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This article estimates the effect of environmental regulation on firm pro-
ductivity using a spatial regression discontinuity design implicit in China’s water
quality monitoring system. Because water quality readings are important for po-
litical evaluations and the monitoring stations only capture emissions from their
upstream regions, local government officials are incentivized to enforce tighter
environmental standards on firms immediately upstream of a monitoring station,
rather than those immediately downstream. Exploiting this discontinuity in reg-
ulation stringency with novel firm-level geocoded emission and production data
sets, we find that immediate upstream polluters face a more than 24% reduction
in total factor productivity (TFP), and a more than 57% reduction in chemical
oxygen demand emissions, as compared with their immediate downstream coun-
terparts. We find that the discontinuity in TFP does not exist in nonpolluting
industries, only emerged after the government explicitly linked political promo-
tion to water quality readings, and was predominantly driven by prefectural cities
with career-driven leaders. Linking the TFP estimate with the emission estimate,
a back-of-the-envelope calculation indicates that China’s water regulation efforts
between 2000 and 2007 were associated with an economic cost of more than 800
billion Chinese yuan. JEL Codes: Q56, Q58, O13, O44, D24.

I. INTRODUCTION

In developing countries such as China and India, billions
of people live under extreme pollution every day, while still be-
ing economically dependent on dirty manufacturing industries
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(Greenstone and Hanna 2014; Ebenstein et al. 2017). However,
little is known about the economic costs of alleviating pollution
in these settings: existing research has mainly focused on the
United States, which sheds limited light on the developing world,
where the cost of environmental regulation might vary substan-
tially because of differences in industrial structures and factor
endowments (Basu and Weil 1998), as well as political institu-
tions and bureaucratic incentives (Acemoglu and Robinson 2013;
Greenstone and Jack 2015).

Our article fills in this important gap in knowledge by study-
ing China, the world’s largest emitter and manufacturer, where
a unique empirical setting is created by the central government’s
use of high-powered political incentives to enforce environmen-
tal regulation. To tackle China’s severe water pollution problems,
the central government installed several hundred state-controlled
water monitoring stations along the major national river trunks
and used the water quality readings to help determine the promo-
tion of local government officials. However, this political contract
between central and local governments is undermined because of
imperfect monitoring. Water monitoring stations can only capture
emissions from upstream, which gives local officials spatially dis-
continuous incentives to enforce tighter regulations on polluters
immediately upstream of monitoring stations, as compared with
their immediately downstream counterparts.

Exploiting this spatial discontinuity in regulation stringency,
we find that polluting firms immediately upstream of monitor-
ing stations have more than 24% lower total factor productiv-
ity (TFP) and more than 57% lower chemical oxygen demand
(COD) emissions compared with polluting firms in the near down-
stream. Further investigation shows that these findings cannot
be explained by the endogenous location choices of monitoring
stations, nor by the endogenous sorting of polluting firms. In-
stead, our evidence consistently suggests that the spatial dis-
continuity is indeed driven by upstream firms receiving tighter
water regulation enforcement: the upstream–downstream TFP
gap exists only in polluting industries rather than nonpolluting
industries and is predominantly caused by upstream polluters
investing more heavily in (nonproductive) abatement equipment
and making costly adjustments to clean up production processes.1

1. Intuitively, investments in “abatement equipment” and “cleaner production
process” are important capital inputs for firms, but they do not lead to increases
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To put the magnitude of our findings in context, the estimated
upstream–downstream TFP gap is comparable to two years of av-
erage TFP growth for Chinese manufacturers during our sample
period (2000–2007),2 and a back-of-the-envelope calculation for
the whole country suggests that water regulation cost more than
110 billion Chinese yuan a year in industrial value-added.

In addition to allowing us to quantify the economic costs
of improving water quality, the salient spatial discontinuity in
regulation enforcement also demonstrates a fundamental issue
with political centralization: when the central government relies
on local governments to implement national programs, it often
promises political rewards contingent on meeting certain perfor-
mance criteria. However, given the ubiquitous information asym-
metry between the central and local governments, many impor-
tant dimensions of performance cannot be accommodated in the
political contract. As a result, local officials will exert efforts on
the “contractable” dimensions while shirking on those “noncon-
tractable” dimensions, thus distorting the well-intended central
policies in unexpected and potentially costly ways (Kornai 1959;
Nove and Nove 1969).3 In our context, the central government
intends to improve overall water quality but can only observe wa-
ter quality readings that reflect upstream emissions. As a result,
decentralized regulation enforcement deviates from the central
government’s original intention, by prioritizing “water quality
readings” over “actual water quality,” creating immense spatial
inequalities in regulatory burden and pollution exposure.

This political economy interpretation is strongly supported
by a rich set of empirical results:

i. The upstream–downstream gap only emerged immedi-
ately after 2003, when the central government started
to link water quality readings to political promotions.

ii. The upstream–downstream gap is predominantly driven
by prefectural cities with politically motivated leaders,

in output. The regulated firms are producing less output for a given amount of
inputs, and therefore have lower TFP. We formalize this intuition with a simple
model in Online Appendix A and use it to guide the empirical investigation.

2. With the same data set and same method for TFP estimation, Brandt, Van
Biesebroeck, and Zhang (2012) find that the average TFP growth among Chinese
manufacturing firms in 2005 was 14%.

3. This idea relates more generally to the contract theory literature on multi-
tasking (Holmstrom and Milgrom 1991; Hart, Shleifer, and Vishny 1997).
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and there is no significant spatial discontinuity when the
local leaders do not have promotion prospects.

iii. Only polluters within a few kilometers upstream are reg-
ulated, as emissions from farther upstream would dissi-
pate quickly over space and have negligible effect on water
quality readings.

iv. Upstream firms pay higher amounts of emission fees than
downstream firms, although they actually emit signifi-
cantly less, implying that local officials hold double stan-
dards in regulation enforcement.

v. The upstream–downstream gap gets particularly large
when the monitoring stations are “automated” and there-
fore less susceptible to data manipulation, suggesting
that local officials used to manipulate water quality read-
ings for those traditional “manual” stations.

Taken together, these findings consistently confirm that the
salient spatial discontinuity in regulation enforcement arose from
the misalignment between the national policy goal and local bu-
reaucratic incentives.

Our article speaks to several strands of literature. First and
foremost, we provide the first rigorous and comprehensive em-
pirical evidence on the economic costs of environmental regu-
lation in a developing economy. Although there exists a large
body of empirical literature on how environmental regulation af-
fects firm productivity (Jaffe et al. 1995; Berman and Bui 2001;
Greenstone 2002; Greenstone, List, and Syverson 2012) and other
economic outcomes (Henderson 1996; Becker and Henderson
2000; Walker 2011, 2013; Ryan 2012; Kahn and Mansur 2013),
they have focused almost exclusively on developed countries.
In sharp contrast, little systematic knowledge exists on the
environment–economy trade-off in the developing world, despite
the tremendous policy implications. To fill in this gap, we investi-
gate the largest polluter and manufacturer in the world and high-
light the enormous economic costs of environmental regulation in
such a rapidly growing economy.4

4. Two studies are closely related to ours: Cai, Chen, and Gong (2016) doc-
uments that Chinese provinces have incentives to “pollute their neighbors” by
allowing the furthest downstream counties to engage in more water-polluting pro-
duction activities; Lin and Sun (2020) shows that the establishment of automatic
water monitoring stations hurts upstream water-polluting industries. Our paper
complements these two studies by causally identifying the “intensive margin”
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Second, our article adds to the long-standing discussion on
the political economy of centralized regimes. By documenting the
substantial upstream–downstream gap in regulatory burden, we
provide direct evidence that overcentralization in political power
can create salient distortions in decentralized policy implementa-
tion (Kornai 1959; Nove and Nove 1969). Relatedly, the existing
literature attributes China’s success with economic decentraliza-
tion to its strong political centralization, which helps the central
government ensure that local governments stay aligned with na-
tional policy goals (Blanchard and Shleifer 2001; Xu 2011). This
article complements this conventional wisdom by showing that
such central–local alignment might break down in the presence
of imperfect performance monitoring. In addition, this article also
relates to a growing literature on the political economy of pollu-
tion (List and Sturm 2006; Burgess et al. 2012; Kahn, Li, and
Zhao 2015; Lipscomb and Mobarak 2016; Jia 2017) by shedding
light on how China’s environmental regulations are implemented
at the local level.

Third, because of data and identification challenges, the lit-
erature on environmental regulation has mainly focused on air
pollution, whereas water pollution remains underresearched, as
pointed out by Keiser and Shapiro (2019b). The existing work on
water pollution focuses on the environmental benefits of water
regulation (e.g., Greenstone and Hanna 2014; Keiser and Shapiro
2019a,b), while the associated economic costs are typically com-
puted using either engineering-type estimates or government ex-
penditure records, missing an important component of emission
abatement cost: the effects of water regulation on production ac-
tivities. To fill in this gap, our study investigates the effects of
water regulation on TFP and COD emissions and estimates that
a 10% reduction in COD emissions leads to a 3.38% decrease in
TFP. Based on this estimated “average abatement cost,” our cal-
culation suggests that China’s regulation of industrial COD emis-
sions between 2000 and 2007 was associated with an economic
cost of more than 800 billion Chinese yuan.

The rest of the article is structured as follows. Section II
describes the institutional background and research design.

effect of regulation on firm performance (while teasing out the “extensive margin”
effect of regulation on firm sorting). Combined with our firm-level emissions re-
sults, this allows us to compute the average abatement costs for the entire Chinese
manufacturing sector.
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Section III introduces the data and presents descriptive statistics.
Section IV presents the baseline findings and addresses the po-
tential threats to our empirical analysis. Section V explores how
upstream firms respond to tighter regulation, with a focus on their
emission abatement strategies. Section VI investigates the politi-
cal economy of decentralized regulation enforcement. Section VII
benchmarks the economic significance of our findings. Section VIII
concludes.

II. BACKGROUND AND RESEARCH DESIGN

II.A. Water Quality Monitoring and Water Pollution Controls
in China

In the late 1990s, after nearly two decades of unprecedented
growth in industrial manufacturing, China started to face a va-
riety of pressing environmental challenges, including deteriorat-
ing surface water quality. According to the World Bank (2007),
in 2000, roughly 70% of China’s rivers contained water deemed
unsafe for human consumption. Severe water pollution led to
tremendous health costs, such as significantly increased rates
of digestive cancer (Ebenstein 2012) and infant mortality (He
and Perloff 2016). Seeing the growing social unrest associated
with surface water pollution, the Chinese central government be-
gan attempts to protect water bodies and reverse the process of
degradation.

To gather surface water quality information, the Ministry
of Environmental Protection (MEP) established a national water
quality monitoring system in the 1990s, known as the National
Environmental Quality Monitoring Network–Surface Water Mon-
itoring System. Under this system, water monitoring stations
were built to collect various measures of water pollution in all
the major river segments, lakes, and reservoirs in China and re-
port the water quality grade to the MEP.

In the 1990s, GDP growth was considered the national pri-
ority, and the central government did not set strict emission
abatement and water grade improvement targets for local gov-
ernment officials.5 The monitoring network was thus considered
to serve mostly scientific rather than regulatory purposes, and

5. In the 9th Five-Year Plan (1996–2000), no explicit goals for emission reduc-
tion and water quality readings were mentioned.
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the monitoring stations were located in a way that was spatially
representative of neighboring water bodies to properly reflect
changes in water pollutants over time. Consequently, the locations
of the monitoring stations were mainly determined by hydrologi-
cal factors (the depth, speed, and width of surface water and the
soil characteristics of riverbanks), and many of them were built
on existing hydrological stations.6

In 2002, Hu Jintao took over the presidency from Jiang
Zemin. Given the country’s mounting environmental challenges,
Hu began to emphasize the importance of seeking a balance be-
tween economic growth and environmental sustainability. Most
notably, in 2003, Hu formally proposed the Scientific Outlook of
Development (SOD), which sought integrated sets of solutions to
economic, environmental, and social problems, starting an era of
aggressive environmental regulation in China.7

Following the SOD agenda in 2003, the MEP quickly in-
creased its efforts to reduce water pollution. It issued a series
of regulatory documents to the local governments, highlighting
the importance of water quality readings in surface water regula-
tion.8 Specifically, the MEP imposed explicit water quality targets
for all the state-controlled stations at the time and started au-
tomating the monitoring stations along the large rivers and lakes
to improve data quality. To further engage the public, the MEP
also started to systematically publicize water quality readings
from all state-controlled stations.

