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Human genome

>

>

DNA is a double-stranded molecule with each
strand being a linear sequence of nucleotides
A nucleotide consists of a phosphate group,
sugar, and nucleoside
A nucleoside is a nitrogenous base connected
to a deoxyribose sugar
There are four different nucleotides
(depending on the nucleoside): adenine (A),
cytosine (C), guanine (G), thymine (T)
The nucleotides have a specific base pairing in
double-stranded DNA:

> Adenine pairs w/ thymine

> Cytosine pairs w/ guanine

Total length: about 3 billion nucleotides

sugar-phosphate
backbone

(® phosphate P> ) nitrogen-
containing
() sugar EZ =JlE bases

® 2007 Encyclopadia Britannica, Inc.

Figure from Wikipedia



Types of human genome variation
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Figure from https://web.stanford.edu/class/cs262/presentations/lecture4.pdf
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nucleotide polymorphism

Consider a specific nucleotide (chromosome and genomic coordinate) in human genome
Most individuals have the same nucleotide at that position

However, some individuals can have a different nucleotide at that position

This nucleotide difference is called a genetic variant

Different nucleotides at that variant position are called alleles

There exist biallelic and multiallelic variants

> Biallelic: a position in a genome can contain two different nucleotides
» Multiallelic: a position in a genome can contain more than two different nucleotides
» Much of the literature/published GWAS results focus on biallelic variants



Single-
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nucleotide polymorphism

Consider a specific nucleotide (chromosome and genomic coordinate) in human genome
Most individuals have the same nucleotide at that position
However, some individuals can have a different nucleotide at that position
This nucleotide difference is called a genetic variant
Different nucleotides at that variant position are called alleles
There exist biallelic and multiallelic variants
> Biallelic: a position in a genome can contain two different nucleotides
» Multiallelic: a position in a genome can contain more than two different nucleotides
» Much of the literature/published GWAS results focus on biallelic variants
Minor allele is defined to be the allele that occurs with a lower frequency
Variants with a minor allele frequency (MAF) of at least 5% are typically called common
single-nucleotide polymorphisms (SNPs)
Variants with MAF between 0.5% and 5% are called as low-frequency variants



Single-nucleotide polymorphism

» An illustration of a SNP
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Figures from https://en.wikipedia.org/wiki/Single-nucleotide_polymorphism
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Types of single-nucleotide polymorphism

» Non-coding SNP is located in a region of a genome that does not code for a protein
Coding SNP is located in a region of a genome that codes for a protein
Synonymous SNP does not change the amino acid sequence that is produced
Nonsynonymous SNP changes the amino acid sequence that is produced

Missense SNP causes a substitution of a different amino acid in the final amino acid
sequence

Nonsense SNP causes a premature stop codon / truncated protein amino acid sequence /
non-functional protein
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TYPES OF SNPs

Non-coding region

Coding region

‘ Synonymous

‘ Non-Synonymous ‘

VAN

‘ Missense ‘ ‘ Nonsense ‘

Figures from https://en.wikipedia.org/wiki/Single-nucleotide_polymorphism
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Genotype

» The genotype of a diploid individual at a single genomic variant position is the
combination of the two alleles in the two chromosome copies

» Denote the two alleles of a biallelic variant by A and B

» Note that both A and B can take values in {A,C,G, T}
» The possible genotypes for the variant are then A/A, A/B and B/B
»> A/A: no mutation
> A/B: heterozygous mutation
> B/B: homozygous mutation
» For example: if the possible alleles of a biallelic SNP are A = C and B = T, then the
possible genotypes are
> A/A: C/C
> A/B: C/T
> B/B: T/T

» SNPs are the primary source of genetic differences between individuals



Genotype calling

» Assume we have measured short DNA sequencing reads from a large number of cells for
several individuals
» Having aligned the short sequencing reads of all individuals to a reference genome

» SNP calling identifies variable sites (using sequencing reads from all individuals)

> Genotype calling determines the genotype for each individual separately at each site (using
sequencing reads from a single individual separately)

» Genotype calling is typically only done for positions in which a SNP variant has already been
called

Reference | AGTTTGACTCCAAACTGTAACGTAAGCTTAGCTACTACT
TGACTCCAAACTGTAATGTA
ACTCCAAACTCTAATGTAAG
ACTCCAAACTGTAAGGTAAG
CCAATCTCTAATGTAAGCTT
CCAAACTGTAATGTAAGCTT
Aligned reads AACTCTAATGTGAGCTTAGC
ACTGTAATGTAAGCGTAGCT
CTCTAATGTAAGCATAGCTA
CTCTAATGTAAGCTTAGCTA
GTAATGTGAGCTTAGCTACT

