MS-E2122 - Nonlinear optimization Exercise sheet 8
Oliveira, Dias, Terho Thursday 02.11.2023

Problem 8.1: Robust LP with Polyhedral Uncertainty

Consider the following robust linear optimization problem with polyhedral uncertainty:

min. ¢' (1)
x
subject to: max. a, x <b;, i=1,...,m (2)
a; €P;

with decision variables x € R" and polyhedral sets
Pi={a;: Cia; < d;}, foralli=1,...,m.

The problem data are ¢ € R™, C; € R™*" aq; € R",d; € R™, and b € R"™. We assume that
the polyhedral sets P; are nonempty for all i = 1,...,m. Notice that the problem (1) — (2) is an
example of a bilevel optimization problem that we studied in Exercise 7.

Show that the problem (1) — (2) is equivalent to the following linear optimization problem:

min. ¢' x (3)
subject to: d] u; < b;, i=1,...,m (4)
Clui=x,i=1,....m (5)
u; >0,i=1,...,m (6)
with variables x € R™ and u; € R™ foralli =1,...,m.

Hint: Replace the inner optimization problems in the constraints (2):

max, ajz, i=1,...,m (7)
by writing their Lagrangian dual problems with dual variables u; for all i =1,... ,m.

Solution.

We can express the problem (1) — (2) as
min. ¢z (8)

subject to: g;(z) <b;, i=1,...,m, (9)

where g;(x) is the optimal value of the linear optimization problem

gi(z) = max. a x (10)
subject to: Cia; < d;, (11)

for all i = 1,...,m. The Lagrangian dual function of (10) — (11) is
O(u;) = max. {a] x +u} (di — Cia;)} (12)
and the corresponding Lagrangian dual problem is
min. 0(u;) (13)
subject té: u; > 0. (14)
We can write the problem (13) — (14) as
min. {mgx. {z"a; + u; (di — Csa;)}}

subject to: u; > 0,
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which can be rewritten as

min. {max. {z"a; +u; di —u; Cia;}}
a;

g

subject to: u; > 0
or

min. {d; u; + {max. (7 —uf Cai}} (15)

Uj

subject to: u; > 0. (16)

Now, since the values of a; are not restricted, the value of the inner maximization problem in (15)
becomes oo unless 27 — u] C; = 0 or C; u; = x. Thus, we can write (15) — (16) as the following
linear optimization problem

min. d] u; (17)
subject to: C; u; = (18)

which is the dual of (10) — (11). As strong duality holds between linear optimization problems,
the optimal value of (17) — (19) is equal to g;(z) in (10) — (11). Therefore, we have g;(z) < b;
in (9) if and only if there exists a u; with

7

foralli=1,...,m. Now, replacing g;(z) in (8) — (9) with the constraints (20) for alli =1,...,m,
we finally get

min. ¢' x
x,u
subject to: d;-rui <b,i=1,....m
Ci—rui:x, i=1,....m
u; >0, 1=1,...,m.

Problem 8.2: Lagrangian of a Quadratic Optimization Problem

Consider the following quadratic optimization problem with inequality constraints:
1
min. §zTH:c+de (21)
x
subject to: Ax <b (22)

with decision variables € R™. The problem data are d € R™", A € R™*"™ b€ R™, and H € R"*"
is a symmetric positive definite matrix. The objective function

1
flx) = §$THI +d'z

is thus a strictly convex function (why?). Write the Lagrangian dual problem of of (21) — (22) and
derive its dual explicitly.

Solution

The objective function is strictly convex since its Hessian V2f(x) = H > 0 for all # € R", which
is a necessary and sufficient condition for strict convexity. The Lagrangian dual function of (21) —
(22) can be written as

1
6(u) = min. {QxTHx +d'x+u' (Azx — b)}

x
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and the corresponding Lagrangian dual problem becomes
max. {6(u):u >0}

or
1

max. {uTb + min. {QITHI +d"z+ uTACIJ}} (23)

subject to: u >0 (24)

Let us define 1
g(x) = ixTHa: +d'z+u Az

which allows us to write the inner minimization problem of (23) as

min. g(z) (25)

x

We can solve the inner minimization problem (25) by taking the gradient of g(x) and setting it to
Z€r0:

Vy(z) = V(%xTHx +d"x+u' Az)
=Hz+d+ATu=0. (26)
Since H > 0 is invertible, we get the unique optimal primal solution from (26):
x=—HYd+ A" u) (27)
Moreover, by multiplying (26) with 27 we get
' Hr+x'd+2"ATu=0

which can be written as

' Hr+d z+u" Az =0 (28)
Now, by first substituting (28) to the Lagrangian dual problem (23) — (24), we get
1
max. {—uTb + min. {—2xTHx}} (29)
subject to: u >0 (30)

and by further substituting (27) to (29) — (30), the Lagrangian dual becomes

u 2
subject to: u >0 (32)

max. {—uTb — 1(—H_l(d +ATw)TH(-H")(d + ATU)} (31)

Let us define the function inside (31) as

1

h(u) = —u'b— 5(—H—l(d + ATu)TH(—H ) (d+ AT )
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Noticing that (H~1)T = H~! since H is symmetric, we can further simplify h(u) as:
h(u) = —u'b— %(d +ATu)TH Y (d+ ATw)
N %(dT v uTAH Y+ H A )
=—u'b-— %(dTH*d +d" H'ATu+u " AH 'd+u" AH AT w)
=—u'b-— %(dTH*d +u' AH 'd+u" AH 'd+u" AH AT w)
=—u'b-— %(dTH*Id +2u AH 'd+u" AH AT u)
=—u'b—u' AH 'd - %dTH*d — %UTAH*ATU
=—u'(b+AH'd) - %uTAH%ATu - %dTH*d (33)

Now, by defining
D=AH'A" and c=b+AH 'd
we can write (33) as

1 1
h(u) = —c'u— iuTDu - idTH_ld (34)

and substituting (34) back to the Lagrangian dual problem (31), it becomes

u

1 1
max. {—cTu - iuTDu - idTH_ld tu > 0} (35)
Now, we can further notice that (—1/2)d" H~1d is a constant, so it has no effect on the optimization

problem (35). We can thus finally write the dual (35) as

max. — cTu— 1uTDu
subject to: u >0
or, as a minimization problem:
R T
min. iu Du+c u

subject to: u >0

which is of similar form as the primal problem but simpler constraint structure.

Problem 8.3: Duality in Linear Optimization

Consider the following linear optimization problem:

min. ¢' x (36)

x
subject to: Ax =b (37)
x>0 (38)

with decision variables x € R™. The problem data are ¢ € R", A € R™*", and b € R™. We will
call (36) — (38) the primal problem.

(a) Derive the dual problem of the primal (36) — (38) by using Lagrangian duality.
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(b)  Show that the dual of the dual problem derived in part (a) is equivalent to the primal problem
(36) — (38). Hint: Use Lagrangian duality.

(¢) Show that weak duality holds between the primal (36) — (38) and its dual problem.
Solution.

(a) The Lagrangian dual function of (36) — (38) can be written as

O(v) = H;izno' {c"z —v"(Az —b)} (39)

and the corresponding Lagrangian dual problem becomes

max. f(v) = max. {va—i—H;iZnO. {(C—AT’U)TJ}}} (40)

v

In (40), the inner term must be non-negative: ¢ — ATv > 0, because otherwise the value of
the inner minimization problem becomes —oo. Thus, the dual of the LP problem (36) — (38)
becomes

max. v'b (41)

v

subject to: ATv < ¢ (42)

(b) The Lagrangian dual function of the dual (41) — (42) can be written as

f(x) = max. {va +z'(c—ATv)} (43)
and the corresponding dual problem becomes

H;izno' O(z) = n;izno. {cTac + max. {(- Al‘)TU}} (44)

Since the variable vector v is unrestricted, the inner maximization problem becomes co unless
b — Az = 0. Thus, the dual of the dual problem becomes

min. ¢’z
xT

subject to: Az =15
x>0

which is exactly the original primal problem.

(¢) For any pair of feasible primal and dual solutions  and v, respectively, we have
vb=v Az =2"TATv<z'c=c'x

which is exactly the definition of weak duality.