Throughout President Hu’s tenure (2002–2012), the impor-
tance of clean surface water was emphasized repeatedly, and the
central government adopted a target-based abatement system to
mobilize local politicians for environmental protection. For exam-
ple, the central government’s 10th Five-Year Plan (2001–2005)
required that national COD emissions should be reduced by 10%

6. This rule allows the local governments to combine hydrological parameters
with water quality readings and pool resources from both types of stations. In
Online Appendix B, we provide more institutional background about the location
choices of the water quality monitoring stations.

7. The SOD is generally regarded as Hu’s most important policy agenda and
political legacy. It was subsequently included in the revised versions of the Con-
stitution of the Chinese Communist Party, the Guiding Thoughts of the Chinese
Communist Party, and the Constitution of the People’s Republic of China.

8. For example, in 2003, the MEP issued the Technical Specification Require-
ments for Monitoring of Surface Water and Wastewater to local governments and
specified detailed requirements on monitoring and improving water quality across
the country.
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and that more than 60% of water quality readings should be up
to standard based on the functional zoning of the corresponding
river body.9 During the 11th Five-Year Plan (2006–2010), the wa-
ter emission abatement targets included (but were not limited to):
(i) reducing COD emissions by 10%; (ii) ensuring that by 2010, no
more than 22% of monitored water sections would fail to meet
Grade V National Surface Water Quality Standards; and (iii) en-
suring that at least 43% of the monitored water sections (of the
seven main bodies of water in China) would meet Grade III Na-
tional Surface Water Quality Standards by 2010.10

To meet these targets, the central government assigned abate-
ment requirements to each province, and provincial governors
were required to sign individual responsibility contracts with the
central government, documenting their emission abatement plans
and commitments in detail. Provincial governors further assigned
strict abatement mandates to prefecture and county leaders and
incorporated these environmental targets as important criteria
in determining their promotion cases. Given such high-powered
political incentives, large polluting industrial firms became the
target of local government officials, because their emissions are
the largest contributor to local water pollution.

We examined a large body of policy documents on how dif-
ferent levels of governments interfere with industrial firms to im-
prove water quality readings. As discussed in greater detail in On-
line Appendix D, these files suggest that many local governments,
by threatening polluting firms with “production suspension” and
“temporary shutdown,” are able to coerce them to invest heav-
ily in abatement equipment and make adjustments to clean up
their production processes. Although these capital investments to
abate emissions account for a large proportion of firm input, they
contribute little to output production. As a result, these regulated
firms are expected to see a reduction in TFP, which measures the
amount of output obtained from a given set of inputs (Syverson
2011). This idea is formalized by the model presented in Online
Appendix A.

Under the local officials’ efforts to regulate polluting firms
and abate water pollution, China’s surface water quality im-
proved dramatically after 2003. In Figure I, Panel A, we plot the

9. See http://www.gov.cn/gongbao/content/2002/content 61775.htm..
10. Source: http://www.mep.gov.cn/gzfw 13107/zcfg/fg/gwyfbdgfxwj/201605/

t20160522 343144.shtml.
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(B)

(A)

FIGURE I

Water Quality and COD Emission

This figure illustrates the dynamics of water pollution in China. Panel A shows
the trend of average water quality readings of national monitoring stations, where
1 represents highest water quality and 6 represents lowest water quality. Panel B
shows the trend of national industrial COD emissions.
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average water quality grades for a balanced panel of monitoring
stations between 2000 and 2007.11 We observe water readings
getting slightly worse before 2002, and then starting to improve
rapidly after 2003, when the government started emphasizing
surface water protection. From 2002 to 2007, average water qual-
ity reading improved by a grade of more than 0.6. Based on the
estimates of Ebenstein (2012), such an improvement would im-
ply a 5.8% reduction in the national digestive cancer rate. In
Figure I, Panel B, we also plot the yearly national industrial COD
emissions between 2000 and 2007 and see a very similar pattern:
annual industrial COD emission was stable before 2002 and sud-
denly started to drop after 2003.

Because rivers flow from higher to lower elevation, water
quality monitoring stations can only detect emissions from up-
stream. When the central government imposed high political
stakes on the readings of water monitoring stations, the local
officials would have strong incentives to regulate polluters in the
immediate upstream of a monitoring station but little incentive
to regulate polluters in the immediate downstream. Meanwhile,
because the Chinese government did not enforce stringent water
pollution controls until 2003, we expect that the productivity gap
between upstream and downstream polluting firms was minimal
before 2003 and enlarged substantially afterward.

II.B. Research Design and Econometric Model

We exploit the spatial discontinuity in regulatory stringency
around water monitoring stations to estimate the causal effect of
regulation on TFP. The distance between a firm and a monitor-
ing station serves as the running variable. We examine whether
firms located immediately upstream from the monitoring station

11. The overall surface water quality in China is graded on a six-point scale,
where Grade I water is of the best quality and Grade VI is of the worst. Accord-
ing to the Ministry of Water Resources, Grade I means an “excellent” source of
potable water. Grade II means a “good” source of potable water. Grade III water is
considered “fair.” Pathogenic bacteria and parasites’ ova can sometimes be found
in Grade II and III water, so drinking it will introduce pathogens to human con-
sumers. Thus, Grade II and III water should be purified and treated (such as by
boiling) before drinking. Grade IV water is polluted and unsafe to drink without
advanced treatment, which is only possible at water supply plants. Grade V water
is seriously polluted and cannot be used for human consumption. Grade VI water
is considered “worse than Grade V water,” and any direct contact with it is harmful
to humans.
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have lower productivity than adjacent downstream firms. This
empirical strategy is related in spirit to recent work exploiting
the flow of pollution along rivers for identification (Lipscomb and
Mobarak 2016; Keiser and Shapiro 2019a), but is novel in that it
uses a unique spatial discontinuity setting around the monitoring
stations, which is created by the Chinese central government’s
efforts in leveraging high-powered political incentives for the de-
centralized enforcement of environmental regulations.

The identifying assumption of our research design is that
due to spatial adjacency, firms located immediately upstream and
downstream of monitoring stations should be ex ante identical
but will differ from each other later as upstream firms face tighter
regulation. As discussed in the introduction, the water monitoring
stations were located based on hydrological factors before water
quality readings became a political priority, which suggests that
our identifying assumption is likely satisfied.

The discontinuity can be estimated by both parametric and
nonparametric approaches. Gelman and Imbens (2019) show that
the parametric RD approach, which uses a polynomial function of
the running variable as a control in the regression, tends to gener-
ate RD estimates that are sensitive to the order of the polynomial
and have some other undesirable statistical properties. Therefore,
we rely on the recommended local linear approach, and estimate
the following equation:

TFPijk = α1 Downijk + α2 Distijk + α3 Downijk · Distijk(1)

+ uj + vk + εi jk s.t. − h � Distijk � h,

where TFPijk is the total factor productivity of firm i in industry j
around monitoring station k. Downijk is an indicator variable that
equals 1 if firm i (in industry j) is downstream from monitoring
station k, and 0 otherwise. Distijk measures the distance between
firm i and monitoring station k (negative if upstream and positive
if downstream), and h is the estimated MSE-optimal bandwidth
following Calonico, Cattaneo, and Farrell (2018). The standard
error is clustered at the monitoring station level to deal with the
potential spatial correlation of the error term, as suggested by
Cameron and Miller (2015).

To account for the industry- and location-specific TFP deter-
minants in the nonparametric estimations, we control for indus-
try and monitoring station fixed effects uj and vk in the baseline
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model. The estimation of this nonparametric RD model with fixed
effects is implemented using the two-step approach suggested by
Lee and Lemieux (2010), where industry and station fixed effects
(or industry-by-station fixed effects in a more saturated model) are
absorbed by running an OLS regression of TFP on a set of industry
and station-specific dummies and then applying the nonparamet-
ric estimations on the residualized TFP.12

We augment the baseline econometric specification in several
different ways: (i) controlling for industry-by-station fixed effects;
(ii) leveraging the panel structure of our data and absorbing firm
fixed effects, which allows us to estimate the treatment effect us-
ing only within-firm variation; (iii) combining polluting and non-
polluting industries in a unified model and directly estimating the
heterogeneous treatment effect; and (iv) estimating a parametric
RD model with various polynomials of the running variable. As
will be elaborated in more detail in the following sections, our
main findings go through in all these alternative models.

III. DATA AND SUMMARY STATISTICS

III.A. Data

In this article, we combine several novel data sets that pro-
vide comprehensive information on the socioeconomic conditions
of townships, production and performance of industrial firms, and
emissions from heavy polluters centered around water monitoring
stations.

1. Water Quality Monitoring Stations. We collect information
on water quality monitoring stations from surface water quality
reports in various environmental yearbooks from 1999 to 2010,
which include the China Environmental Yearbooks, China Envi-
ronmental Statistical Yearbooks, and China Environmental Qual-
ity Statistical Yearbooks. Data available in more than two different
sources are cross-validated. The number of state-controlled mon-
itoring stations varied slightly between years in these reports,

12. Lee and Lemieux (2010) argue that if there is no violation of the RD
assumption that unobservables are similar on both sides of the cutoff, using a
residualized outcome variable is desirable because it improves the precision of
estimates without causing bias.
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ranging from 400 to 500 stations. We geocoded all the water qual-
ity monitoring stations.13

2. Annual Survey of Industrial Firms. Our firm-level pro-
duction information is based on the Annual Survey of Industrial
Firms (ASIF) from 2000 to 2007. The ASIF data include private
industrial enterprises with annual sales exceeding 5 million RMB
and all the state-owned industrial enterprises (SOEs). The data
are collected and maintained by the National Bureau of Statistics
and contain a rich set of information obtained from the account-
ing books of these firms, such as inputs, outputs, sales, taxes, and
profits.

The ASIF data are widely used by empirical researchers and
a well-known issue is that the data contain outliers. We follow
standard procedures documented in the literature to clean the
data. We drop observations with missing key financial indica-
tors or with negative values for value-added, employment, and
the capital stock. We drop observations that apparently violate
accounting principles: liquid assets, fixed assets, or net fixed as-
sets larger than total assets; or current depreciation larger than
cumulative depreciation. Finally, we trim the data by dropping
observations with values of key variables outside the range of the
0.5th to 99.5th percentile.14

The ASIF data have detailed address information for sam-
pled firms in each year. We geocode the location of the 952,376
firms that appeared in the sample and then compute the distance
between each firm and its closest water quality monitoring sta-
tion.15 Nearly 5% of the firms in the ASIF database belong to a
parent multiunit firm; we exclude them from subsequent analy-
ses because the parent firm might avoid regulation by reallocating
production activities across its subordinate firms.

The detailed production information allows us to measure
firm-level productivity for the entire Chinese manufacturing sec-
tor. Although there are various approaches to measure TFP, it

13. For monitoring stations built before 2007, we are unable to obtain the exact
timing of station construction. So in the baseline analysis between 2000 and 2007,
we focus only on stations already existing in 2000. We use stations constructed
after 2007 as a placebo test.

14. More details about the construction and cleaning processes of the ASIF
data can be found in Brandt, Van Biesebroeck, and Zhang (2012) and Yu (2015).

