may be correlated with durPMi,2013 is earlier-
in-life exposure. While we do not specify the direct impact of earlier-in-life PM2.5 exposure,
we allow for earlier-in-life exposure to affect new dementia diagnoses and to be correlated with
durPMi,2013.25 Another example is latent health. If individuals had sorted on unobserved health
factors, including genetics, the error term and durPMi,2013 may be correlated. Like earlier-in-life
exposure, we will not specify the direct impacts of these latent health measures, but we do not
rule out their presence in ei.

Measurement error in durPMi,2013 could also be present in ei. All large-scale data on air
pollution are based on ambient measures, such as satellite imaging or government monitors.
While the regulatory-grade monitors that we use are well validated, each one only measures
pollution at a single place.26 As a result, all available measures of pollution likely differ from
what individuals actually breathe. This can arise from individual differences in indoor air, daily
mobility, and activities, or from the interpolation between geography-based measures required
to develop individual-level measures.

Finally, new dementia diagnoses are only measured for those individuals who survive until
the end of the model’s time period. This could induce a correlation between durPMi,2013 and ei

among survivors if latent health that determines survival is (conditionally) correlated with latent
health that affects the probability of a new dementia diagnosis.

5.2. Identification and estimation

Relevant omitted variables, measurement error, and sample selection mean that estimating
equation (4.1) under the assumption that durPMi,2013 and ei are independent is unlikely to
yield a consistent estimate of α. We use a two-pronged approach to overcome these chal-
lenges. First, to address omitted variables and measurement error in durPMi,2013, we leverage
the conditional variation in durPMi,2013 across individuals that was induced by CAA reg-
ulations as described above. Second, to address selection based on survival, we employ a
selection-correction approach.

Instrumenting for pollution. As discussed in Section 4, PM2.5 regulations led to lower lev-
els of PM2.5 over 2004–13 for people living in nonattainment counties relative to people in
attainment counties in the same CBSA and the same levels of PM2.5 over 2001–3. The EPA
solely relied on 2001–3 to make its nonattainment designations. This is the essence of the quasi-
experiment that we rely on to isolate conditionally exogenous variation in durPMi,2013. More
formally, we isolate this variation using a control function approach with a vector of instru-
ments, Zi. The five elements of Zi include an indicator for residing in a nonattainment county in
2004 and interactions between this indicator and f (basePMi). This set of instruments is designed

24. We make an assumption in Section 5.2 regarding the independence of ei and the vector of controls and
instruments.

25. Because we allow prior exposure to be an element of the error term, rather than explicitly model its impact,
we cannot answer questions directly related to lifetime exposure. In our model, α captures the causal effect of later-in-
life decadal pollution on the probability of a new dementia diagnosis, holding all else constant, including earlier-in-life
exposure.

26. The federal regulatory-grade monitors that we use for our analysis represent the best available information
on ambient PM2.5 in the U.S. Supplementary Material, Appendix B provides further information on EPA’s approach to
validating PM2.5 measurements.

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article/90/5/2188/6889625 by Aalto U

niversity Library user on 30 O
ctober 2023

http://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdac078#supplementary-data


2200 REVIEW OF ECONOMIC STUDIES

to capture the between- and the within-county variation in decadal PM2.5 induced by the CAA,
as discussed in Section 4. Our “first-stage equation” is given by

durPMi,2013 = δZ Zi + δX Xi + δH Hi + δW Wi + δC Ci,2013 + f (basePMi ; δbasePM) + εi , (4.2)

where the covariates other than Zi are the same as in equation (4.1).
We assume that (ei , εi ) is distributed jointly normal with mean zero and var(ei) normalised to

one, and is independent of the instruments, Zi, and controls, Xi, Hi, Wi, Ci,2013, and f (basePMi).27

Under this assumption, the order condition is satisfied, as the controls are exogenous and can
serve as instruments for themselves, while the scalar durPMi,2013 is treated as endogenous and
is instrumented with Zi.

We denote the residuals from an estimation of equation (4.2) via ordinary least squares (OLS)
as ε̂i . Following Rivers and Vuong (1988), these residuals are then added as an additional control
to equation (4.1), which is then treated as a standard probit model and estimated using maximum
likelihood.28

The equivalence of control function estimation in linear models and 2SLS is well established
(e.g. Hausman, 1978). In non-linear models like ours, the estimators are not equivalent, but the
intuition of 2SLS remains applicable. This gives rise to the term two-stage conditional maximum
likelihood (2SCML) that Rivers and Vuong (1988) use to describe the approach that we rely on.
Our 2SCML approach requires the standard conditions for consistency of the 2SLS estimator, i.e.
that the controls are exogenous, that the instruments, Zi, are partially correlated with durPMi,2013,
and that the instruments, Zi, are exogenous.29

The mean-independence assumption that guarantees exogeneity of the controls, i.e.
E[ei |Xi , Hi , Wi , Ci,2013, f (basePMi )] = E[εi |Xi , Hi , Wi , Ci,2013, f (basePMi )] = 0, is equiva-
lent to the assumption that the functional forms specified in the decomposition of η and in
equation (4.2) are sufficiently flexible to capture the relationships between the controls and ηi

and the controls and durPMi,2013.30 Three features of our research design support the credibility
of this functional-form assumption. First, as discussed in Section 3, our controls are extensive.
Second, our model is saturated within some control vectors (e.g. integer-age-by-gender dummies
and the full-factorial of baseline health conditions) and flexible in other control vectors (e.g.
fourth-order polynomial functions of medical spending and baseline pollution). Third, the esti-
mated AMEs are relatively insensitive to adding additional interactions and additional flexibility
in unsaturated control vectors.31

The first condition on the instruments, Zi (relevance), can be directly validated with empiri-
cal testing, while the second condition (exogeneity) cannot be. A violation of the key identifying

27. While assuming joint normality is standard in this class of models, Rivers and Vuong (1988) note that it
is actually stronger than the sufficient condition that ei is normal and homoscedastic given εi , the instruments, Zi, and
controls, Xi, Hi, Wi, Ci,2013, basePMi. We also assume that the technical assumptions of Rivers and Vuong hold, namely
that the data are i.i.d. and the parameter vector lies in the interior of a compact, convex subset of Euclidean space.

