Problem 8.1: Robust LP with Polyhedral Uncertainty

Consider the following *robust* linear optimization problem with *polyhedral uncertainty*:

$$\min_{x} c^{\top} x \tag{1}$$

subject to:
$$\max_{a_i \in \mathcal{P}_i} a_i^\top x \le b_i, \quad i = 1, \dots, m$$
 (2)

with decision variables $x \in \mathbb{R}^n$ and polyhedral sets

$$\mathcal{P}_i = \{a_i : C_i a_i \le d_i\}, \text{ for all } i = 1, \dots, m.$$

The problem data are $c \in \mathbb{R}^n$, $C_i \in \mathbb{R}^{m_i \times n}$, $a_i \in \mathbb{R}^n$, $d_i \in \mathbb{R}^{m_i}$, and $b \in \mathbb{R}^m$. We assume that the polyhedral sets \mathcal{P}_i are nonempty for all $i = 1, \ldots, m$. Notice that the problem (1) - (2) is an example of a bilevel optimization problem that we studied in Exercise 7.

Show that the problem (1) - (2) is equivalent to the following linear optimization problem:

$$\min_{x,y} c^{\top} x \tag{3}$$

subject to:
$$d_i^{\top} u_i \leq b_i, \ i = 1, \dots, m$$
 (4)

$$C_i^\top u_i = x, \ i = 1, \dots, m \tag{5}$$

$$u_i \ge 0, \ i = 1, \dots, m \tag{6}$$

with variables $x \in \mathbb{R}^n$ and $u_i \in \mathbb{R}^{m_i}$ for all $i = 1, \ldots, m$.

Hint: Replace the inner optimization problems in the constraints (2):

$$\max_{a_i \in \mathcal{P}_i} a_i^\top x, \ i = 1, \dots, m \tag{7}$$

by writing their Lagrangian dual problems with dual variables u_i for all $i = 1, \ldots, m$.

Problem 8.2: Lagrangian of a Quadratic Optimization Problem

Consider the following quadratic optimization problem with inequality constraints:

$$\min_{x} \frac{1}{2}x^{\top}Hx + d^{\top}x \tag{8}$$

subject to:
$$Ax < b$$
 (9)

with decision variables $x \in \mathbb{R}^n$. The problem data are $d \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $H \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix. The objective function

$$f(x) = \frac{1}{2}x^{\top}Hx + d^{\top}x$$

is thus a strictly convex function (why?). Write the Lagrangian dual problem of (8) - (9) and derive its dual explicitly.

Problem 8.3: Duality in Linear Optimization

Consider the following linear optimization problem:

$$\min_{x} c^{\top} x \tag{10}$$

subject to:
$$Ax = b$$
 (11)

$$x \ge 0 \tag{12}$$

with decision variables $x \in \mathbb{R}^n$. The problem data are $c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$. We will call (10) - (12) the *primal* problem.

- (a) Derive the dual problem of the primal (10) (12) by using Lagrangian duality.
- (b) Show that the dual of the dual problem derived in part (a) is equivalent to the primal problem (10) (12). *Hint:* Use Lagrangian duality.
- (c) Show that weak duality holds between the primal (10) (12) and its dual problem.