Genotype



Genotype calling

Challenges in SNP and genotype calling

» A mismatch in an aligned read can be due to
> A true SNP
> An error while generating the sequencing library
> Base calling error
> Misalignment
» Mistakes done earlier while building the reference sequence

» Many NGS studies rely on low-coverage sequencing (e.g. <5x), i.e., on average <5

sequencing reads per site (nucleotide position) per individual
> A high probability that only one of the two chromosomes of a diploid individual has been
sampled / sequenced at a specified site

A probabilistic framework: so-called “genotype likelihoods” which incorporate errors that may
have been introduced in base calling, alignment and assembly are coupled with prior
information, such as allele frequencies and patterns of linkage disequilibrium (LD)



GATK: a simple Bayesian genotyper

» Genotyping with GATK tool (McKenna et al, 2010)
> GATK computes the posterior probability of each genotype, given

» the pileup of aligned reads that cover a given locus (i.e., a nucletotide location)
> expected heterozygosity of the sample

» Define:
> G is the genotype
» D represents the data (pileup of the aligned reads at a given position)
> P(G) is a prior probability of seeing this genotype (in a given population)



GATK: a simple Bayesian genotyper

» Genotyping with GATK tool (McKenna et al, 2010)
> GATK computes the posterior probability of each genotype, given

» the pileup of aligned reads that cover a given locus (i.e., a nucletotide location)
> expected heterozygosity of the sample

» Define:
> G is the genotype
» D represents the data (pileup of the aligned reads at a given position)
> P(G) is a prior probability of seeing this genotype (in a given population)

» The basic model is then (recall the Bayes' theorem)

D|G)P(6)

(1D = “2LIE) o p(DI6) ().



GATK: likelihood model

Reference | AGTTTGACTCCAAACTGTAACGTAAGCTTAGCTACTACT
TGACTCCAAACTGTAATGTA
ACTCCAAACTCTAATGTAAG
ACTCCAAACTGTAAGGTAAG
CCAATCTCTAATGTAAGCTT
CCAAACTGTAATGTAAGCTT
Aligned reads AACTCTAATGTGAGCTTAGC
ACTGTAATGTAAGCGTAGCT
CTCTAATGTAAGCATAGCTA
CTCTAATGTAAGCTTAGCTA
GTAATGTGAGCTTAGCTACT
e e O
| ———————————————— G-=-T--A-——————————————

Genotype

» The likelihood can be written as a product over the independent aligned reads

P(DIG)= [ P(bilG),

b; Epileup

where b; (i =1,...,d) represents the nucleotide base in the ith read covering the locus



GATK: likelihood model

Reference | AGTTTGACTCCAAACTGTAACGTAAGCTTAGCTACTACT
TGACTCCAAACTGTAATGTA
ACTCCAAACTCTAATGTAAG
ACTCCAAACTGTAAGGTAAG
CCAATCTCTAATGTAAGCTT
CCAAACTGTAATGTAAGCTT
Aligned reads AACTCTAATGTGAGCTTAGC
ACTGTAATGTAAGCGTAGCT
CTCTAATGTAAGCATAGCTA
CTCTAATGTAAGCTTAGCTA
GTAATGTGAGCTTAGCTACT

Genotype

» For each position, decompose the genotype into its two alleles as G = (A1, A2)

» The probability of a base given the genotype is defined as
1 1
P(bilG) = P(bil(Av, A2)) = 5 P(bil A1) + 5 P(bilAz),

because b; can come from either of the chromosome copies with equal probability



GATK: likelihood model

Reference | AGTTTGACTCCAAACTGTAACGTAAGCTTAGCTACTACT
TGACTCCAAACTGTAATGTA
ACTCCAAACTCTAATGTAAG
ACTCCAAACTGTAAGGTAAG
CCAATCTCTAATGTAAGCTT
CCAAACTGTAATGTAAGCTT
Aligned reads AACTCTAATGTGAGCTTAGC
ACTGTAATGTAAGCGTAGCT
CTCTAATGTAAGCATAGCTA
CTCTAATGTAAGCTTAGCTA
GTAATGTGAGCTTAGCTACT

P S N
Genotype | ________________ e P

» Finally, the probability of seeing a base given an allele is

= if bj # A
P(biA) _{ 13— e, else 7

where ¢ = 10~ is the reversed phred scaled quality score at the base in the ith read