15. Township coordinates are used when the detailed firm address cannot be
precisely geocoded.

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article/135/4/2135/5860784 by Aalto U

niversity Library user on 30 O
ctober 2023



2148 THE QUARTERLY JOURNAL OF ECONOMICS

has been documented in the literature that these measures are in
general highly correlated with each other (Syverson 2011). Here
we rely on the semiparametric estimator suggested by Olley and
Pakes (1996) to construct our baseline TFP measure, which ad-
dresses the simultaneity and selection biases in estimating the
labor and capital coefficients and has been the most widely used
method for the investigation of Chinese firms’ productivity (e.g.,
Brandt, Van Biesebroeck, and Zhang 2012; Yang 2015). Using the
Olley-Pakes approach therefore ensures that our findings can be
benchmarked to the existing estimates in the literature. The capi-
tal and labor coefficients are estimated by each industry, year fixed
effects are included in every regression to control for industry-year
level production dynamics, and “whether a firm is in the near up-
stream of a monitoring station” is included as a state variable
to take into account that upstream polluters might be forced to
install more abatement facilities by the government. The proce-
dures of our key variable construction and Olley-Pakes estimation
are discussed in more detail in Online Appendix C. The estimated
labor and capital coefficients for each industry are reported in
Online Appendix Table S1.

The ASIF firms can be categorized into polluting industries
and nonpolluting industries based on the official definition of the
MEP.16 Because our baseline spatial discontinuity design is essen-
tially cross-sectional, in the main analysis we collapse the multi-
year panel data into a cross-section and estimate the RD model.
The interpretation of the coefficient is therefore the average ef-
fect that persists during the sample period (2000–2007). To bet-
ter understand the dynamics of regulation enforcement, we first
estimate the RD model separately for each year, and then fully
use the panel structure of our data and estimate a “difference-in-
discontinuities” model, which exploits only within-firm variation
(before and after 2003) for identification.

3. Environmental Survey and Reporting Database. To in-
vestigate whether water quality monitoring indeed reduces
water-related emissions, we collect firm-level emission data
from the Environmental Survey and Reporting (ESR) database,
which is managed by the MEP. The ESR provides the most

16. Details of the polluting and nonpolluting industries are summarized in
Online Appendix Table S2. The 16 polluting industries defined by the MEP account
for roughly 80% of China’s total industrial COD emissions.
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comprehensive environmental data in China and monitors pollut-
ing activities of all major polluting sources, including heavily pol-
luting industrial firms, hospitals, residential pollution discharg-
ing units, hazardous waste treatment plants, and urban sewage
treatment plants. In this study, we focus on the ESR firms that
are in the same polluting industries as the ASIF firms.

The sampling criteria in the ESR database are based on the
cumulative distribution of emissions in each county. Polluting
sources are ranked based on their emission levels of COD and
sulfur dioxide (SO2), and those jointly contributing to the top 85%
of total emissions in a county are included in the database. In this
study, we use ESR data between 2000 and 2007, the same period
as the ASIF database.

For every firm included in the ESR data set, total output
value, as well as various types of pollutant emissions, are doc-
umented. This enables us to construct total emission levels and
emission intensity measures (emission levels divided by total out-
put value) for large polluters across China. The ESR data is
first self-reported by each polluter, and then randomly verified
by government auditors. To ensure data quality for policy mak-
ing, the Environmental Protection Law explicitly states that the
ESR data cannot be used as the basis for punishing and regulat-
ing the polluting firms. As a result, the polluting firms covered in
the ESR sample have little incentive to misreport their emission
records.

Among the different types of pollutants measured for each
ESR firm, COD is the most relevant one for this study. COD
measures the amount of oxygen required to oxidize soluble and
particulate organic matter in water and is widely used as an om-
nibus indicator for water pollution.17 A higher COD level indicates
a greater amount of oxidizable organic material in the sample,
which reduces dissolved oxygen levels. A reduction in dissolved
oxygen can lead to anaerobic conditions, which are deleterious to
higher aquatic life forms. As discussed in Section II, COD is also
the “target pollutant” in China’s surface water quality standards:
the central government explicitly set a 10% abatement target for

17. Among the handful of economic studies focusing on water quality, Sigman
(2002) and Lipscomb and Mobarak (2016) use biochemical oxygen demand (BOD);
Duflo et al. (2013) use BOD and COD (and several other indicators); and Keiser
and Shapiro (2019a) focus on “dissolved oxygen” and whether water is safe for
fishing.
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COD emissions in the 10th and 11th Five-Year Plans (2001–2005
and 2006–2010).

In addition to COD emissions, we corroborate the firm emis-
sions results by looking at two other measures of water pollution:
ammonia-nitrogen (NH3-N) emissions and wastewater discharge.

4. Township-Level Socioeconomic Data. The National Bu-
reau of Statistics conducts the Township Conditions Survey on an
annual basis. It is a longitudinal survey that collects township-
level socio-economic data for all the townships in China. We have
access to these survey data for 20 provinces in 2002 and use the
township-level data to assess similarities between upstream and
downstream townships.

5. Geo-Data. We obtained township-level GIS boundary data
in 2010 from the National Bureau of Statistics. We use GIS data
on China’s water basin system from the Ministry of Water Re-
sources. We use GIS elevation data to identify upstream and
downstream relationships. These GIS data sets are then matched
to our geocoded township and firm data sets.

III.B. Data Matching

To the best of our knowledge, the data we have compiled are
the most comprehensive and disaggregated collection ever assem-
bled on firm-level economic and environmental performance in
China. The matching process involves several steps and is illus-
trated in Figure II.

First, we keep only monitoring stations located on river
trunks and drop those located on lakes and reservoirs, as they
would not allow us to identify the upstream–downstream rela-
tionship. Then, we put a layer of the water basin system on the
township GIS map and keep only townships that have at least
one river passing through. Then, using each monitoring station
as a center, we draw a circle with a 10-km radius and keep only
those townships overlapping with a 10-km circle. All the geocoded
firms lying in those remaining townships constitute our sample
for analysis.

After identifying the relevant firms for our research design,
we calculate each firm’s distance to its nearest monitoring station.
In some cases (mostly in the eastern coastal areas), the distribu-
tion of monitoring stations can be very dense. As a result, some
10-km circles overlap, making it difficult to define upstream and
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Legend
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FIGURE II

Illustrating the Identification Strategy

This figure illustrates our identification strategy. We compare firms located im-
mediately upstream of a monitoring station to those located immediately down-
stream of a monitoring station.

downstream relationships (i.e., an adjacent upstream firm for one
monitoring station can also be in the near downstream of another
monitoring station). We therefore exclude these overlapping mon-
itoring stations from our data set. In some less-developed regions
(mainly in the western areas), the distribution of large indus-
trial firms is so sparse that the 10-km circles around monitoring
stations contain no firms from the ASIF and ESR data sets. We
also drop these monitoring stations from our sample. After these
exclusions, we are left with 159 state-controlled water quality
monitoring stations that satisfy our empirical setting. The ge-
ographic distribution of these monitoring stations is plotted in
Figure III.

For each firm kept in the sample, we project its location onto
the nearest river basin and extract the elevation of that projected
point. Then we compare this elevation to the elevation of the ad-
jacent monitoring station, so that we can determine whether each
firm is upstream or downstream of the corresponding monitoring
station. In the end, our sample includes 17,726 unique ASIF firms
and 9,797 ESR firms, which are located around 159 water quality
monitoring stations.

We attempted to match the firms across the ASIF and ESR
samples. However, because these two data sets use different
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FIGURE III

Distribution of Surface Water Quality Monitoring Stations in China

sampling criteria and are managed by different government agen-
cies (using different coding systems), we were able to match only
10% of the ASIF firms with the ESR firms. The matched sam-
ple is too small for us to draw any credible statistical inference.
Therefore, in this article, we analyze the data sets separately.

III.C. Summary Statistics and Balance Checks

The underlying assumption for our spatial RD design is
that, in the absence of environmental regulation, upstream and
downstream firms should be ex ante identical. We provide a se-
ries of balance checks in the Online Appendix, documenting that
upstream and downstream firms/townships are similar along
time-invariant and predetermined dimensions, as well as along
time-varying dimensions before water quality regulation became
effective in 2003.

In Online Appendix Table S3, we present the summary statis-
tics and balance checks for firm-level characteristics. In the ASIF
data set, the only three (arguably) time-invariant variables are
“when the firm was established,” “whether the firm is a state-
owned firm,” and “whether the firm is a polluting firm.” As shown
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in Panel A, all these variables are well-balanced around monitor-
ing stations. In addition, surface water regulation was not strictly
enforced until Hu came into power in 2003; thus, water monitoring
stations should not affect upstream firms in the pre-2003 period
of our data.18 In Online Appendix Table S3, Panel B, we com-
pare upstream firms with downstream firms using pre-2003 data.
Again, we find that all the key variables, such as TFP, profit, value-
added, employment, capital, and intermediate input, are all well-
balanced between upstream and downstream firms before 2003.

In Online Appendix Table S4, we further test whether dif-
ferent industries are balanced across the monitoring stations. We
focus on two-digit-level industries and conduct the balance tests
using relatively large industries (with at least 100 firms in the
sample in 2000). We find that different industries are equally dis-
tributed across the monitoring stations.

In addition to the balance tests using firm-level data, we con-
duct balance tests using township-level data and report our find-
ings in Online Appendix Table S5. In Panel A, we see that basic
township time-invariant characteristics are balanced, including
township area, arable area, distance to county center, whether the
township is an old-region town, whether it is an ethnic minority
town, the number of residents, and the number of administrative
villages.19 In Panels B and C, we look at pre-2003 township data
and test the balance in basic infrastructure and human capital.
Again, we find that the length of roads, number of villages with
road access, number of villages with electricity access, number of
villages with tap water access, and the number of primary schools
and students were similar between upstream and downstream
areas before water regulation became a binding constraint.

The results in Online Appendix Tables S3–S5 are encourag-
ing, as they indicate that upstream and downstream firms are
similar for time-invariant characteristics and pre-2003 covari-
ates, and these firms are located in townships that are highly
comparable. Although it is impossible to completely exhaust the
potential unobservable differences between upstream and down-
stream firms, these balance results lend additional credibility to
our research design.20

18. The dynamic analysis of the RD results are discussed in Section V.
19. An “old region” refers to a Communist Party revolutionary base region.

An administrative village is organized by one village committee and may include
several natural villages.

20. In Online Appendix Table S6, we also report the summary statistics for
the other variables used in the article.

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article/135/4/2135/5860784 by Aalto U

niversity Library user on 30 O
ctober 2023

file:qje.oxfordjournals.org
file:qje.oxfordjournals.org
file:qje.oxfordjournals.org
file:qje.oxfordjournals.org
file:qje.oxfordjournals.org


2154 THE QUARTERLY JOURNAL OF ECONOMICS

IV. BASELINE RESULTS

IV.A. Effects of Water Quality Monitoring on TFP

We begin the empirical analysis by visualizing our main find-
ings. Figure IV plots log TFP (absorbing station fixed effects and
industry fixed effects) against “distance to the corresponding mon-
itoring station.” Each dot represents the average log TFP for firms
within a bin of distance; their 90% confidence intervals are also
presented. A fitted curve is overlaid on the graph to illustrate the
discontinuity around the monitoring stations.

In Panel A, we show the RD plot for residual log TFP in the
polluting industries. We see a sharp change in TFP at precisely
the locations of the water monitoring stations. The TFP of up-
stream firms is significantly lower than that of downstream firms
in polluting industries. Moreover, as can be seen from Panel A, the
treatment effect applies only to firms in the immediate upstream
(<5 km) and becomes stronger as firms locate closer to the mon-
itoring stations. These two patterns correspond to the fact that
surface water pollution tends to dissipate over space, so emis-
sions from farther upstream have smaller effects on water quality
readings. Therefore, local officials have little incentive to regulate
firms that are farther upstream, if their goal is just to improve the
water monitoring readings for political promotion. In contrast, in
Panel B, we do not observe any comparable spatial discontinuity
in TFP in nonpolluting industries.

Table I quantifies the graphical findings in Figure IV.
Panel A presents the RD estimates without any controls, for both
polluting and nonpolluting industries. We see that polluting firms
located in the near downstream of monitoring stations have sub-
stantially higher TFP than their near upstream counterparts, and
there is no similar pattern for nonpolluting firms. However, due
to large standard errors, the TFP gap in polluting industries is
not statistically significant, despite being sizable in magnitude.

Our sample covers 159 water quality monitoring stations
in 34 manufacturing industries. A nonsaturated RD regres-
sion, as reported in Panel A, would compare upstream and
downstream firms from different clusters (monitoring stations)
and industries, introducing substantial noise into the statistical
inference.