28. The Rivers and Vuong (1988) approach estimates a scaled version of the parameters in equation (4.1) where
the scaling factor depends on the variance of εi and the covariance between εi and ei. While the unscaled coefficients
can be recovered, this is not necessary. As discussed in Wooldridge (2015), the scaled coefficients are sufficient for
estimating the average structural function (Blundell and Powell, 2013) and the AME of durPMi,2013 on Prob(�yi = 1).

29. In a linear model, consistency requires that the controls and instruments are uncorrelated with the error. We
are estimating a Probit model which requires the stronger assumptions of independence and normality.

30. A necessary condition for Zi to be a valid instrument for durPMi,2013 is conditional independence, i.e. that
Zi is independent of ηi conditional on the controls. Combining this conditional independence assumption with the addi-
tional assumption that (ei , εi ) is mean independent of the controls is then sufficient for (ei , εi ) to be mean independent
of both Zi and the controls.

31. See, for example, the discussions in Sections 5.3, 5.4, 7.2, and Supplementary Material, Appendix J.
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assumption of exogeneity would mean that some unobserved factor remaining in ei causes indi-
viduals of the same age, race, sex, and baseline health who experienced the same residential
PM2.5 concentrations across 2001–3 and lived in neighbourhoods with the same socioeconomic
conditions, nevertheless sorted into attainment versus nonattainment counties within the same
CBSA on the basis of factors associated with different probabilities of receiving a new dementia
diagnosis from 2005 to 2013 and yet did not have dementia prior to 2005. We follow prior stud-
ies and assume that nonattainment status is independent of measurement error in PM2.5 exposure
in counties that contain air pollution monitors (Chay and Greenstone, 2005; Isen et al., 2017).

We consider the earlier-in-life exposure that, as previously discussed, is an element of ei. The
EPA nonattainment designations relied only on 2001–3 concentrations and we include a flexi-
ble (fourth-order polynomial) function of basePMi (created using data from 2001 to 2003) in our
empirical models. Thus, earlier-in-life exposure would bias our estimate of α only in the unlikely
event that earlier-in-life exposure is not independent of nonattainment status conditional on base-
line pollution and other controls. We provide support for the exclusion restriction assumption in
Section 7 by estimating a model that includes a measure of earlier-in-life exposure. While the
coefficient on earlier-in-life exposure itself is uninformative for evaluating the 2SCML assump-
tions, the fact that the estimates of the AMEs are invariant to its inclusion suggests that the
omission of earlier exposure is not biasing our estimated effect of interest.

To conclude, like 2SLS estimators, our key identifying assumption is that the error in
equation (4.1) is independent of our instrument, Zi. This is likely to hold given our extensive set
of controls and the sharply defined timeframe used by the EPA to make regulatory designations.
We provide support for this assumption in Section 7.

Addressing selection on mortality. Prior work has found that PM2.5 causes mortality among
seniors in the U.S. (Di et al., 2017; Deryugina et al., 2019). For example, Deryugina et al.
use an instrumental variables estimator to conclude that a one-day 1 µg/m3 increase in PM2.5

causes a 0.18% increase in mortality over three days. When we estimate the specification shown
in equations (4.1) and (4.2) but with decadal mortality as the dependent variable, we find that
a 1 µg/m3 increase in average PM2.5 from 2004 through 2013 increases mortality by 2.47 pp,
equivalent to 6% of the decadal mortality rate.32

These results, combined with the concern that unobserved aspects of health that determine
survival may be correlated with unobserved aspects of health that determine dementia, suggest
that sample selection may bias the estimates of equations (4.1) and (4.2) when not accounting for
selection on mortality. For example, suppose that unobserved aspects of health that determine
survival are negatively correlated with unobserved aspects of health that determine dementia,
i.e. sicker people who are more likely to die are also more likely to be diagnosed with dementia
if they live. In this case, selection would bias downward the estimate of PM2.5’s direct effect
on dementia in the selected sample.33 This would mean that our estimate of α when ignoring
selection would capture both the causal effect of PM2.5 on dementia (our object of interest) plus
a compositional effect based on the set of survivors at the end of the decade.34

To address this selection issue, we obtain a selection-corrected estimate using a control func-
tion approach (Heckman, 1979; Heckman and Robb, 1986). To implement this approach, we

32. Supplementary Material, Appendix Table I1 provides the estimated effects of decadal PM2.5 on mortality,
i.e. an estimation of equations (4.1) and (4.2) with mortality as the outcome in equation (4.1).

33. A less intuitive, but nonetheless possible, concern would be that the unobserved health determining survival
was positively correlated with the unobserved health determining dementia, causing an upward bias in our estimate.

