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Problem 8.1: Robust LP with Polyhedral Uncertainty

Consider the following robust linear optimization problem with polyhedral uncertainty :

min.
x

c⊤x (1)

subject to: max.
ai∈Pi

a⊤i x ≤ bi, i = 1, . . . ,m (2)

with decision variables x ∈ Rn and polyhedral sets

Pi = {ai : Ciai ≤ di}, for all i = 1, . . . ,m.

The problem data are c ∈ Rn, Ci ∈ Rmi×n, ai ∈ Rn, di ∈ Rmi , and b ∈ Rm. We assume that
the polyhedral sets Pi are nonempty for all i = 1, . . . ,m. Notice that the problem (1) – (2) is an
example of a bilevel optimization problem that we studied in Exercise 7.

Show that the problem (1) – (2) is equivalent to the following linear optimization problem:

min.
x,u

c⊤x (3)

subject to: d⊤i ui ≤ bi, i = 1, . . . ,m (4)

C⊤
i ui = x, i = 1, . . . ,m (5)

ui ≥ 0, i = 1, . . . ,m (6)

with variables x ∈ Rn and ui ∈ Rmi for all i = 1, . . . ,m.

Hint: Replace the inner optimization problems in the constraints (2):

max.
ai∈Pi

a⊤i x, i = 1, . . . ,m (7)

by writing their Lagrangian dual problems with dual variables ui for all i = 1, . . . ,m.

Solution.

We can express the problem (1) – (2) as

min.
x

c⊤x (8)

subject to: gi(x) ≤ bi, i = 1, . . . ,m, (9)

where gi(x) is the optimal value of the linear optimization problem

gi(x) = max.
ai

a⊤i x (10)

subject to: Ciai ≤ di, (11)

for all i = 1, . . . ,m. The Lagrangian dual function of (10) – (11) is

θ(ui) = max.
ai

{a⊤i x+ u⊤
i (di − Ciai)} (12)

and the corresponding Lagrangian dual problem is

min.
ui

θ(ui) (13)

subject to: ui ≥ 0. (14)

We can write the problem (13) – (14) as

min.
ui

{max.
ai

{x⊤ai + u⊤
i (di − Ciai)}}

subject to: ui ≥ 0,
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which can be rewritten as

min.
ui

{max.
ai

{x⊤ai + u⊤
i di − u⊤

i Ciai}}

subject to: ui ≥ 0

or

min.
ui

{d⊤i ui + {max.
ai

(x⊤ − u⊤
i Ci)ai}} (15)

subject to: ui ≥ 0. (16)

Now, since the values of ai are not restricted, the value of the inner maximization problem in (15)
becomes ∞ unless x⊤ − u⊤

i Ci = 0 or C⊤
i ui = x. Thus, we can write (15) – (16) as the following

linear optimization problem

min.
ui

d⊤i ui (17)

subject to: C⊤
i ui = x (18)

ui ≥ 0, (19)

which is the dual of (10) – (11). As strong duality holds between linear optimization problems,
the optimal value of (17) – (19) is equal to gi(x) in (10) – (11). Therefore, we have gi(x) ≤ bi
in (9) if and only if there exists a ui with

d⊤i ui ≤ bi, C⊤
i ui = x, ui ≥ 0 (20)

for all i = 1, . . . ,m. Now, replacing gi(x) in (8) – (9) with the constraints (20) for all i = 1, . . . ,m,
we finally get

min.
x,u

c⊤x

subject to: d⊤i ui ≤ bi, i = 1, . . . ,m

C⊤
i ui = x, i = 1, . . . ,m

ui ≥ 0, i = 1, . . . ,m.

Problem 8.2: Lagrangian of a Quadratic Optimization Problem

Consider the following quadratic optimization problem with inequality constraints:

min.
x

1

2
x⊤Hx+ d⊤x (21)

subject to: Ax ≤ b (22)

with decision variables x ∈ Rn. The problem data are d ∈ Rn, A ∈ Rm×n, b ∈ Rm, and H ∈ Rn×n

is a symmetric positive definite matrix. The objective function

f(x) =
1

2
x⊤Hx+ d⊤x

is thus a strictly convex function (why?). Write the Lagrangian dual problem of of (21) – (22) and
derive its dual explicitly.