To address this issue, we control for both station and industry
fixed effects in Panel B. By doing so, we effectively compare the
TFP differences station by station and industry by industry
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FIGURE IV

RD Plot: Effects of Water Quality Monitoring on TFP

Industry and monitoring station fixed effects are absorbed before plotting the
regression discontinuities.
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TABLE I
THE UPSTREAM–DOWNSTREAM TFP GAP

Polluting industries Nonpolluting industries

(1) (2) (3) (4) (5) (6)

Panel A: No control
RD in TFP (log) 0.34 0.37 0.32 − 0.03 0.04 0.01

(downstream − upstream) (0.57) (0.59) (0.56) (0.15) (0.18) (0.18)
Bandwidth (km) 4.203 3.889 3.622 5.887 5.168 4.522

Panel B: Station FE + industry FE absorbed
RD in TFP (log) 0.36∗∗ 0.38∗∗ 0.34∗∗ 0.03 0.04 − 0.02

(downstream − upstream) (0.17) (0.17) (0.15) (0.09) (0.09) (0.09)
Bandwidth (km) 5.723 5.523 5.144 5.890 5.479 6.091

Panel C: Station by industry FE absorbed
RD in TFP (log) 0.27∗ 0.29∗∗ 0.29∗∗ 0.02 0.04 0.03

(downstream − upstream) (0.15) (0.15) (0.14) (0.06) (0.06) (0.07)
Bandwidth (km) 4.496 4.333 4.689 5.692 5.204 4.430

Obs. 6,224 6,224 6,224 11,502 11,502 11,502
Kernel Triangle Epanech. Uniform Triangle Epanech. Uniform

Notes. Each cell in the table represents a separate RD regression. The running variable is the distance
between a firm and a monitoring station, where negative (positive) distance means firms are located to the
upstream (downstream) of the monitoring stations. The positive coefficients indicate that downstream firms
have higher TFP than upstream firms. TFP is estimated using the Olley and Pakes (1996) method, with
“upstream polluting” added as an additional state variable. The discontinuities at monitoring stations are
estimated using local linear regressions and MSE-optimal bandwidth proposed by Calonico, Cattaneo, and
Titiunik (2014) for different kernel weighting methods. Standard errors clustered at the monitoring station
level are reported below the estimates. ∗ significant at 10%, ∗∗ significant at 5%, ∗∗∗ significant at 1%.

and then average the differences across stations and industries.
Comparing the RD estimates in Panel B to Panel A, we see
that the magnitudes of the estimated effects are quantitatively
similar across these specifications. This is important because it
implies that station- and industry-specific characteristics, while
important determinants of firm TFP, are uncorrelated with the
treatment status. As we control for these fixed effects, the RD
coefficients become more precisely estimated, and thus become
statistically significant.

The estimates in Panel B suggest that upstream polluting
firms suffer from a TFP loss in the range of 29% (e−0.34 − 1)
to 32% (e−0.38 − 1). In comparison, the estimates for nonpollut-
ing industries are always precisely estimated zeros. This finding
suggests that our results are indeed driven by environmental reg-
ulation, rather than by other potential confounding differences
between upstream and downstream areas. For both sets of results,
the RD estimates are highly robust to different choices of kernel
functions.
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In Panel C, we estimate a more saturated model that controls
for station-by-industry fixed effects. This specification compares
upstream and downstream firms in the same industry that are
spatially adjacent to each other, which teases out any confounding
differences in industry types between upstream and downstream
areas. Our findings hold with this most restrictive specification:
in polluting industries, upstream firms suffer from a large and
significant drop in TFP as compared to their downstream counter-
parts, whereas there exists no such discontinuity in nonpolluting
industries.

In terms of magnitudes, the estimates in Panel C suggest a
TFP loss for upstream polluting firms in the range of 24% (e−0.27 −
1) to 25% (e−0.29 − 1), which is slightly smaller than the estimates
in Panel B (29% to 31%), but the difference is not statistically
significant. This slight reduction in magnitude in Panel C is most
likely driven by attenuation bias in fixed effects models: in the
saturated regression for polluting firms, we have fewer than 6,000
observations and control for more than 2,000 fixed effects, which
would substantially decrease the signal-to-noise ratio and bias the
point estimate toward 0 (Pischke 2007).21

Although a more than 24% change in TFP is certainly sub-
stantial, the magnitude is better interpreted in China’s spe-
cific context. During our sample period, China experienced un-
paralleled industrial TFP growth: according to Brandt, Van
Biesebroeck, and Zhang (2012), who use the same data and the
same Olley-Pakes method for TFP estimation, the average TFP
growth among the ASIF firms was 14% in 2005. This is confirmed
by our own estimation of an 11.5% yearly firm TFP growth be-
tween 2003 and 2007. Having these benchmarks in mind, our RD
estimates indicate that high-powered environmental regulation in
the immediate upstream of monitoring stations effectively stalled
firm productivity growth by two years. As will be discussed in
Section V, this is mostly driven by the fact that upstream pollut-
ing firms need to invest extra capital in abatement facilities that
do not contribute much to their output.

21. The attenuation bias associated with controlling for Station FE ∗ Industry
FE would become particularly salient when we use different subsamples for het-
erogeneity analysis; because the FEs are absorbed before we split the sample, the
number of FEs would remain the same for the split subsample, while the number
of observations would be reduced significantly. Therefore, we choose the model in
Panel B (Station FE + Industry FE) as our preferred specification for subsequent
heterogeneity analysis.
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To make the comparison between polluting and nonpollut-
ing industries in Table I more explicit, we adopt two alterna-
tive econometric specifications. Specifically, we pool the data for
the polluting and nonpolluting firms together, and directly esti-
mate the difference between “the TFP gap in polluting industries”
and “the TFP gap in nonpolluting industries.” The first approach
is a “difference in discontinuities” model suggested by Grembi,
Nannicini, and Troiano (2016) and Giambona and Ribas (2018),
which essentially estimates the baseline nonparametric RD model
while interacting every term with a dummy variable indicating
“polluting industries.” As can be seen in Online Appendix Table
S7, Panel A, this alternative model generates results that are
highly consistent with the baseline findings.

The second alternative specification is a more conventional
difference-in-differences (DiD) model, which, for a given ra-
dius around the monitoring station, estimates how the “differ-
ence in means between upstream and downstream firms” differs
across polluting and nonpolluting industries. As shown in Online
Appendix Table S7, Panel B, when the bandwidth is set at 2.5 km,
the DiD result is consistent with the findings in Table I. However,
as we choose larger bandwidths, the DiD coefficient starts to atten-
uate toward zero. This is consistent with the pattern documented
in Figure IV: upstream firms receive increasingly stringent reg-
ulatory attention as they move closer to the monitoring station,
while firms more than 5 km away from the monitoring station are
essentially unaffected.

IV.B. Dynamic Effects

As discussed in Section II, the political stakes associated with
water quality readings changed substantially during our sample
period. Specifically, in 2003, President Hu Jintao proposed the Sci-
entific Outlook of Development initiative and started to actively
address the pressing environmental challenges in China. In the
same year, the MEP set explicit water quality goals for each na-
tional monitoring station and made water quality improvement a
key political task. This is consistent with the observational pat-
tern in Figure I, which shows that China achieved massive im-
provements in water quality and COD abatement immediately
after 2003.

We hypothesize that the TFP gap between upstream and
downstream polluters should become salient after 2003. To
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FIGURE V

RD Estimates by Year

Each dot represents a separate RD estimate in Table I. Industry and monitoring
station fixed effects are absorbed before estimating the discontinuities in each
year. This figure shows that the TFP discontinuity around monitoring stations for
polluting firms became larger and statistically significant after 2003.

formally investigate the dynamics of the baseline discontinuity
in TFP, in Figure V we plot the RD estimates separately for each
year. We find that the TFP discontinuity for polluting firms was
close to zero from 2000 to 2002 and became significantly larger
in 2003. The TFP gap persists over the following years and peaks
in 2006, which marks the beginning of the 11th Five-Year Plan.
The corresponding regression results are summarized in Online
Appendix Table S8. In the same table, we replicate the exercise for
nonpolluting firms and find that the estimated RD coefficient fluc-
tuates around zero and is not statistically significant in any year.

The finding that the monitoring effect is close to zero and
statistically insignificant prior to 2003 is consistent with the bal-
ance tests and further justifies our identifying assumption: in the
absence of tighter water quality regulations, upstream and down-
stream firms around the same water quality monitoring station
had similar levels of productivity. The dynamic pattern of the RD
coefficients is also reassuring because it helps rule out alternative
explanations: to the extent that one thinks the baseline results
were driven by certain confounding factors, such factors would
have to be specific not only to upstream versus downstream firms
or polluting versus nonpolluting industries, but also to the timing
of environmental policies in China during our sample period.
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IV.C. Within-Firm Effects
Motivated by the “break in trends” between upstream

and downstream polluters in 2003, we adopt an augmented
“difference-in-discontinuities” specification, which investigates
within-firm changes in TFP before and after the introduction of
stringent water monitoring schemes in 2003. Specifically, follow-
ing Grembi, Nannicini, and Troiano (2016) and Giambona and
Ribas (2018), we use a “bias-corrected” approach to estimate the
following model:22

TFPijkt = α1 Downijk + f (Distijk) + Downijk · f (Distijk) + α2 Downijk · Post03t

+ f (Distijk) · Post03t + Downijk · f (Distijk) · Post03t + εi jkt

s.t. −h � Distijk � h(2)

where Post03t is a dummy variable that equals 1 if t � 2003,
and 0 otherwise. TFPijkt is residualized TFP, absorbing firm fixed
effects, industry-by-year fixed effects, and station-by-year fixed
effects.

The main advantage of this augmented approach is that we
can now fully utilize the panel structure of our data and study
only within-firm changes in TFP, which allows us to tease out any
confounding differences between upstream and downstream firms
caused by endogenous locational choices. We also absorb station-
by-year fixed effects and industry-by-year fixed effects to further
control for location- and industry-specific shocks in each year.

Table II reports the difference-in-discontinuities estimates,
with 2003 chosen as the (before/after) cutoff. In columns (1)–(3),
we find that upstream polluters experienced a 19% TFP (e−0.21 −
1) loss after water quality regulation became stringent in 2003,
compared with their downstream counterparts. In comparison, as
shown in columns (4)–(6), there is no such break in trends between
upstream and downstream nonpolluters.

The estimated treatment effect for upstream polluters
is slightly smaller than the baseline results presented in
Table I, which is probably a result of attenuation bias caused
by absorbing a large number of fixed effects when residualizing
TFP. Nevertheless, the fact that the attenuated coefficients are
only slightly smaller than the baseline coefficients (statistically
indistinguishable) suggests that even if there is selection bias due

22. The reported estimates are based on local quadratic regressions. Local
linear regressions also yield similar findings.
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TABLE II
THE UPSTREAM–DOWNSTREAM TFP GAP: DIFFERENCE IN DISCONTINUITIES ESTIMATES

Polluting industries Nonpolluting industries

(1) (2) (3) (4) (5) (6)

Downstream ∗ 0.21∗∗∗ 0.21∗∗∗ 0.20∗∗∗ 0.03 0.01 − 0.06
Post-2003 (0.07) (0.07) (0.07) (0.06) (0.06) (0.06)

Firm FE absorbed Yes Yes Yes Yes Yes Yes
Station-by-year FE

absorbed
Yes Yes Yes Yes Yes Yes

Industry-by-year FE
absorbed

Yes Yes Yes Yes Yes Yes

Sample 00-07 00-07 00-07 00-07 00-07 00-07
Bandwidth (km) 10.39 10.20 9.89 8.96 8.87 9.17
Obs. 20,588 20,588 20,588 34,892 34,892 34,892
Kernel Triangle Epanech. Uniform Triangle Epanech. Uniform

Notes. Each cell in the table represents a separate “difference-in-discontinuities” estimate: the difference
between “TFP discontinuity before 2003” and “TFP discontinuity after 2003”. The running variable is the
distance between a firm and a monitoring station, where negative (positive) distance means firms are located
to the upstream (downstream) of the monitoring stations. The positive coefficients indicate that downstream
firms have higher TFP than upstream firms. TFP is estimated using the Olley and Pakes (1996) method,
with “upstream polluting” added as an additional state variable. The fixed effects are pre-absorbed from
TFP through an OLS regression. The discontinuities at monitoring stations are estimated using local linear
regressions and MSE-optimal bandwidth proposed by Calonico, Cattaneo, and Titiunik (2014) for different
kernel weighting methods. Bias-corrected coefficients are reported. Firm fixed effects, station-by-year fixed
effects, and industry-by-year fixed effects are absorbed before estimating the discontinuities. ∗ significant at
10%, ∗∗ significant at 5%, ∗∗∗ significant at 1%.

to endogenous locational choices, such bias could at most account
for only a small proportion of the baseline findings.