34. Lee (2009) discusses this concept in detail in the context of a randomly assigned job-training program that
affects whether individuals work and the level of their subsequent wages.
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require an additional set of instruments.35 In particular, the relevance and validity conditions
require that the additional instruments are correlated with decadal survival but are indepen-
dent of the unobserved determinants of dementia. The medical literature provides such a set of
diagnoses that affect survival but do not affect dementia: prior diagnoses of a subset of non-
smoking-related cancers, which are found to be unrelated to dementia outcomes (Driver et al.,
2012; Ganguli, 2015). To form the selection-correcting control function, we begin by estimat-
ing via maximum likelihood a probit model of decadal survival, Si , with the same covariates as
equation (4.2) plus the vector of additional instruments, Mi. We do this by specifying a latent
survival propensity

S∗
i = γZ Zi + γX Xi + γH Hi + γW Wi + γC Ci,2013 + f (basePMi ; γbasePM) + γM Mi + ui , (4.3)

such that Si = 1[S∗
i > 0].

In addition to the functional-form assumptions in equation (4.3), we now assume that
(ei , εi , ui ) is distributed jointly normal and is independent of the instruments, Zi, the instru-
ments, Mi, and controls, Xi, Hi, Wi, Ci,2013, and basePMi. We define Mi to include indicators for
baseline diagnoses of non-smoking-related cancers (leukaemia, lymphoma, and cancers of the
breast, prostrate, colon, rectum, and endometrium) from the CMS’s CCW file. These seven can-
cers, which affect decadal survival, are assumed to be independent of latent features of health
that affect the probability of a dementia diagnosis.36 We then use the generalised residuals of
equation (4.3), denoted υ̂i , to define an additional control that we include in equations (4.1) and
(4.2).37

To summarise, our estimation proceeds in three steps. The first step is to estimate equation
(4.3) via maximum likelihood and create the generalised residuals, υ̂i . The second step is to
include υ̂i as an additional control in equation (4.2), estimate equation (4.2) via OLS, and recover
the residuals, ε̂i . The final step is to include functions of ε̂i and υ̂i as additional controls in
equation (4.1). We show this version of equation (4.1) that includes the additional controls in
equation (4.4), which we estimate via maximum likelihood:

�y∗
i = h(durPMi,2013;αi ) + βX Xi + βH Hi + βW Wi + βC Ci,2013

+ f (basePMi ;βbasePM) + βCFCFi + ẽi , (4.4)

where ẽi = ei − βCFCFi . CFi denotes the control function vector created with the generalised
residuals from the estimation of equation (4.3) and the residuals from the estimation of equation

35. In Supplementary Material, Appendix H, we show a Lee (2009) bounds approach that does not require these
additional instruments, Mi, but does employ the CAA ones, Zi, as described above.

36. A potential concern is that non-smoking-related cancers, while not causing dementia, could be correlated with
dementia through other omitted factors. For example, a competing-risks framework could lead to a negative correlation
between non-smoking-related cancers and latent health affecting dementia and lead to an upward-biased estimate of α

in our selection-correction model. Such a framework would likewise suggest that estimating equation (4.1) adding only
the CAA-based control function would provide a downward-biased estimate. On this basis, one could interpret non-
smoking-related cancers as “imperfect instruments,” as defined by Nevo and Rosen (2012), and use them to partially
identify α. The estimated identification region would then simply be the interval between the two estimates.

37. Generalized residuals are defined as υ̂i = Si λ(Ŝ∗) − (1 − Si )λ(−Ŝ∗), where λ( · ) = φ( · )/�( · ), φ and � are
the standard normal density and cumulative density function (CDF), respectively, and Ŝ∗ = γ̂Z Zi + γ̂X Xi + γ̂H Hi +
γ̂W Wi + γ̂C Ci,2013 + f (basePMi ; γ̂basePM) + γ̂M Mi . By construction, Si = 1 for all observations used in the estima-
tion of equations (4.1) and (4.2), therefore, for these observations, υ̂i = λ(Ŝ∗) simplifying to the familiar inverse Mills
ratio used in Heckman (1979).
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(4.2). We set CFi = [ε̂i ε̂2
i υ̂i υ̂2

i ].38 Because we estimate ε̂i and υ̂i in prior stages, we bootstrap
standard errors over all three regressions, clustering at the Census block group level to allow for
spatial correlation in diagnoses.39

5.3. Allowing for heterogeneity in covariates

In the simplest specification of the decadal model, we specify h(durPMi,2013;αi) = α durPMi,2013.
However, we also estimate specifications that allow durPMi,2013 to enter flexibly as a fourth-
order polynomial and that allow for interactions between durPMi,2013 and the vectors Xi , Hi , Wi ,
and CFi by specifying:40

h(durPMi,2013;αi ) = α1 durPMi,2013 + α2durPM2
i,2013 + α3 durPM3

i,2013

+ α4 durPM4
i,2013 + αX Xi durPMi,2013 + αH Hi durPMi,2013

+ αW Wi durPMi,2013 + αC F C Fi durPMi,2013. (4.5)

In this approach, the effect of durPMi,2013 on the latent propensity to be newly diagnosed with
dementia is allowed to vary flexibly with both the level of durPMi,2013 and the levels of individual
characteristics, neighbourhood characteristics, and control function variables.41

5.4. Allowing PM2.5’s effect to vary with exposure duration

The contemporaneous model described in Sections 5.1 and 5.2 is both parsimonious and compa-
rable to the existing literature on the impacts of pollution exposure on health outcomes. However,
as the treatment is measured as the average PM2.5 exposure from 2004 to 2013, and a demen-
tia diagnosis can happen at any point between 2005 and 2013, there could be an aggregation
bias if the data were systematically misaligned; for example, if the AME were driven by spa-
tial correlation between dementia diagnoses in 2010 and pollution levels in 2013. The potential
for misalignment due to temporal aggregation is a universal feature of research on pollution and
health due to the inability to measure pollution and health instantaneously.