GATK: genotype selection

Reference | AGTTTGACTCCAAACTGTAACGTAAGCTTAGCTACTACT

TGACTCCAAACTGTAATGTA
ACTCCAAACTCTAATGTAAG
ACTCCAAACTGTAAGGTAAG

CCAATCTCTAATGTAAGCTT
CCAAACTGTAATGTAAGCTT
AACTCTAATGTGAGCTTAGC
ACTGTAATGTAAGCGTAGCT
CTCTAATGTAAGCATAGCTA
CTCTAATGTAAGCTTAGCTA
GTAATGTGAGCTTAGCTACT

Genotype | TG Am e

Aligned reads

» The maximum a posteriori (MAP) estimate of the genotype is then
G =arg max P(G|D)
» In other words, we choose G that gives the highest probability

P(G=(AA)|D) or P(G=(AB)|D) or P(G=(B,B)|D)
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Germline and somatic mutations

> Genetic variation represented by SNPs is inherited from parents and transmitted to
offspring
» SNPs are germline mutations
» In addition to SNPs, each individual will accumulate additional mutations during life time
» These gained mutations are called somatic mutations (or gained mutations)
» These mutations are generally not passed on to offspring through the germline

» Somatic mutations are involved in e.g. the development of many cancers



Germline and somatic mutations

» Germline mutations that we have considered previously can be heterozygous or
homozygous, i.e., appear with a frequency of 0%, 50% or 100%

» Somatic mutations can be present with any frequency (across a population of cells)

Reference | AGTTTGACTCCAAACTGTAACGTAAGCTTAGCTACTACT
TGACTCCAAACTGTAATGTA
ACTCCAAACTCTAATGTAAG
ACTCCAAACTGTAAGGTAAG
CCAATCTCTAATGTAAGCTT
CCAAACTGTAATGTAAGCTT
Aligned reads AACTCTAATGTGAGCTTAGC
ACTGTAATGTAAGCGTAGCT
CTCTAATGTAAGCATAGCTA

CTCTAATGTAAGCTTAGCTA
GTAATGTGAGCTTAGCTACT
———————————————— o
Genotype | ________________ Tt
Somatic mut. | - ?—71 ————— L

Likely germline  Likely somatic
variants mutations



Somatic mutation detection with Mutect

» Somatic mutation detection with Mutect (Cibulskis et al, 2013)
» Consider detecting a somatic mutation at a given position (chromosome and coordinate)
» Denote the reference allele as r € {A,C,G, T}

» Assume d aligned sequence reads overlap the position and denote

» bj is the nucleobase called in the ith read (i € {1,...,d})
> ¢ is the probability of error of the base called in the ith read

_ 9
e =101

where g; is the associated Phred quality score



Mutect: two alternative models / hypotheses

» To detect a somatic mutation, try to explain the data at a specific position using two
models:
1. Model Mpy: there is no somatic mutation at the given position and all non-reference

nucleobases are explained by sequencing noise
2. Model M{": a variant allele m # r truly exists at the given position with an allele frequency f

and reads are also subject to sequencing noise

> Note that My is equivalent to M{" with f =0 and m=r

Reference | AGTTTGACTCCAAACTGTAACGTAAGCTTAGCTACTACT

TGACTCCAAACTGTAATGTA
ACTCCAAACTCTAATGTAAG
ACTCCAAACTGTAAGGTAAG

CCAATCTCTAATGTAAGCTT
CCAAACTGTAATGTAAGCTT
Aligned reads AACTCTAATGTGAGCTTAGC
ACTGTAATGTAAGCGTAGCT
CTCTAATGTAAGCATAGCTA
CTCTAATGTAAGCTTAGCTA
GTAATGTGAGCTTAGCTACT

.
Genotype [ Gmm e Tm e Ammm e




Mutect: likelihood model

» The likelihood (or probability) for the model M{" is given by

d
P(D | M)y = P({bi}|{ei},r,m,f) = H P(bilei, rym,f)

assuming the sequencing errors are independent across reads



Mutect: likelihood model

» If all substitution errors are equally likely and occur with probability e;/3, then the

likelihood is
f-e/3+(1—Ff)(1—¢) ifb=r
P(bilei,r,m,f) =% f-(1—&)+(1—f)e/3 if bj=m
ei/3 otherwise