In Online Appendix Table S9, we test the “parallel trends”
assumption using data from 2000 to 2002. In this subsample, we
use either 2002 or 2001 as the (placebo) cutoff year and find that
the estimated differences in discontinuities are close to zero in all
specifications. This finding confirms that the spatial discontinuity
in TFP between upstream and downstream polluters did not
emerge until the introduction of stringent water monitoring in
2003.

IV.D. Threats to Baseline Findings and Robustness Checks

In the previous subsections, we demonstrated that before
2003, upstream and downstream firms were well-balanced in
both levels and trends. When water quality monitoring became a
political priority in 2003, there emerged a TFP gap between up-
stream and downstream polluting firms, while no such gap is
observed among nonpolluting firms. The upstream–downstream
TFP gap is predominantly driven by the break in trends among
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existing firms, rather than a change in the composition of firms
around the monitoring stations. All these empirical patterns sup-
port the validity of our RD design.

In this subsection, we briefly summarize the additional
tests that we conducted to further address the potential threats
to our baseline findings, with the details presented in Online
Appendix E. Specifically, we show that the baseline RD results
are not driven by (i) the endogenous location of monitoring sta-
tions, (ii) the sorting of polluting firms, (iii) spillover effects be-
tween upstream and downstream firms, (iv) potential biases in
our baseline TFP measure, or (v) specific choices we make in the
RD estimation.

First, we address the potentially endogenous location of mon-
itoring stations using an instrumental variable (IV) approach. As
discussed in Section II, the MEP explicitly required the water
monitoring stations to be built on the existing hydrological net-
work. The hydrological stations were set up between the 1950s
and 1970s when China had very little industrial pollution. Be-
cause their locations were chosen based purely on hydrological
considerations, one would expect that except for leading to the es-
tablishment of monitoring stations, the existence of a hydrological
station alone should have minimal effect on the production and
emission behaviors of adjacent firms. Using this “exclusion re-
striction,” we adopt “whether a firm is in the near upstream area
of a hydrological station” as the IV for “whether a firm is in the
near upstream area of a monitoring station,” and estimate a 2SLS
model to quantify the impacts of water quality monitoring on TFP.
As discussed in Online Appendix E, our main findings quantita-
tively go through under this alternative empirical strategy.

Second, we investigate the possibility that polluting firms
might systematically sort away from the near upstream of mon-
itoring stations, which creates a selection bias that could po-
tentially confound our baseline results. As shown in Table II,
our RD results go through when exploiting only within-firm
variation, suggesting that “endogenous sorting” is not the main
driving force behind our findings. Nevertheless, to directly ex-
amine whether “sorting” indeed exists in our data, we conduct
data-driven manipulation tests following Cattaneo, Jansson, and
Ma (2018, 2019), which essentially compare the density of pol-
luting firms around the RD cutoff. We find no discontinuity in
firm distribution during our sample period, confirming again that
“sorting” cannot explain our main findings. The lack of sorting in
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the short run is most likely because the firms in our ASIF data
set are generally large, for whom it is difficult, costly, and time-
consuming to relocate. Using more recent ASIF data, we do find
that “sorting” becomes more evident in the long run. These results
are discussed in more detail in Online Appendix E.

Third, we conduct a placebo test to assess whether potential
spillover effects between upstream and downstream firms con-
tribute to our findings in any substantial way. Specifically, we
replace the actual downstream firms with their best matches
from the sample of firms that are not in the neighborhood of
any monitoring stations, based on the pre-2003 data. We esti-
mate the discontinuities between “actual upstream firms” and
“placebo downstream firms” using the post-2003 data. Since the
“placebo downstream firms” and “actual upstream firms” do not
locate close to each other, this placebo regression teases out the
potential spillover effects that might exist in the baseline regres-
sion. As reported in Online Appendix E, we do not find significant
spillover effects between upstream and downstream polluters.

Fourth, we investigate whether our findings could be reflect-
ing potential biases in the TFP measure itself. Specifically, the
baseline Olley-Pakes approach assumes a (conditional) monotonic
relationship between investment and productivity, which might be
violated if firm investments tend to be “lumpy.” To address this
issue, we construct a series of alternative TFP measures: (i) we es-
timate different versions of Olley-Pakes TFP excluding incidents
of “zero investments” and “investment spikes,” and controlling for
“capital age”; (ii) we follow the approach proposed by Ackerberg,
Caves, and Frazer (2015) and use “intermediate input” instead
of “capital investment” as the proxy variable, since “intermediate
input” could hardly be lumpy; and (iii) we follow Syverson (2011)
and Greenstone, List, and Syverson (2012) to construct a simple
“index TFP” measure, which also does not rely on the monotonic
relationship between investment and productivity. As discussed in
Online Appendix E, our baseline findings hold, both qualitatively
and quantitatively, for all these alternative TFP measures.

Finally, in Online Appendix E, we present a series of addi-
tional robustness checks, including estimating parametric RD
models, bias-correcting the RD estimates following Calonico,
Cattaneo, and Titiunik (2014), and adopting alternative band-
width selectors. All the main findings remain quantitatively sim-
ilar throughout these alternative specifications. We conduct a
placebo test by moving the original monitoring stations upstream
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or downstream by 5 km and reestimating the RD model for these
“placebo” monitoring stations. We find that the discontinuity in
TFP is only evident around actual monitoring stations rather than
these placebo stations.

V. MECHANISMS: FIRM RESPONSES TO REGULATION

How do firms respond to tighter water quality regulations?
We examine the channels through which environmental regula-
tion affects firms’ TFP. The theoretical framework that guides our
analysis is presented in Online Appendix A. In this model, firms
need to use extra labor and capital to clean up emissions, and
the government can enforce tighter environmental regulation by
increasing the emission tax. Facing a higher emission tax, firms
need more labor and capital for emission abatement, but these
extra inputs do not directly contribute to output production. As a
result, tighter environmental regulation will lead to a reduction
in firms’ TFP.

Following the model, we estimate the effects of water quality
monitoring on several key variables: (i) input and output mea-
sures that constitute TFP; (ii) emission reduction efforts at both
the production and the abatement stages; and (iii) final emission
outcomes.

V.A. Input and Output

In Table III, we decompose the baseline TFP results by esti-
mating the upstream–downstream gaps in firm outputs and in-
puts separately. Panel A reports the results for output-related
measures: value-added and profit. Both measures appear to be
lower for upstream polluters, although the findings are not statis-
tically significant due to large standard errors.

In Panel B, we focus on input-related measures: labor, capital,
and intermediate inputs. We find that upstream polluting firms
hire more employees and use slightly more intermediate inputs,
but these effects are statistically insignificant. The most salient
pattern is that upstream polluting firms, although they do not
produce more output than their downstream counterparts, own
significantly higher levels of capital assets. These results are con-
sistent with the theoretical prediction that upstream firms invest
in additional abatement (nonproductive) equipment to cope with
tighter environmental regulation.
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TABLE III
THE UPSTREAM–DOWNSTREAM GAP IN INPUT AND OUTPUT LEVELS

After 2003 Before 2003

(1) (2) (3) (4) (5) (6)

Panel A: Output levels (downstream minus upstream)
RD in profit (10k RMB) 478.59 441.18 693.76 −207.19 −233.60 250.92

(470.49) (524.34) (595.49) (386.84) (410.51) (494.19)
RD in value-added (log) 0.05 0.07 0.11 − 0.11 − 0.09 0.03

(0.19) (0.19) (0.18) (0.13) (0.14) (0.16)

Panel B: Input levels (downstream minus upstream)
RD in # of employees − 0.22 − 0.19 − 0.09 − 0.07 0.01 0.05

(log) (0.16) (0.16) (0.16) (0.19) (0.19) (0.20)
RD in capital stock (log) − 0.40∗ − 0.45∗ − 0.61∗∗ − 0.06 − 0.04 − 0.04

(0.22) (0.27) (0.29) (0.21) (0.22) (0.26)
RD in intermediate − 0.05 − 0.04 − 0.05 − 0.03 − 0.01 0.05

input (log) (0.24) (0.24) (0.18) (0.16) (0.16) (0.20)

Panel C: Single factor productivity (downstream minus upstream)
RD in (VA/employee) 0.08 0.08 0.05 0.00 0.02 0.01

(log) (0.08) (0.08) (0.08) (0.06) (0.06) (0.05)
RD in (VA/capital stock) 0.25∗∗ 0.27∗∗∗ 0.28∗∗∗ 0.04 0.04 − 0.00

(log) (0.10) (0.10) (0.10) (0.08) (0.09) (0.10)

Obs. 5,520 5,520 5,520 2,282 2,282 2,282
Station FE absorbed Y Y Y Y Y Y
Industry FE absorbed Y Y Y Y Y Y
Kernel Triangle Epanech. Uniform Triangle Epanech. Uniform

Notes. Each cell in the table represents a separate RD regression. The running variable is the distance
between a firm and a monitoring station, where negative (positive) distance means firms are located to the
upstream (downstream) of the monitoring stations. The positive coefficients indicate that downstream firms
have higher “Y” than upstream firms. In columns (1)–(3), we report the estimated discontinuities for polluting
industries using pre-2003 data, and in columns (4)–(6), we report the estimated discontinuities for polluting-
industries using post-2003 data. Local linear regression and MSE-optimal bandwidth proposed by Calonico,
Cattaneo, and Titiunik (2014) for different kernel weighting methods are used for the estimation. Standard
errors are clustered at the monitoring station level and reported below the estimates. ∗ significant at 10%, ∗∗
significant at 5%, ∗∗∗ significant at 1%.

Motivated by the findings in Panels A and B, we construct
alternative (reduced-form) measures of productivity: “labor pro-
ductivity” defined as value-added per worker and “capital pro-
ductivity” defined as value-added per unit of capital asset. As
we can see in Table III, Panel C, labor productivity appears
to be slightly lower in the upstream, but the difference is not
statistically significant, while capital productivity is significantly
lower in the upstream by a magnitude of more than 22%. These
results are reassuring that our baseline findings reflect a real loss
in the firm’s efficiency of production (generating less output with
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more input), rather than being mechanical to specific procedures
of TFP construction.

In Table III, columns (4)–(6), we report the RD estimates us-
ing pre-2003 data. As we can see, before environmental regulation
became a binding constraint in 2003, there did not exist any sig-
nificant gap in inputs and outputs between upstream and down-
stream polluters, which is consistent with the previous finding,
presented in Figure V, that the baseline TFP gap only emerged
after 2003. To further investigate the break in trends in inputs
and outputs around the 2003 cutoff, we estimate the difference-in-
discontinuities model, absorbing firm fixed effects, station-by-year
fixed effects, and industry-by-year fixed effects. As shown in On-
line Appendix Table S10, the upstream polluters started to own
higher amounts of capital assets after 2003, confirming the find-
ings in Table III.

V.B. Emission Abatement Actions

Polluting firms can generally take two types of actions to
reduce their emissions. First, they can change their production
process (changes-in-process), defined as adjustments in the pro-
duction process to reduce the amount of pollution generated. For
example, polluting firms could simply choose to produce less, or
they could replace their production equipment with cleaner and
more efficient equipment. Second, they can have “end-of-pipe” in-
terventions, defined as adjustments at the end of the production
process to reduce the amount of pollution released into the en-
vironment by removing the pollutants that were generated. For
example, to abate COD discharges at the end of the pipe, firms typ-
ically need to install a wastewater treatment system that includes
aeration tanks, air flotation devices, and coagulative precipitation
tanks.