In this section, we extend the analysis in three ways. First, we define the outcome measure to
be a new dementia diagnosis during a single year t = [2005, 2013], thus avoiding the aggregation
bias that could be introduced by misalignment of the data at the decadal level. Second, we only
condition on surviving until the end of year t, thus incorporating the effects of PM2.5 exposure on

38. In alternative specifications, e.g. Columns (3) and (2) of Table I, we consider a less flexible control function
that only includes ε̂i and υ̂i , without their squares, as well as a version with only ε̂i , which controls for the type of
endogeneity described in Section 5.2.1, but not selection on mortality.

39. Our instruments vary within Census blocks across ZIP + 4 codes. We alternatively cluster at the courser
county level and find almost no impact on our results.

40. See Blundell and Powell (2003, 2004) for a discussion of estimating non-parametric, binary-response models
with endogenous regressors.

41. The fact that the effect of durPMi,2013 on new dementia diagnosis is allowed to vary with CFi = [ε̂i ε̂2
i υ̂i υ̂2

i ]
means that this approach nests the correlated random-coefficients model of Garen (1984) with additional assumptions.
Specifically, if there exist random coefficients that satisfy the linear conditional expectation assumption of Garen (1984),
they will be accounted for in our analysis. Under these assumptions, we do not find evidence of bias coming from corre-
lated random coefficients in one’s sensitivity to pollution exposure. Following Rivers and Vuong (1988) and Wooldridge
(2015), once the control function, CFi, is included in equation (4.4), durPMi,2013 is independent of ẽi and, therefore,
the non-linear functions of durPMi,2013 in equation (4.5) are also independent of ẽi . And, as we had assumed that the
controls are independent of ẽi , the interaction terms in (4.5) are also independent of ẽi . Adding the 115 additional func-
tions of the single endogenous economic variable, durPMi,2013, has little impact on the results as shown in Columns (4)
and (5) of Table I.
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dementia for individuals who die prior to 2013. Finally, by estimating the model separately for
each year, we allow for year-specific variation in all model coefficients. This additional flexibility
allows the effect of nonattainment status on PM2.5 exposure to evolve during the years after
nonattainment designations were made. Moreover, it allows the effect of PM2.5 exposure on the
probability of a new dementia diagnosis to evolve with the duration of exposure. In principle,
such differences could arise from biological mechanisms linking PM2.5 to dementia, or from
changes in the composition of people surviving from one year to the next.

Equations (4.6) and (4.7) describe the analogues to equations (4.4) and (4.5), respectively,
where �y∗

i,t now denotes the latent propensity to become newly diagnosed with dementia during
year t. We estimate equation (4.6) separately for each year 2005–13 via maximum likelihood.

�y∗
i,t = h(durPMi,t ; αi,t ) + βX,t Xi + βH,t Hi + βW,t Wi + βC,t Ci,t

+ f (basePMi ;βbasePM,t ) + βCF,t C Fi,t + ẽi,t , (4.6)

where ẽi,t = ei,t − βCF,t CFi,t ,

h(durPMi,t ;αi,t ) = α1,tdurPMi,t + α2,t durPM2
i,t + α3,t durPM3

i,t + α4,t durPM4
i,t

+ αX,t Xi durPMi,t + αH,t Hi durPMi,t + αW,t Wi durPMi,t

+ αC F,t CFi,t durPMi,t , (4.7)

and CFi,t denotes a control function vector, [ε̂i,t ε̂2
i,t υ̂i,t υ̂2

i,t ], created with the generalised residu-
als from the estimation of equation (4.8) (the analogue to equation (4.3)) and the residuals from
the estimation of equation (4.9) (the analogue to equation (4.2)):

Si,t = 1(γZ ,t Zi + γX,t Xi + γH,t Hi + γW,t Wi + γC,t Ci,t

+ f (basePMi ; γbasePM,t ) + γM,t Mi + ui,t > 0), (4.8)

durPMi,t = δZ ,t Zi + δX,t Xi + δH,t Hi + δW,t Wi + δC,t Ci,t

+ f (basePMi ; δbasePM,t ) + ν̂i,t + εi,t . (4.9)

We begin by estimating equation (4.8) via maximum likelihood on the full sample of individu-
als. The survival outcome, Si,t, now indicates whether individual i is still alive through the end of
year t and has not previously received a dementia diagnosis. We then estimate the year-t-specific
pollution equation (4.9) via OLS. This equation includes the generalised residuals from the sur-
vival function, ν̂i,t . Equations (4.9) and (4.6) are estimated using the subset of people who are
still alive through the end of year t and had not been diagnosed with dementia prior to year t.

We then use the year-t-specific parameter vector, α̂t , to calculate AMEt, the average effect of
a marginal increase in PM2.5 exposure from 2004 through year t on the probability of receiving a
new dementia diagnosis during year t. We additionally calculate the cumulative effect of PM2.5

exposure from 2004 through year t on new dementia diagnoses during that period according to

cumulative AMEt =
t∑

s=2005

(
pops

pop2005

)
AMEs (4.10)

by summing the year-specific AMEs, after weighting them by their corresponding shares of
the original population to account for attrition due to dementia and death.42 Finally, we boot-
strap standard errors on cumulative AMEt by repeating estimation of equations (4.6)–(4.10) after

42. For example, we multiply the estimated AME in 2009 by 0.65 because 65% of the original year-2005 sample
survives to the end of 2009. This adjusts for the progressive decline in sample size due to dementia and mortality.
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FIGURE 4
Estimated partial effect of nonattainment on PM2.5 exposure 2004–13, by baseline concentrations 2001–3

Notes: The figure shows the average effect of the county-level nonattainment designation on the average individual-level conditional
change in PM2.5 concentrations over the period 2004–13. The zero line represents individuals living in attainment counties at the same
baseline PM2.5 concentration and holding all else in equation (4.9) constant. The dotted lines denote 95% confidence bands constructed
from 1000 bootstrap replications, with clustering at the Census block group.

resampling from the original population one thousand times with replacement and clustering at
the Census block group level.