» Recall the bulk sequencing experiment: a sequencing read b; is measured from a DNA
fragment that originates from a randomly selected cell in the biological input sample
> Probability that b; is from a cell that does not have the somatic mutation is 1 — f
> Probability that b; is from a cell that has the somatic mutation is f
» Probability that the nucleobase is measured correctly is 1 — ¢;
> Probability that b; that is neither the reference nor the mutation (must be a sequencing
error) is f - €/3+(1—f)-e/3=¢ei/3



Mutect: likelihood model

» The likelihood for the model My, P(D | Mp), can be computed similarly but by setting
f =0 and m = r, where the likelihoods for the nucleobases are

l1—¢ ifbj=m=r
P(bi|6‘i,m =rf= 0) - { e,~/3 otherwise

Reference AGTTTGACTCCAAACTGTAACGTAAGCTTAGCTACTACT
TGACTCCAAACTGTAATGTA
ACTCCAAACTCTAATGTAAG
ACTCCAAACTGTAAGGTAAG
CCAATCTCTAATGTAAGCTT
CCAAACTGTAATGTAAGCTT
Aligned reads AACTCTAATGTGAGCTTAGC
ACTGTAATGTAAGCGTAGCT
CTCTAATGTAAGCATAGCTA
CTCTAATGTAAGCTTAGCTA
GTAATGTGAGCTTAGCTACT

Genotype e



Mutect: likelihood ratio

» Similarly as in genotyping, we can apply the Bayes rule to compute the probability of the
models (or hypotheses)
P(Mf" | D) o P(D | M{")P(m,f)
P(My| D) o P(D|My)P(m=r,f=0)

where P(m, f) is a prior, i.e., the expected probability of a mutated nucleotide m and its
frequency f for a given cancer type, and P(m=r,f =0)=1— P(m,f > 0)



Mutect: likelihood ratio

» Similarly as in genotyping, we can apply the Bayes rule to compute the probability of the
models (or hypotheses)

P(M{"[ D) o< P(D | M{")P(m,f)

)

P(My| D) o P(D|My)P(m=r,f=0)

where P(m, f) is a prior, i.e., the expected probability of a mutated nucleotide m and its
frequency f for a given cancer type, and P(m=r,f =0)=1— P(m,f > 0)

» Somatic mutation detection is performed by computing the likelihood ratio of the two
models (or hypotheses), My and M["

P(Mf"| D) P(D | Mf")P(m, f)

LOD7(m, f) = logyo P(My | D) o810 P(D | Mo)(1 — P(m, f))




Mutect: likelihood ratio

» The key quantity P(M[" | D) involves two unknowns:
» Mutated nucleotide m # r
> Variant frequency f
» The unknown frequency f and mutated nucleotide m can be estimated using the
maximum likelihood method to obtain fyy. and AL

fuL, L = arg max P(M¢" | D)
,m

or set to plug-in estimates: e.g. m is chosen to be the most frequent non-reference allele

and
the number of m reads

? p—
the total number of reads



Mutect: likelihood ratio

» Somatic mutation is called if the above LOD score exceeds a certain significance level

» Note that the above LOD score corresponds to a likelihood ratio statistic



Mutect: filtering false positives

The detected somatic mutations should be further filtered to avoid likely false positives

» Check that the detected variant is not a heterozygous germline SNP, i.e., test

P(Mo | D)P(m, f)
(Mg | D)P(“germline”)’

LODy = logso

where frequency has been set to f = 0.5 and terms have been reverted to avoid false
positives



Mutect: filtering false positives

> Filter other technical artifacts not accounted by the model
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Figure from (Cibulskis et al, 2013)
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Mutect: performance

Sensitivity and specificity of detecting true

somatic mutations depends on e.g. b 1.0+
» Sequencing depth, i.e., the number of 08
reads overlapping a genomic position '
(on average) Z 06
. 3
» Variant frequency & 04
» Abundance of sequencing errors os
> etc.
o-
T T T T T T 1
0 10 20 30 40 50 60
Tumor sample sequencing depth
— Calculation (Q35) —f=04
O MuTect STD (virtual tumors) —f=0.2
® MuTect HC (virtual tumors) —f=0.1
<& MuTect HC (downsampling) f=0.05

4 MuTect HC + PON (downsampling)

Figure from (Cibulskis et al, 2013)



Types of human genome variation

SNP TGCTGAGA Novel Sequence TGCTCGGAGA
TGCCGAGA q TGC - - - GAGA

Inversion —_—e———> Mobile Element or —_——
—m—pe— Pseudogene Insertion =" —

Translocation PR Tandem Duplication —S— 35— 5~
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Microdeletion TGCCGAGA Transpositon S5 5 S5
, — — Novel Sequence
Large Deletion —S__ 5§ at Breakpoint —>——T6—>