In Table IV, we use detailed information on abatement strate-
gies documented in the firm-level emission data set and investi-
gate which type of action is being taken by upstream firms to cope
with tighter environmental regulation.

First, we test for changes in the production process. In
Panel A, we find that the downstream firms’ operating time is
longer than that of the upstream firms, with the estimated dif-
ference being around 200 hours per year. This result implies that
to improve water quality readings, firms located in the near up-
stream of monitoring stations have to reduce their production time
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TABLE IV
THE UPSTREAM–DOWNSTREAM GAP IN ABATEMENT EFFORTS

(1) (2) (3)

Panel A: Hours operated per year (downstream minus upstream)
RD in operating hours 288∗∗∗ 256∗∗ 171∗

(101) (105) (92)
Obs. 7,302 7,302 7,302

Panel B: Water input (downstream minus upstream)
RD in log(water input) 0.62∗∗∗ 0.60∗∗ 0.40

(0.23) (0.25) (0.28)
Obs. 6,606 6,606 6,606

Panel C: Wastewater treatment facility (downstream minus upstream)
RD in # of treatment facilities −1.15∗ −1.07∗ −1.29∗

(0.62) (0.62) (0.69)
Obs. 7,265 7,265 7,265

Panel D: Treatment capacity (downstream minus upstream)
RD in water treatment capacity (tons/day) −7,381∗∗ −8,594∗∗ −7,849∗∗

(3,733) (3,855) (3,714)
Obs. 4,624 4,624 4,624

Station FE absorbed Y Y Y
Industry FE absorbed Y Y Y
Kernel Triangle Epanech. Uniform

Notes. Each cell in the table represents a separate RD regression. The running variable is the distance
between a firm and a monitoring station, where negative (positive) distance means firms are located to
the upstream (downstream) of the monitoring stations. The positive coefficients indicate that downstream
firms have higher “Y” than upstream firms. The discontinuities at monitoring stations are estimated using
local linear regressions and MSE-optimal bandwidth proposed by Calonico, Cattaneo, and Titiunik (2014) for
different kernel weighting methods. Standard errors clustered at the monitoring station level are reported
below the estimates. ∗ significant at 10%, ∗∗ significant at 5%, ∗∗∗ significant at 1%.

by nearly 5% compared with their downstream counterparts. In
Panel B, we examine how much freshwater is used as inputs in
the production process. Water is an important input for many in-
dustries, and more water usage is usually associated with more
wastewater discharge and pollutant emissions. We find that up-
stream firms use substantially less water in their production
than downstream firms do, suggesting that they adopt less wa-
ter pollution–intensive technologies in production to cope with
the tighter regulation.

Second, we test for end-of-pipe interventions. In the ESR
database, each polluting plant is required to report how many
wastewater treatment facilities the plant has, and its maximum
capacity to treat wastewater. In Table IV, Panels C and D, we find
that upstream firms have on average one extra set of wastewater
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treatment systems, which increases their maximum treatment
capacity by more than 7,300 tons a day.23

The results in Table IV suggest that both changes-in-process
and end-of-pipe adjustments contributed to upstream polluters’
efforts to reduce emissions. Combined with the results docu-
mented in Table IV, we have a more comprehensive understanding
of the channels through which firms cope with tighter regulation:
upstream firms install expensive wastewater treatment facilities
to abate emissions, use less water-intensive production technolo-
gies, and slightly reduce their operating hours. Together, these
investments and adjustments lead to a significant reduction in
TFP among upstream polluting firms.

V.C. Emission Abatement Outcomes

The model in Online Appendix A predicts that tighter en-
vironmental regulations will decrease both emission levels and
emission intensity (emission per unit of output). In other words,
upstream polluting firms are expected not only to reduce total
emissions but also to adopt cleaner technologies. This is consis-
tent with the previous findings that upstream firms invest more
in both production and abatement technologies. In this section,
we formally examine the effects of water quality monitoring on
firm emissions and emission intensity.

We examine eight pollution outcome measures from the ESR
data set: (i) total amount of COD emitted; (ii) COD emission in-
tensity

( total COD
total output value

)
; (iii) total amount of nitrogen ammonia

(NH3-N) emitted; (iv) NH3-N emission intensity
( total NH3−N

total output value

)
;

(v) total amount of wastewater discharged; (vi) wastewater
discharge intensity

( total wastewater
total output value

)
; (vii) SO2 emissions; and (viii)

NOx emissions.
Table V reports the results. In Panel A, we can see that

both COD emissions and COD emission intensity are signifi-
cantly higher for downstream firms. COD emissions of polluters
in the immediate upstream of monitoring stations are 51.8%–
56.8% (e−0.73 − 1 to e−0.84 − 1) lower than that of the immediate
downstream polluters. When the amount of total output is ad-
justed, water quality monitoring reduces the COD emission inten-
sity in upstream firms by 46.2%–56.8% (e−0.62 − 1 to e−0.84 − 1).

23. This set of results should be interpreted with caution because many pol-
luting sources did not provide information on wastewater treatment capacity.
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TABLE V
THE UPSTREAM–DOWNSTREAM GAP IN EMISSIONS

(1) (2) (3)

Panel A: COD emissions (downstream minus upstream)
RD in COD emissions (log) 0.84∗∗ 0.75∗ 0.73∗∗

(0.43) (0.39) (0.35)
RD in COD emission intensity (log) 0.77∗∗∗ 0.70∗∗∗ 0.84∗∗

(0.29) (0.27) (0.33)
Obs. 9,797 9,797 9,797

Panel B: NH3-N emissions (downstream minus upstream)
RD in NH3-N emissions (log) 0.87 0.76 0.46

(0.90) (0.76) (0.62)
RD in NH3-N emission intensity (log) 1.23∗∗∗ 1.01∗∗ 0.73∗

(0.45) (0.44) (0.44)
Obs. 4,772 4,772 4,772

Panel C: Wastewater discharge (downstream minus upstream)
RD in waste water discharge (log) 0.34 0.33 0.06

(0.31) (0.33) (0.26)
RD in waste water discharge intensity (log) 0.43∗∗ 0.38∗ 0.56∗∗

(0.21) (0.20) (0.26)
Obs. 9,797 9,797 9,796

Panel D: Air pollutants for placebo tests (downstream minus upstream)
RD in SO2 emissions (log) 0.03 0.06 − 0.16

(0.29) (0.30) (0.25)
RD in NOx emissions (log) 0.09 0.14 − 0.05

(0.28) (0.29) (0.20)
Obs. 4,740 4,740 4,740

Station FE absorbed Y Y Y
Industry FE absorbed Y Y Y
Kernel Triangle Epanech. Uniform

Notes. Each cell in the table represents a separate RD regression. The running variable is the distance
between a firm and a monitoring station, where negative (positive) distance means firms are located to the
upstream (downstream) of the monitoring stations. The positive coefficients indicate that downstream firms
have higher emissions than upstream firms. Local linear regression and MSE-optimal bandwidth selected by
Calonico, Cattaneo, and Titiunik (2014) for different kernel weighting methods are used for the estimation.
Conventional local linear regression discontinuity standard errors clustered at the monitoring station level
are reported below the estimates. ∗ significant at 10%, ∗∗ significant at 5%, ∗∗∗ significant at 1%.

As discussed in more detail in Online Appendix A, our model pre-
dicts that firms with higher emission intensities would respond
more strongly to regulation, which suggests that the upstream–
downstream emissions gap should be larger among firms with
higher emission intensities. In Online Appendix Table S11, we
estimate the RD separately for high-intensity and low-intensity
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firms and find that the emission reduction is indeed driven by
high-emission-intensity firms.

In Table V, Panel B, we examine nitrogen ammonia (NH3-
N) emissions, another water pollution indicator recorded in the
ESR database. NH3-N is a toxic pollutant often found in landfill
leachate and industrial wastewater and is a common pollutant
generated by firms in the coking, petrochemical, pharmaceutical,
and food industries. It is widely regarded as an important measure
of surface water health: high levels of NH3-N could induce water
body eutrophication, which causes algae and other plankton to
multiply in water. However, because the national water quality
target focused mostly on COD rather than NH3-N during our
study period, the ESR database did not spend as much effort on
measuring NH3-N as it did with COD. As a result, nearly half of
the sampled firms did not report their NH3-N emissions in the
ESR data. As shown in Panel B, while the estimated coefficients
are relatively noisy due to a large amount of missing data, they
consistently suggest that upstream polluters have much lower
NH3-N emission intensity than do downstream polluters.

In Panel C, we further examine wastewater discharge. Again,
we observe that upstream firms discharge less wastewater, both in
absolute levels and in output-adjusted intensity. This is consistent
with the findings in Table V that upstream polluters use less
freshwater as an input and also have higher treatment capacities
for wastewater.

The ESR database includes firms that emit large amounts
of SO2 and NOx. We use these firms to conduct a placebo test.
As these air-polluting firms contribute little to COD emissions,
we expect that they do not face similar regulations as the water-
polluting firms do. In Panel D, we find that there is no significant
discontinuity in SO2 and NOx emissions across the water quality
monitoring stations, confirming that the upstream–downstream
gap is unique to water pollution.

A potential caveat of the ESR database is that it only samples
the most polluting firms in each county. Given that we focus on
a small region around each monitoring station, many of the up-
stream and downstream firms are located in the same county. This
causes a potential selective attrition problem, because upstream
firms facing tighter regulation tend to emit less and are thus less
likely to be sampled in the ESR database. If such selection bias
exists, our results in Table V will be underestimates, because the
upstream firms that abate most of their emissions are no longer
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included in the sample. Thus, when we evaluate the environmen-
tal benefits of water monitoring, the estimates in Table V should
be regarded as lower bounds.

To further demonstrate that the tighter regulation faced by
upstream firms is driven by the efforts to improve water quality
readings, we would like to directly link the “TFP loss among up-
stream polluters” to their “reduced COD emissions.” However, as
explained in Section III, we could not directly merge the ESR data
set with the ASIF data set, which makes us unable to conduct this
test.

As an alternative strategy, we collect the water quality read-
ings of all the state-controlled monitoring stations between 2000
and 2007 and estimate the relationship between “TFP loss among
upstream polluters” and “water quality improvement” for the
corresponding monitoring stations.24 We estimate a difference-
in-differences-in-differences (DDD) model, investigating whether
monitoring stations experiencing larger water quality improve-
ments also see larger upstream–downstream TFP gaps in that
year. As shown in Online Appendix Table S12, we find that the
upstream–downstream TFP gap is mainly driven by monitor-
ing stations experiencing large improvements in water quality,
and this relationship exists only among polluting firms. These
findings confirm that the baseline TFP gaps are indeed driven
by local officials’ efforts to improve water quality readings. If
we ignore the noisy nature of the estimated coefficients, these
DDD results suggest that to improve the water quality reading
of a station by one grade (which reduces digestive cancer rate
by 9.7% according to Ebenstein 2012), the upstream firms in
a 4-km radius will need to suffer from an average TFP loss of
nearly 27%.

VI. THE POLITICAL ECONOMY OF REGULATION ENFORCEMENT

The empirical analyses in the previous sections show that
because of the political stakes associated with water quality read-
ings, local government officials impose tighter environmental
regulations on polluting firms located in the near upstream of
national monitoring stations, as compared with their near down-
stream counterparts. These findings are supported by abundant
qualitative evidence summarized in Online Appendix D, in which

24. We thank a referee for suggesting this test.

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article/135/4/2135/5860784 by Aalto U

niversity Library user on 30 O
ctober 2023

file:qje.oxfordjournals.org
file:qje.oxfordjournals.org


2172 THE QUARTERLY JOURNAL OF ECONOMICS

we review numerous policy documents from both the central and
local governments in China and demonstrate that “improving wa-
ter quality readings” is indeed a central component of China’s
environmental regulation plans. In addition, various levels of lo-
cal governments have strong political incentives to interfere with
firms’ production to meet the centrally designated water quality
targets.

To better understand the political economy of regulation en-
forcement in China, in this section, we conduct a series of addi-
tional empirical analyses. Next we present three pieces of evidence
showing that the political incentives of local politicians are indeed
the driving forces behind our main findings. Then we investigate
how the regulatory burdens are shared among different types of
firms, which shed further light on the incentives of local govern-
ment officials.