6. RESULTS

6.1. PM2.5 regulations created conditional differences in subsequent PM2.5

The identifying variation for our estimator comes from the fact that the EPA’s nonattainment
designations created quasi-random differences in durPMi,t for t = [2005, 2013], conditional on
basePMi and the additional controls in equations (4.2) and (4.9). Figure 4 shows this identi-
fying variation for the year 2013. Specifically, it uses the coefficients on the instruments from
the year-2013 version of equation (4.9) to plot the estimated partial effect of nonattainment on
durPMi,2013 across levels of basePMi. Similar figures plotting the estimated partial effect for
t = [2005, 2012] versions of equation (4.9), as well as the decadal version in equation (4.2),
are shown in Supplementary Material, Appendix Figure I1. Intuitively, the partial effects are
negative, showing that nonattainment status reduced pollution. In addition, as permitted (but
not determined) by our construction of Zi, the partial effects vary with baseline PM2.5. This
yields within-county identifying variation in durPMi,t in all years.43 The first-stage partial R2

of the identifying instruments is 0.047 and the F-statistic is 489 for the regression underlying
Figure 4, suggesting that any finite sample bias is negligible. The size of the F-statistic reflects
the number of observations (approximately 1 million) and number of Census block group
clusters (approximately 140 thousand).

43. While nonattainment status caused reductions in durPMi,t at all levels of basePMi, these reductions are larger
at lower baseline levels.
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TABLE 1
AME of cumulative PM2.5 on the probability of a new dementia diagnosis

(1) (2) (3) (4) (5) (6)

(1 µg/m3 increase in
decadal PM2.5)

0.629*** 0.124 1.545*** 2.283*** 2.384*** 2.151***
(0.058) (0.105) (0.536) (0.565) (0.568) (0.846)

Individual and
neighbourhood
covariates

x x x x x

PM2.5 control function x x x x
Survival control function x x x
Polynomial functions and

interactions
x x

Heterogeneity by
exposure duration

x

F-statistic on PM2.5
instruments

496 498 498 165–489

Number of individuals:
dementia function

1,179,094 1,179,094 1,179,094 1,179,094 1,179,094 989,751–2,293,270

Chi-square statistic on
survival instruments

3,813 3,813 1,166–2,274

Number of individuals:
survival function

2,439,904 2,439,904 2,439,904

Notes: The outcome is scaled equal to 100 if an individual was diagnosed with dementia and 0 otherwise. By 2013, 20%
of the individuals in our sample who were alive in that year had been diagnosed with dementia. In Column (1), the covari-
ates are PM2.5 and CBSA dummies. Column (2) adds covariates for baseline health in 2004, individual demographics,
demographics for the individual’s Census block group, and pre-regulatory (2001–3) PM2.5 levels at their residence. Col-
umn (3) adds a control function for PM2.5. Column (4) adds a control function for survival. Column (5) adds additional
polynomial functions of covariates. Column (6) reports a cumulative decadal AME that aggregates year-specific AMEs,
along with ranges for the year-specific F-statistics, Chi-square statistics, and sample sizes. Year-specific estimates are
reported in Table I5. Asterisks indicate statistical significance at the 10% (*), 5% (**), and 1% (***) levels using robust
standard errors clustered at the block group. Standard errors in Columns (3) through (6) are bootstrapped using 1000
repetitions.

6.2. The effect of PM2.5 on dementia

We find that a 1 µg/m3 increase in average PM2.5 concentrations starting in 2004 increases the
probability of receiving a new dementia diagnosis before the end of 2013 by an average of
2.15pp. To illustrate the importance of various aspects of our identification strategy, we present
the AME of cumulative PM2.5 exposure over the decade on new dementia diagnoses from six
specifications described in Section 5.

The first column of Table 1 begins with a simple, associative model of decadal PM2.5

and dementia diagnosis over the decade. The next four columns retain the contemporaneous,
decadal specification and incrementally address potential confounders that may underlie this
association, as previously discussed. The final column presents our preferred specification that
aggregates year-by-year marginal effects over the decade while addressing all of the potential
confounders described in Section 5. In all cases, the AMEs are scaled to represent pp changes in
the probability of receiving a new dementia diagnosis by the end of 2013.

Column (1) in Table 1 shows the result from a simple associative model of decadal PM2.5

and dementia diagnosis over the decade. The only covariates are CBSA dummies. The result
indicates that a 1 µg/m3 increase in average decadal PM2.5 is associated with a 0.63 pp higher
probability of receiving a dementia diagnosis between 2005 and 2013.

Column (2) then additionally includes the observed characteristics represented by Xi, Hi, Wi,
and f (basePMi) in equation (4.1). Adding these covariates reduces the conditional association
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between measured decadal PM2.5 and dementia over the decade to 0.12 pp. Thus, most of
the within-CBSA association between measured PM2.5 and new dementia diagnoses can be
explained by people with observably higher baseline risks of dementia living in more pol-
luted neighbourhoods. Notably, 99% of the decline that occurs as we move from Column
(1) to Column (2) can be explained by the inclusion of Xi, Hi, and Wi. When all of these
covariates are included, adding f (basePMi) only reduces the AME for PM2.5 exposure from
2004 to 2013 by 1%. This shows that our extensive measures of individual demographics,
baseline health, and neighbourhood characteristics explain almost all of the heterogeneity that
contributes to any association between neighbourhood PM2.5 in 2001–3 and new dementia
diagnoses.