Figure from https://web.stanford.edu/class/cs262/presentations/lecture4.pdf
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De novo genome assembly

» This section follows (Chaisson, et al, 2015)

» De novo: no reference genome available
» The goal of de novo genome assembly is to determine the sequence of a genome using
only randomly sampled sequence fragments
> Sequence fragments are typically less than one-millionth the size of a mammalian genome



De novo genome assembly

» This section follows (Chaisson, et al, 2015)
» De novo: no reference genome available

» The goal of de novo genome assembly is to determine the sequence of a genome using
only randomly sampled sequence fragments
> Sequence fragments are typically less than one-millionth the size of a mammalian genome
» Most current approaches involve some aspect of a whole-genome shotgun sequencing and
assembly (WGSA) strategy
» Random fragments from a genome are sequenced and computationally stitched together to
generate sequence contigs and scaffolds
» Under ideal conditions (i.e., uniformly high sequence coverage across the whole genome
and a genome devoid of repetitive sequences), an assembly may be determined with the
simple approach of merging reads with maximal overlap



De novo genome assembly

» In practice such an approach does not work because:
> Sequence coverage is almost never uniform
» Genome contains repetitive sequences of varying length, and
» Genome contains varying copy numbers (duplications)



Types of genome assembly gaps
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Figure from (Chaisson, et al, 2015)
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Early de novo assembly methods

» The most-widely used mammalian genomes, human and mouse, were not assembled using
WGSA
» Instead, human and mouse assemblies are relatively unique among mammalian genomes in
that they were assembled almost entirely using clone-by-clone-based sequencing
» Each genome/chromosome was divided into roughly 200-kb-long overlapping fragments that
were cloned into bacterial artificial chromosomes (BACs) and individually assembled
» These longer 200kb fragments were then connected



Early de novo assembly methods

» The most-widely used mammalian genomes, human and mouse, were not assembled using
WGSA
» Instead, human and mouse assemblies are relatively unique among mammalian genomes in
that they were assembled almost entirely using clone-by-clone-based sequencing
» Each genome/chromosome was divided into roughly 200-kb-long overlapping fragments that
were cloned into bacterial artificial chromosomes (BACs) and individually assembled
» These longer 200kb fragments were then connected

» When the result of a de novo assembly is a sequence per chromosome without gaps and
with 99.99% base-pair accuracy, the assembly is considered complete; otherwise, it is
considered a draft.

» Even a recent build of the human genome (GRCh38) contains gaps



State-of-the-art assembly strategies

» Since 2013, de novo assembly of mammalian genomes has shifted from purely WGSA data
to assembly with longer sequence reads generated either synthetically or by single-molecule
sequencing (SMS) (e.g. PacBio, Nanopore)

» The main algorithmic approaches to de novo assembly are

» Overlap-layout-consensus (OLC)

» de Bruijn
» (The string graph)



Overlap-layout-consensus (OLC)

» Contigs: Continuous (or ‘contiguous') sequences produced in a de novo assembly, free of
any gaps
» Basic steps of OLC algorithms:

» Overlaps between all read pairs are first detected
> Contigs are formed by iteratively merging overlapping reads until a read heuristically
determined to be at the boundary of a repeat is reached



Overlap-layout-consensus (OLC)
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Figure from (Chaisson, et al, 2015)

» Some repeats can be resolved

» Imprecise read overlaps are allowed to account for sequencing errors



de Bruin algorithms

» Basic steps of de Bruin algorithms:

> Start by replacing each read with the set of all-overlapping sequences of a shorter, fixed
length (k typically between 31 and 200)

» Contigs are formed by merging k-mers appearing adjacently in reads stopping at k-mers
from repeat boundaries

» Requires highly accurate reads

» Initially discards some of the ability for reads to resolve repeats longer than k bases



de Bruin algorithms

b de Bruijn
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Figure from (Chaisson, et al, 2015)
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Genome annotation de novo

» Full genome assembly methods can be developed further
» Things to do next:
> Gene finding:

> Ab initio prediction methods: based on statistical signals within the DNA

» E.g.: hidden Markov model-based prediction of genes: Genscan, Augustus, HMMgene
> Align known genes of model species against the new genome
> If RNA-seq available from the same species, align RNA-seq data to the newly discovered
genome

> Gene annotation:

» Function of the genes that can be aligned to new genome give some hint about the newly
sequenced organism
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