VI.A. Political Economy of Regulation Enforcement

In Table VI, Panel A, we provide evidence that local gov-
ernments hold double standards in environmental regulation for
upstream versus downstream firms. In the ASIF data set, we have
information on the waste discharge fees paid by each firm in 2004.
If the government imposes a “fair” rule of punishing upstream and
downstream firms for emissions, we should expect downstream
firms to pay more than upstream firms because of their higher
emission levels (as documented in Table V). However, we find that
upstream firms need to pay significantly more waste discharge
fees to the government. This implies that local governments are
able to charge firms differentiated emission fee rates, even though
these firms are located close to each other and are in the same ad-
ministrative jurisdiction. In practice, Chinese local governments
primarily rely on command-and-control type approaches to regu-
late emissions, and the emission fees themselves only account for
a small proportion of the regulatory burdens faced by polluters.
Nevertheless, the fact that the local governments do have clear
double standards even for this second-order policy instrument
is indicative that upstream polluters might be assigned “higher
bars” in other forms of regulation as well.

In Table VI, Panel B, we examine how the political promo-
tion incentives of local officials drive the upstream–downstream
TFP gap. As documented in the Chinese political meritocracy lit-
erature, China has an implicit rule that a prefecture-level leader
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TABLE VI
POLITICAL ECONOMY OF WATER QUALITY MONITORING

Polluting industries Nonpolluting industries

(1) (2) (3) (4) (5) (6)

Panel A: “Double standard”
Waste discharge fee (log) − 0.91∗∗ − 1.12∗∗ − 0.91∗

(downstream minus upstream) (0.44) (0.45) (0.48)
Obs. 3,050 3,050 3,050

Panel B: Strong versus weak political incentives
TFP (log) − strong incentive 0.56∗∗∗ 0.58∗∗∗ 0.59∗∗∗ 0.12 0.09 0.07

(downstream minus upstream) (0.20) (0.20) (0.20) (0.13) (0.14) (0.10)
Obs. 5,305 5,305 5,305 9,382 9,382 9,382
TFP (log) − weak incentive 0.13 0.19 0.18 0.04 0.01 0.26

(downstream minus upstream) (0.19) (0.25) (0.27) (0.19) (0.19) (0.22)
Obs. 2,450 2,450 2,450 4,738 4,738 4,738

Panel C: Automatic versus manual monitoring stations
TFP (log) − automatic stations 1.18∗∗ 1.22∗∗ 1.21∗∗ − 1.07 − 0.48 − 0.43

(downstream minus upstream) (0.55) (0.55) (0.47) (1.44) (0.76) (0.32)
Obs. 932 932 932 1,815 1,815 1,815
TFP (log) − manual stations 0.30∗∗ 0.35∗∗ 0.41∗∗ 0.10 0.11 0.10

(downstream minus upstream) (0.15) (0.17) (0.20) (0.08) (0.08) (0.08)
Obs. 4,953 4,953 4,953 9,523 9,523 9,523

Station FE absorbed Y Y Y Y Y Y
Industry FE absorbed Y Y Y Y Y Y
Kernel Triangle Epanech. Uniform Triangle Epanech. Uniform

Notes. Each cell in the table represents a separate RD regression.The running variable is the distance
between a firm and a monitoring station, where negative (positive) distance means firms are located to
the upstream (downstream) of the monitoring stations. The positive coefficients indicate that downstream
firms have higher “Y” than upstream firms. We focus on polluting firms and use post-2003 collapsed data
to estimate the regression discontinuities. Local linear regression and MSE-optimal bandwidth proposed by
Calonico, Cattaneo, and Titiunik (2014) for different kernel weighting methods are used for the estimation.
Panel A examines how tax and waste discharge fees collected by the government differ between upstream
and downstream firms. Panel B estimates the discontinuities separately using the subsamples where the
prefecture Party secretary has or does not have strong promotion incentives (age � 56 versus age > 56).
Panel C estimates the discontinuities separately for automatic and manual monitoring stations. ∗ significant
at 10%. ∗∗ significant at 5%. ∗∗∗ significant at 1%.

cannot be promoted to a higher level if their age reaches 57, cre-
ating a discontinuous drop in political incentives at this age cut-
off (Wang 2016). To test whether the TFP effects of water quality
monitoring can be explained by political incentives, we digitize the
résumés of every prefectural party secretary (the highest-ranked
political leader in a prefectural city) between 2000 and 2007, and
define a leader as “having strong political incentives” if they are
56 or younger in a given year, and “having weak political incen-
tives” otherwise. We then assign a monitoring station either to an
“incentivized” or “unincentivized” party secretary in a given year,
based on whether the monitoring station is under the governance
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of an “incentivized” leader at that time. The RD results show that
when the prefectural city leader has strong political incentives,
water quality monitoring has a large and statistically significant
effect on upstream firms’ TFP. In sharp contrast, when the pre-
fectural city leader has weak promotion incentives, the TFP gap
appears small and insignificant. These results imply that the TFP
discontinuity across the monitoring stations is mostly driven by
the political promotion incentives of local officials.25

Finally, we investigate how the manipulation of water qual-
ity readings by politicians affects environmental regulation en-
forcement. Although the monitoring stations are managed by the
central government, it is still possible that local officials can exert
their administrative powers to influence water quality monitor-
ing. If local governments can manipulate water quality readings,
they may be less incentivized to regulate upstream firms’ emis-
sions.

To test this hypothesis, we estimate the RD separately for
two types of monitoring stations: automatic stations and manual
stations. Automatic stations conduct all water quality tests auto-
matically and report the data directly to the central government,
whereas manual stations require technicians to conduct the tests
manually.26 Because it is difficult for local governments to manip-
ulate data from the automatic stations, we expect a larger TFP
gap around automatic stations.

Table VI, Panel C reports the findings. While we see an
upstream–downstream TFP gap for both types of stations, this
effect is significantly larger for automatic stations. These results
confirm that potential data manipulation undermines the enforce-
ment of environmental regulation, but the agency problem can be
alleviated through improved monitoring technologies.

25. As an alternative way to check this result, we use the panel data set and
exploit the age change from 56 to 57, holding the leader fixed. The main results
still hold with this more restrictive specification, as shown in Online Appendix
Table S13.

26. Most stations were manual in the 1990s and early 2000s, but these were
gradually replaced by automatic stations in order to improve the accuracy of wa-
ter quality reporting. Weekly water quality reports from the automatic stations
are posted by the MEP at http://datacenter.mep.gov.cn/index, and real-time wa-
ter quality readings can be accessed at http://online.watertest.com.cn/help.aspx.
Please see Lin and Sun (2020) for more detailed discussions of the automatic water
monitoring system.
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VI.B. The Regulatory Burden on Different Types of Firms

This subsection explores whether the effect of water quality
monitoring on TFP varies by ownership, firm size, and firm loca-
tion, which help us understand how different types of firms share
the regulatory burdens.

In Table VII, Panel A, we estimate the RD by firm ownership
and find that the baseline TFP loss is driven mainly by private
firms. Water quality monitoring has no significant effect on the
TFP of SOEs. This may reflect the fact that environmental reg-
ulations are not binding for SOEs as a practical matter, as they
generally have greater bargaining power over local governments
and thus face less stringent enforcement. However, given the rel-
atively small number of observations for SOEs in our sample, this
subsample null result should be interpreted with caution.

In Panel B, we investigate heterogeneity by firm size. In
China, various levels of government practice a strategy known
as “Grasping the Large and Letting Go of the Small” (Zhua Da
Fang Xiao). “Grasping the large” means that policy makers mainly
target large enterprises, and “letting go of the small” means that
the government exerts less control over smaller enterprises. The
phenomenon has been widely documented in the context of eco-
nomic reforms and policy implementation for the minimization of
implementation costs (e.g., Hsieh and Song 2015). We investigate
whether this phenomenon is true in environmental regulation. We
define small firms as having fewer than 50 employees and esti-
mate the effects of water quality monitoring separately for small
and large firms. We find statistically significant effects only on
larger firms, which is consistent with the general policy enforce-
ment strategy adopted by Chinese local governments.

In Panel C, we explore regional heterogeneity. Here, we focus
on China’s South-to-North Water Diversion project. The project is
a large-scale water infrastructure project that diverts water from
the Yangtze River in southern China to the Yellow River Basin in
arid northern China, in an attempt to address water scarcity in
the north.27 To do so, the central government imposed stringent
requirements that the affected regions must ensure good water

27. The project aims to channel 44.8 billion cubic meters of fresh water
annually, which is equivalent to nearly half the amount of water consumed in
California annually. For details, please refer to https://www.water-technology.
net/projects/south north/ and https://www.internationalrivers.org/campaigns/
south-north-water-transfer-project.
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TABLE VII
HETEROGENEOUS EFFECTS OF WATER QUALITY MONITORING

Polluting industries Nonpolluting industries

(1) (2) (3) (4) (5) (6)

Panel A: By ownership
Private firms 0.45∗∗ 0.48∗∗∗ 0.43∗∗∗ 0.05 0.05 0.07

(downstream minus
upstream)

(0.18) (0.18) (0.17) (0.09) (0.09) (0.10)

Obs. 6,149 6,149 6,149 11,510 11,510 11,510
SOEs − 0.11 0.00 − 0.01 0.11 0.09 0.06

(downstream minus
upstream)

(0.44) (0.51) (0.61) (0.35) (0.33) (0.41)

Obs. 513 513 513 1,169 1,169 1,169

Panel B: By size
Small firm (empl �50) 0.06 0.13 0.17 − 0.01 − 0.04 0.04

(downstream minus
upstream)

(0.41) (0.36) (0.39) (0.16) (0.16) (0.18)

Obs. 1,829 1,829 1,829 3,981 3,981 3,981
Large firm 0.49∗∗∗ 0.52∗∗∗ 0.52∗∗∗ 0.02 0.03 0.02

(downstream minus
upstream)

(0.16) (0.17) (0.17) (0.11) (0.11) (0.10)

Obs. 4,818 4,818 4,818 8,765 8,765 8,765

Panel C: By region: the South-to-North Water Diversion (SNWD) Project
SNWD region 0.89∗∗∗ 0.69∗∗ 0.94∗∗∗ 0.17 0.23 − 0.19

(downstream minus
upstream)

(0.31) (0.32) (0.31) (0.18) (0.15) (0.52)

Obs. 933 933 933 1,429 1,429 1,429
Other regions 0.38∗∗ 0.35∗ 0.36∗∗ 0.13 0.11 0.11

(downstream minus
upstream)

(0.19) (0.18) (0.18) (0.11) (0.10) (0.11)

Obs. 4,998 4,998 4,998 9,739 9,739 9,739

Station FE absorbed Y Y Y Y Y Y
Industry FE absorbed Y Y Y Y Y Y
Kernel Triangle Epanech. Uniform Triangle Epanech. Uniform

Notes. Each cell in the table represents a separate RD regression. The running variable is the distance
between a firm and a monitoring station, where negative (positive) distance means firms are located to
the upstream (downstream) of the monitoring stations. The positive coefficients indicate that downstream
firms have higher “Y” than upstream firms. Local linear regression and MSE-optimal bandwidth proposed by
Calonico, Cattaneo, and Titiunik (2014) for different kernel weighting methods are used for the estimation.
Conventional local linear regression discontinuity standard errors clustered at the monitoring station level
are reported below the estimates. ∗ significant at 10%, ∗∗ significant at 5%, ∗∗∗ significant at 1%.

quality along the channeled river basins, which adds additional
political stakes for the corresponding local governments. We thus
split our sample into two subregions based on whether the lo-
cation is designated as the water diversion project region. Our
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results show that the effect of water quality monitoring on firm
productivity is indeed slightly larger in areas that are affected by
the project.