Column (3) adds the PM2.5 control function to address measurement error in pollution expo-
sure, or any residual differences driven by sorting. The resulting order-of-magnitude increase in
the AME relative to Column (2) is unsurprising. First, our extensive set of geographic controls
could potentially exacerbate the effect of any measurement error in pollution. Second, while the
bias introduced by measurement error is ambiguous in general, prior studies have consistently
found that instrumenting for (shorter-term) measures of air pollution exposure results in order-
of-magnitude increases in estimates for its effects on other morbidities and mortality among
older adults (see, e.g. Schlenker and Walker, 2016; Deschênes et al., 2017; Deryugina et al.,
2019).44

Column (4) adds the survival control function to address selection on mortality.45 Con-
trolling for selection on survival increases the AME to 2.28 pp, a 48% increase relative to
Column (3). This increase is consistent with classic selection bias caused by positively corre-
lated latent health: individuals who were more likely to die were also more likely to develop
dementia.46

Column (5) shows the AME from our specification shown in equations (4.4) and (4.5) that
allows for additional parametric flexibility in the covariates.47 This only increases the AME to
2.38 pp, which is about a 4% increase relative to Column (4).48

The final AME shown in Column (6) shows the cumulative AME at the end of the decade as
shown in equations (4.6) through (4.10). This model differs from the model underlying the AME
in Column (5) in three potentially important ways. First, it limits aggregation bias that could
be introduced by the misalignment of the data at the decadal level. Second, it incorporates the
effects of PM2.5 exposure on dementia for people who die during the decade, almost doubling
the number of observations used in estimation. Finally, it allows the effect of PM2.5 exposure on
the probability of a new dementia diagnosis to evolve with the duration of exposure, as shown
in equation (4.6).

This cumulative AME indicates that a 1 µg/m3 increase in average PM2.5 increases the cumu-
lative probability of a new dementia diagnosis by the end of 2013 by 2.15 pp. Comparing this

44. These studies find that instrumenting for air pollution increases their estimates for its effects on morbidity
and mortality by factors ranging from 6 to 20. The twelve-fold increase in our Table I estimates sits near the middle of
this range.

45. The AMEs of the survival instruments are reported in Supplementary Material, Appendix Table I2.
46. We build on this result and develop a partial-identification approach to exploring the role of selection on

survival in Supplementary Material, Appendix H.
47. Supplementary Material, Appendix Table I3 reports the full results from this specification. Supplementary

Material, Appendix Table I4 compares the AME for PM2.5 from this specification to the AMEs that we estimate for
other dementia risk factors that were included as covariates in the model. Note that we do not consider the coefficients
on risk factors other than decadal PM2.5 to reflect a causal relationship.

48. When we run this specification using a linear-probability model, we find an AME of 2.16 pp that is
statistically significant at the 1% level.

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article/90/5/2188/6889625 by Aalto U

niversity Library user on 30 O
ctober 2023

http://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdac078#supplementary-data
http://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdac078#supplementary-data
http://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdac078#supplementary-data
http://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdac078#supplementary-data


2208 REVIEW OF ECONOMIC STUDIES

FIGURE 5

Estimated effects of PM2.5 on dementia by exposure duration.

cumulative AME against the results from the more parsimonious model in Column (5) indicates
that the three notable differences between the two approaches yields only a small difference in
the economic magnitude of their estimated effects (0.23 pp).

To provide context for the AME of 2.15 pp, a 1 µg/m3 change is equivalent to 9.1% of the
average person’s exposure between 2004 and 2013 and 59% of a standard deviation. A 2.15 pp
change in the dementia diagnosis rate is a 11% increase relative to the diagnosis rate among
people in our sample who survive to the end of 2013. To provide an age-based comparison to
this statistic, the dementia diagnosis rate in 2013 was 2.2 pp higher among 80-year-old women
compared with 79-year-old women (Figure 1).49

Figure 5 shows how our estimates of the cumulative AME evolve over time, along with 95%
bootstrapped confidence intervals. The underlying year-specific AMEs are presented in Supple-
mentary Material, Appendix Table I5. While the year-specific AMEs are imprecisely estimated,
the AME for 2005 is close to zero and, starting in 2008, the year-specific AMEs are positive in
each year, which is reflected in the increasing cumulative AME shown in Figure 5. In addition,
the year-specific AMEs are generally increasing in the duration of exposure. When we weight
the year-specific AMEs by the surviving share of the baseline population to account for attrition,
as shown in equation (4.10), the resulting weighted year-specific AMEs become similar in mag-
nitude. This similarity is reflected in the approximately linear trend in cumulative AME point
estimates shown in Figure 5, although visual inspection of the confidence intervals suggests that
we lack the statistical power to rule out a non-linear function.

6.3. Heterogeneity in effects

The results shown in Column (6) of Table 1 average over considerable heterogeneity in the
marginal effects of PM2.5 exposure. Interestingly, the cumulative AMEs tend to be larger among
individuals who experienced lower levels of PM2.5. To illustrate this, we divide individuals into
terciles by their baseline residential exposures during 2001–3. Individuals in the top tercile of

49. To compare these results to earlier medical literature, Gatz et al. (1997) find that approximately 74% of
Alzheimer’s disease cases are heritable using twin pairs. We impose the additive separability assumption underlying that
statistic and perform a back-of-the-envelope calculation to see how much variation in new dementia diagnoses could be
explained by decadal PM2.5 exposures after age sixty-five in our sample. Specifically, we use a linearized and additively
separable version of our decadal model to calculate (AME2 Var(durPM))/(Var(�y)) ≈ 1%, where AME = 0.0238 (this
number is multiplied by 100 when discussed in the text), Var(durPM) = 2.8812, and Var(�y) = 0.1572. We thank an
anonymous referee for this suggestion.
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baseline exposure (above 14.2 µg/m3) experienced a cumulative AME of 1.91 pp. In comparison,
individuals in the middle tercile (whose baseline exposures were between 12.4 and 14.2 µg/m3)
experienced an AME of 2.10 pp. Individuals with baseline exposures below 12.4 µg/m3 expe-
rienced an AME of 2.45 pp. For those in the top, middle, and bottom terciles who survived
through 2013, average exposures from 2004 to 2013 were 12.46, 11.14, and 9.24 µg/m3, respec-
tively. These results highlight that the effects of PM2.5 on dementia persist well below the current
U.S. regulatory threshold of 12 µg/m3 of annual average concentrations.

The estimates also show heterogeneity across individual characteristics. For example, the
cumulative AME is larger for individuals whose exposures we observe at older ages (e.g. 1.13
pp for people born in 1938 for whom we observe quasi-random variation in exposure from age
sixty-six up to age seventy-five, compared with 2.34 pp for people born in 1928 for whom we
observe variation in exposure from age seventy-six up to age eighty-five). Conditional on age at
exposure, the AME is higher for women compared with men (e.g. 2.57 pp for women born in
1928 compared with 2.03 pp for men born in 1928). Conditional on age and sex, the AME is
higher for individuals with more clinical risk factors for dementia at the start of the decade (e.g.
2.24 pp for women born in 1928 with no baseline clinical risk factors compared with 2.61 pp for
women born in 1928 who had been diagnosed with ischaemic heart disease and hypertension at
baseline). Finally, when we condition on PM2.5 exposure, the AME is higher among individuals
denoted by CMS as “Black or African-American” compared with “non-Hispanic White” (e.g.
0.21 pp higher among women born in 1928 whose baseline exposure to PM2.5 was within a
one-unit window of the sample median of 13.4 µg/m3).50

7. MAIN VALIDATION TESTS AND ADDITIONAL SENSITIVITY ANALYSIS

7.1. Main validation tests

Table 2 presents three validation tests of our estimator. First, we assess the assumption that our
nonattainment instrument is independent of earlier-in-life measures of PM2.5, conditional on
baseline PM2.5 exposure and the other covariates. Specifically, we examine whether the AME
shown in Table 1, Column (6), changes when we add measures of earlier-in-life exposures,
specifically average annual PM2.5 in 1999 and 2000.51 These are the first two years that the U.S.
EPA had a national network of PM2.5 monitors and the first two years that researchers can obtain
administrative data describing the Medicare population. Thus, this validation test exhausts the
available data. For the 23% of our sample that were under age sixty-five in those years and not
yet enrolled in Medicare, we assign 1999 and 2000 PM2.5 exposures based on the location where
we first observe these individuals living upon enrolling in Medicare. While this assignment is
imperfect, low short-term migration rates among this age group limit the scope for error. For
example, the year 2000 Census of Population reports that 77% of people aged 65–69 lived in the
same residence as they did five years ago.

If the exclusion restrictions on Zi are valid, then adding controls for earlier-in-life PM2.5

should not change the estimated AME of cumulative exposure over the decade. Column
(2) shows that this augmented specification yields an AME of 2.25 pp. This is similar
to the AME of 2.15 pp from our main specification (repeated in Column (1) for con-
venience). This similarity reinforces the validity of the instrument and is consistent with

50. Average decadal PM2.5 exposures in our estimation sample were 6% higher for Black or African-American
individuals compared with non-Hispanic White individuals who survived through 2013.

51. In the years of 1999 and 2000, 86% of our balanced panel of monitors were in operation.
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TABLE 2
Validation tests

(1) (2) (3) (4)

Probit model AME (1 µg/m3

increase in decadal PM2.5)
2.151*** 2.246*** 1.754** −0.167

(0.846) (0.929) (0.704) (0.283)
Modification to main specification

Control for PM2.5 in 1999 and
2000

x

Control for other regulated air
pollutants

x

Placebo outcome = dementia
in 2004

x

F-statistic on PM2.5 instruments 165–489 147–492 146–350 620
Number of individuals: dementia

function
989,751–2,293,270 989,751–2,293,270 989,751–2,293,270 2,734,032

Chi-square statistic on survival
instruments

1,166–2,274 1,166–2,274 1,168–2,277

Number of individuals: survival
function

2,439,904 2,439,904 2,439,904

Notes: The first column repeats our main result from Table 1, Column (6) for comparison. The next three columns
report results from alternative specifications that are designed to test the identifying assumptions that underlie our main
specification. Asterisks indicate statistical significance at the 10% (*), 5% (**), and 1% (***) levels based on robust
standard errors clustered at the Census block group. See the note to Table 1 and main text for further details.

the EPA’s nonattainment designation criteria, which relied solely on PM2.5 concentrations
in 2001–3.

The specification in Column (3) tests whether our results are confounded by the model’s
omission of air pollutants that may be co-generated with PM2.5. Specifically, we add measures
of exposure to PM10, ozone, nitrogen dioxide, sulphur dioxide, and carbon monoxide. Each
measure is constructed following the same procedures that we used to construct measures of
cumulative PM2.5. When we control for these ancillary pollutants, the cumulative AME for
PM2.5 remains large and precisely estimated.