VII. ECONOMIC SIGNIFICANCE

According to our baseline RD estimates, polluting firms lo-
cated in the immediate upstream of water monitoring stations ex-
perienced a TFP loss of more than 24%. A simple within-sample
calculation suggests that during our sample period, these up-
stream polluters jointly sacrificed around 20 billion Chinese yuan
in terms of industrial value-added.28 From 2000 to 2007, China
reduced its annual industrial COD emissions by nearly 2 million
tons (or 27.6%, as shown in Figure I). This reduction was con-
tributed jointly by firms in our RD sample and many other firms
that were further away from the monitoring stations. As a result,
a calculation restricted to immediate upstream polluters would
capture only a small proportion of the overall economic cost of
water regulation in China.

To paint a more comprehensive picture of the aggregate eco-
nomic cost of abating water pollution, we provide alternative cal-
culations under different scenarios and discuss their implications.
First we use our RD coefficients for out-of-sample calculations and
estimate the overall economic cost associated with China’s total
reduction in industrial COD emissions. Then we discuss the per-
sistence of this aggregate abatement cost. Finally we evaluate the
potential sources of bias in our calculation.

VII.A. Estimated Loss in Value-Added from Industrial Firms

Our baseline estimates show that, due to tighter water reg-
ulation, upstream firms cut their COD emissions by 0.84 log
units, leading to a TFP loss of 0.36 log units (0.21 if we restrict
to within-firm variation). Under several simple functional form
assumptions and exploiting the sampling criteria of the ASIF and
ESR data sets, we can link the two estimates and obtain the aver-
age pollution abatement cost for Chinese manufacturing firms.29

28. If TFP is reduced by x% in a year, the corresponding loss in industrial
value-added can be calculated by VA

1−x% − VA, where VA is the realized value-added
in that year.

29. The technical details for linking the TFP and COD estimates are discussed
in Online Appendix F.
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TABLE VIII
ECONOMIC COSTS OF COD ABATEMENT

Cross-section RD Within-firm RD

(1) (2) (3) (4) (5) (6)

Panel A: MRS between TFP loss and COD reduction
TFP loss per 10% COD

emission abatement
3.38% 3.81% 3.53% 2.12% 2.28% 2.22%

Panel B: Estimated costs for all polluting firms from 2001 to 2007
Total loss in industrial VA

from 2001 to 2007
(billion CNY)

1,342 1,527 1,408 816 882 858

Panel C: Estimated costs for all polluting firms during the 13th Five-Year Plan
Annual loss in VA

(for 2% COD reduction,
billion CNY)

261 294 273 162 174 170

Total loss in industrial VA
in 5 years (For 10% COD
reduction, billion CNY)

1,303 1,472 1,364 808 872 849

Kernel Triangle Epanech. Uniform Triangle Epanech. Uniform

Notes. The cost estimates are based on industrial value-added data reported by the National Bureau of
Statistics of China. Panel B uses actual industrial value-added from 2000 to 2007 to calculate the cost, and
Panel C uses industrial value-added in 2015 as the reference year to estimate the cost from 2016 to 2020.
Details can be found in Online Appendix F.

In Table VIII, Panel A, we report the estimated TFP loss
for a 10% reduction in COD emissions. In columns (1)–(3), the
estimated TFP loss is calculated based on the baseline RD re-
sults. We find that abating COD emissions by 10% would lead to a
3.38%–3.81% reduction in TFP. In columns (4)–(6), the TFP loss is
calculated using the more conservative within-firm RD results. A
10% reduction in COD emissions will lead to a 2.12%–2.28% loss
in TFP.

In Panel B, we evaluate the economic costs of China’s reg-
ulations. During our study period (2000–2007), China reduced
its total industrial COD emissions by 27.6% (Figure I). Based
on the industrial value-added data from the polluting industries
in that period, the abatement of COD emissions between 2000
and 2007 would have caused a total loss of 1,342 to 1,527 billion
Chinese yuan in industrial value-added if firms were allowed to
operate using 2000 technology.30 If we use the more conservative

30. The total COD reduction is calculated by assuming the 2000 COD emis-
sion level as the counterfactual for the 2000–2007 period. An alternative ap-
proach is to focus on the post-2003 period, and construct the counterfactual by
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within-firm estimates (Table II), the estimated cost would still
be around 816 to 882 billion Chinese yuan, as reported in
columns (4)–(6) in Panel B.

Although our data do not allow us to directly estimate the
TFP–COD relationship after 2007, we could use the pre-2007 co-
efficients to shed some light on China’s more recent regulatory ef-
forts, assuming that industrial structures and regulatory enforce-
ment practices are relatively stable over time. Table VIII, Panel C
summarizes our estimates during 2016 and 2020. In 2015, the in-
dustrial value-added in China exceeded 23 trillion Chinese yuan,
39% of which was contributed by the polluting industries. The cen-
tral government aimed to reduce COD emissions by 10% during
the 13th Five-Year Plan (2016–2020). Applying our estimates to
the production data and using 2015 as the reference year, we find
that the five-year total loss in value-added would be 1,303–1,472
billion Chinese yuan. Using the more conservative RD estimates
yields smaller estimated economic costs, ranging from 808 to 872
billion Chinese yuan, as reported in Panel C, columns (4)–(6).

VII.B. Persistence of the Economic Cost of Regulation

As shown in Section VI, to cope with tighter regulatory stan-
dards, upstream polluters invest significantly more in cleaner pro-
duction and abatement equipment, which is the main driving force
behind the upstream–downstream gap in TFP. Because capital
stocks depreciate by a low rate from year to year, the regulation-
induced spikes in capital stocks would likely have long-lasting
effects on firm productivity. This is confirmed by the dynamics of
TFP during our sample period, as documented in Figure V: the
upstream-downstream gap in TFP emerged after water regulation
became stringent in 2003, and persisted throughout our sample
period.

After 2007, the ASIF data set no longer collected information
on firm value-added, so we are unable to track TFP dynamics in
the longer run. However, because the upstream–downstream gap
in capital stocks is the main driving force behind the upstream–
downstream gap in TFP, we can shed light on the persistence
of regulatory costs by investigating the persistence of the capi-
tal gap. Specifically, we use 2008–2012 ASIF data (the most re-
cent data available to us) and estimate spatial discontinuity in

extrapolating based on the pre-2003 trend in COD emissions. We discuss this
alternative procedure in detail in Online Appendix F.
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capital stocks. As summarized in Online Appendix Table S14, we
find that the difference in capital stocks between upstream and
downstream firms became even larger in the longer term, which
could reflect the reality that China’s environmental regulation
has become more stringent in recent years.

VII.C. Potential Sources of Bias

There are several reasons the estimates in Table VIII may
understate the actual economic costs of China’s water pollution
controls. First, we cannot observe small firms in either data set.
In reality, small firms might be shut down by the government
to improve water quality readings. The corresponding TFP loss
cannot be captured in our estimation and will make our cal-
culation an underestimate of the overall economic cost due to
regulation.

Second, the distinction between polluting and nonpolluting
industries is based on two- to three-digit industrial codes. This
distinction does not rule out the possibility that some firms in the
nonpolluting industries may also emit pollutants and are there-
fore regulated by local governments. If this is the case, the esti-
mated economic cost will be understated.

Third, we only compute the direct economic costs caused by
TFP loss. Previous research has shown that tighter environmen-
tal regulation can also cause unemployment, firm relocation, and
worker migration and can change the flow of investment. These
indirect costs could contribute to the overall economic costs of
environmental regulation in nontrivial ways.

VIII. CONCLUSION

Like many other developing economies, China faces a stark
trade-off between preserving basic environmental quality and sus-
taining robust economic growth. This article is the first to rig-
orously quantify the effects of environmental regulation on the
country’s entire manufacturing sector, which provides a timely
assessment of the central government’s efforts in leveraging high-
powered political incentives to fight pollution.

We document that since water quality readings of state-
controlled monitoring stations are important for political promo-
tion and can only reflect emissions from upstream, local govern-
ment officials have strong incentives to regulate polluting firms
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in the near upstream of monitoring stations, but not those in the
near downstream.

Exploiting this spatial discontinuity in regulation strin-
gency embedded in China’s target-based regulation enforcement
scheme, we estimate that polluting firms in the immediate up-
stream of monitoring stations suffer a 24% loss in TFP compared
with their immediate downstream counterparts. This upstream–
downstream gap in TFP exists only in polluting industries and
did not emerge until water quality readings became a political
priority in 2003. Further analysis suggests that the productiv-
ity loss is mainly driven by upstream polluters investing more in
(nonproductive) abatement equipment to cope with tighter reg-
ulation and cannot be explained by the endogenous locations of
monitoring stations or polluting firms.

We also investigate the effects of water quality monitoring on
pollution. Using a firm-level emissions data set, we find that up-
stream polluting firms emit substantially less COD, NH3-N, and
industrial wastewater, as measured by absolute emission levels
and output-adjusted emission intensities. We also find evidence
that upstream polluters cope with tighter regulation by both ad-
justing the production process and abating end-of-pipe emissions.

Combining the RD estimates for TFP and emissions, we cal-
culate the overall economic cost of China’s water pollution control
policies. We estimate that a 10% abatement in COD emissions can
lead to a 3.38%–3.81% drop in TFP for China’s polluting indus-
tries. This estimated abatement cost implies that China’s efforts
in reducing COD emissions during our study period (2000–2007)
led to a total loss in industrial output of more than 800 billion
Chinese yuan.

This article also sheds light on a more fundamental issue
with centralized political regimes. Under political centralization,
when the central government wants to mobilize local governments
for decentralized policy implementation, it often adopts a target-
based incentive scheme where political rewards are promised con-
tingent on meeting certain performance criteria. However, if the
central government is unable to perfectly monitor all aspects of
decentralized program enforcement, local government officials
will exert efforts on the contractable dimensions while shirking on
the noncontractable dimensions. As a result, even well-intended
central programs could lead to unexpected consequences under de-
centralized enforcement. In our context, the central government
leverages high-powered political incentives to improve surface
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water quality, but can only observe water quality readings of the
state-controlled monitoring stations, which reflect emissions from
their upstream but not their downstream. Our findings suggest
that local government officials respond strongly to this incomplete
political contract by imposing significantly tighter regulation on
upstream firms.

Further analysis suggests that political incentives are indeed
central to China’s environmental regulation enforcement. We first
summarize a large body of qualitative policy documents, which
demonstrate that “regulating polluting firms to improve water
quality readings” was a political priority during our study period.
Quantitatively, we document that (i) local government officials
charge higher emissions fees for upstream firms while these firms
actually emit less; (ii) local officials who stand a chance of being
promoted to the provincial level have substantially stronger in-
centives to regulate upstream firms; and (iii) local officials spend
more efforts to regulate upstream firms when it becomes harder
to directly manipulate the water quality readings. These find-
ings consistently suggest that under China’s target-based regula-
tion enforcement scheme, politically motivated local officials devi-
ate from the central government’s intention by prioritizing water
quality readings over actual water quality. Taking into account
the political incentives in decentralized regulatory enforcement
could be critical in the design of more efficient future regulation
programs.

Finally, we point out some limitations of our study and dis-
cuss directions for future research. First, our findings cannot
fully address the broader question of whether China’s current
environmental regulations are too aggressive or too lenient, as
we have little knowledge about Chinese people’s willingness to
pay for cleaner surface water.31 Second, our sample covers a rela-
tively short period of time, whereas firms might be able to better
adjust investment and production in the longer run. With the
growing availability of firm-level longitudinal data, investigating
how firms respond to regulation over long periods of time will be an
important area for future research. Third, given that the current

31. Some studies investigate the health consequences of water pollution
in China (e.g., Ebenstein 2012; He and Perloff 2016). An omnibus measure of
the benefits from improved water quality is still needed, because pollution also
decreases recreation, amenity, and many other types of values that people derive
from visiting surface waters.
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target-based regulation scheme is susceptible to distortions under
decentralized enforcement, the feasibility and cost-effectiveness of
alternative market-based policy instruments (e.g., cap-and-trade
markets) are of obvious importance for policy making.
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SUPPLEMENTARY MATERIAL

An Online Appendix for this article is available at The Quar-
terly Journal of Economics online.

DATA AVAILABILITY

Data and code replicating tables and figures in this article
can be found in He, Wang, and Zhang (2020), in the Harvard
Dataverse, doi: 10.7910/DVN/LVS8VX.
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