Additionally, we test for sorting based on unobserved risk factors, such as genetics, that may
contribute to dementia and be correlated with PM2.5. In principle, sorting on unobserved risk
factors could bias the estimator if, prior to our study period, people at a lower unobserved risk
for dementia sorted themselves into neighbourhoods that were more or less likely to be desig-
nated as nonattainment in the future, even conditional on baseline neighbourhood PM2.5 and the
other controls. While we cannot directly test this sorting hypothesis in our main estimation sam-
ple, we can test it indirectly by extending the sample to include the people who were excluded
because they were diagnosed with dementia prior to 2005. In other words, if individuals sorted
themselves into future nonattainment areas based on unobserved dementia risk, then we would
expect to see a conditional relationship between dementia rates in 2004 and PM2.5 exposure over
the subsequent decade.52 We test this hypothesis using a placebo specification that replaces the
outcome in equation (4.4) with an indicator for a dementia diagnosis in 2004. Including every-
one alive in 2004, with or without dementia, increases our sample size to 2.7 million. Column
(4) shows that the estimated AME is negative, close to zero, and estimated relatively precisely.

52. Intuitively, under the hypothesis that people sorted into future nonattainment areas based on unobserved
dementia risk, some people would have been diagnosed with dementia prior to 2005 and been dropped from our
estimation sample, while others would have been diagnosed after 2005 and been included in our estimation sample.
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This provides supporting evidence that the exclusion restriction is unlikely to be violated by
initial differences in unobserved dementia risk, including unobserved genetic factors.

7.2. Additional sensitivity analysis

The effect of PM2.5 on dementia persists when we use (1) different measures of dementia such as
the use of prescription drugs for the symptoms of Alzheimer’s disease rather than claims-based
diagnosis codes; (2) different samples that include people who select into managed care plans
known as Medicare Advantage (MA); (3) monitor-level attainment indicators rather than county-
level indicators; (4) different approaches to measuring PM2.5 exposure including expanding the
set of monitors to include those not present for the entire study period; (5) a limited sample of
individuals who live close to a monitor; and (6) controls for baseline pollution exposure that are
even more flexible than the fourth-order polynomial function described above. We present and
discuss these results in Supplementary Material, Appendix J.

Finally, we estimate models for placebo health outcomes. We examine five chronic conditions
that are not known or suspected to be caused by air pollution but share similarities with dementia
in terms of how they affect the body, how they are diagnosed, and how diagnosis rates are
correlated with age, race, and gender. These are glaucoma, fibromyalgia, breast cancer, prostate
cancer, and peripheral vascular disease.53 Supplementary Material, Appendix Table J5 shows
that we fail to reject the null hypothesis of zero effect at the 10% significance level for each
of these placebos. We elaborate on these models and results in the Supplementary Material,
Appendix.

Our criteria for selecting placebos excluded illnesses that have previously been linked to air
pollution. When we instead ignore these criteria and repeat estimation for each of the 15 most
common chronic conditions among the Medicare population including those linked to pollution
exposure, we find positive effects of PM2.5 at the 5% level for two diseases besides dementia:
chronic obstructive pulmonary disease (COPD) (AME = 1.79, p = 0.002) and chronic kidney
disease (AME = 1.15, p = 0.038).54 These results could be interpreted as “reverse placebo tests”
in the sense that positive findings may be expected based on prior cohort studies that found that
long-term exposure to PM2.5 is associated with these diseases (e.g. Guo et al., 2018).

8. CONCLUSION

Dementia’s global social costs continue to grow with the aging populations of many countries,
causing the World Health Organization to label it a “public health priority” and the U.S. Centers
for Disease Control to describe it as a “public health crisis.” Because no medical preventions or
cures exist, policy discussions have focused on investment in research and health infrastructure
and modifying behaviours related to smoking, diet, and exercise. Our findings reveal that air
quality regulations provide another lever to policy makers to reduce the prevalence of dementia.

Beyond these policy implications, our results provide guidance for additional research on the
causes and consequences of dementia. Our study establishes a causal link between long-term,

53. Glaucoma is a progressive disorder with nerve degeneration that is strongly associated with age; fibromyalgia
affects mood and behaviour and can be difficult to diagnose; breast cancer and prostate cancer can be slow to progress
and have gender-specific diagnosis rates; and peripheral vascular disease is associated with reduced blood circulation.

54. According to the Centers for Medicare and Medicaid Services (2012), the top 15 conditions ranked from
most prevalent to least prevalent are high blood pressure, high cholesterol, ischemic heart disease, arthritis, diabetes,
heart failure, chronic kidney disease, depression, COPD, Alzheimer’s disease, atrial fibrillation, cancer, osteoporosis,
asthma, and stroke.

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article/90/5/2188/6889625 by Aalto U

niversity Library user on 30 O
ctober 2023

http://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdac078#supplementary-data
http://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdac078#supplementary-data
http://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdac078#supplementary-data


2212 REVIEW OF ECONOMIC STUDIES

later-in-life exposure to PM2.5 and dementia, yet the precise mechanisms and causal pathways
remain unknown. Research can investigate how the presence of small particulates in the brain
alters cognitive function and relates to Alzheimer’s disease specifically, and whether the effects
differ across chemical composition, genotypes, comorbidities, stages of life, or other factors.
Likewise, our results can help guide efforts to study the broader link between air pollution,
cognitive decline, and financial decision making. Such insights can shed light on the economic
costs of impaired cognition as well as the value of various approaches to mitigate these costs,
whether through the provision of long-term care and long-term care insurance, support for family
caregivers, financial decision support, and medical technologies.
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