Solution

The objective function is strictly convex since its Hessian ∇2f(x) = H > 0 for all x ∈ Rn, which
is a necessary and sufficient condition for strict convexity. The Lagrangian dual function of (21) –
(22) can be written as

θ(u) = min.
x

{
1

2
x⊤Hx+ d⊤x+ u⊤(Ax− b)

}
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and the corresponding Lagrangian dual problem becomes

max.
u

{θ(u) : u ≥ 0}

or

max.
u

{
−u⊤b+min.

x

{
1

2
x⊤Hx+ d⊤x+ u⊤Ax

}}
(23)

subject to: u ≥ 0 (24)

Let us define

g(x) =
1

2
x⊤Hx+ d⊤x+ u⊤Ax

which allows us to write the inner minimization problem of (23) as

min.
x

g(x) (25)

We can solve the inner minimization problem (25) by taking the gradient of g(x) and setting it to
zero:

∇g(x) = ∇(
1

2
x⊤Hx+ d⊤x+ u⊤Ax)

= Hx+ d+A⊤u = 0. (26)

Since H > 0 is invertible, we get the unique optimal primal solution from (26):

x = −H−1(d+A⊤u) (27)

Moreover, by multiplying (26) with x⊤ we get

x⊤Hx+ x⊤d+ x⊤A⊤u = 0

which can be written as
x⊤Hx+ d⊤x+ u⊤Ax = 0 (28)

Now, by first substituting (28) to the Lagrangian dual problem (23) – (24), we get

max.
u

{
−u⊤b+min.

x

{
−1

2
x⊤Hx

}}
(29)

subject to: u ≥ 0 (30)

and by further substituting (27) to (29) – (30), the Lagrangian dual becomes

max.
u

{
−u⊤b− 1

2
(−H−1(d+A⊤u))⊤H(−H−1)(d+A⊤u)

}
(31)

subject to: u ≥ 0 (32)

Let us define the function inside (31) as

h(u) = −u⊤b− 1

2
(−H−1(d+A⊤u))⊤H(−H−1)(d+A⊤u)
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Noticing that (H−1)⊤ = H−1 since H is symmetric, we can further simplify h(u) as:

h(u) = −u⊤b− 1

2
(d+A⊤u)⊤H−1(d+A⊤u)

= −u⊤b− 1

2
(d⊤ + u⊤A)(H−1d+H−1A⊤u)

= −u⊤b− 1

2
(d⊤H−1d+ d⊤H−1A⊤u+ u⊤AH−1d+ u⊤AH−1A⊤u)

= −u⊤b− 1

2
(d⊤H−1d+ u⊤AH−1d+ u⊤AH−1d+ u⊤AH−1A⊤u)

= −u⊤b− 1

2
(d⊤H−1d+ 2u⊤AH−1d+ u⊤AH−1A⊤u)

= −u⊤b− u⊤AH−1d− 1

2
d⊤H−1d− 1

2
u⊤AH−1A⊤u

= −u⊤(b+AH−1d)− 1

2
u⊤AH−1A⊤u− 1

2
d⊤H−1d (33)

Now, by defining
D = AH−1A⊤ and c = b+AH−1d

we can write (33) as

h(u) = −c⊤u− 1

2
u⊤Du− 1

2
d⊤H−1d (34)

and substituting (34) back to the Lagrangian dual problem (31), it becomes

max.
u

{
−c⊤u− 1

2
u⊤Du− 1

2
d⊤H−1d : u ≥ 0

}
(35)

Now, we can further notice that (−1/2)d⊤H−1d is a constant, so it has no effect on the optimization
problem (35). We can thus finally write the dual (35) as

max.
u

− c⊤u− 1

2
u⊤Du

subject to: u ≥ 0

or, as a minimization problem:

min.
u

1

2
u⊤Du+ c⊤u

subject to: u ≥ 0

which is of similar form as the primal problem but simpler constraint structure.

Problem 8.3: Duality in Linear Optimization

Consider the following linear optimization problem:

min.
x

c⊤x (36)

subject to: Ax = b (37)

x ≥ 0 (38)

with decision variables x ∈ Rn. The problem data are c ∈ Rn, A ∈ Rm×n, and b ∈ Rm. We will
call (36) – (38) the primal problem.

(a) Derive the dual problem of the primal (36) – (38) by using Lagrangian duality.
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(b) Show that the dual of the dual problem derived in part (a) is equivalent to the primal problem
(36) – (38). Hint: Use Lagrangian duality.

(c) Show that weak duality holds between the primal (36) – (38) and its dual problem.

Solution.

(a) The Lagrangian dual function of (36) – (38) can be written as

θ(v) = min.
x≥0

{
c⊤x− v⊤(Ax− b)

}
(39)

and the corresponding Lagrangian dual problem becomes

max.
v

θ(v) = max.
v

{
v⊤b+min.

x≥0

{
(c−A⊤v)⊤x

}}
(40)

In (40), the inner term must be non-negative: c − A⊤v ≥ 0, because otherwise the value of
the inner minimization problem becomes −∞. Thus, the dual of the LP problem (36) – (38)
becomes

max.
v

v⊤b (41)

subject to: A⊤v ≤ c (42)

(b) The Lagrangian dual function of the dual (41) – (42) can be written as

θ(x) = max.
v

{
v⊤b+ x⊤(c−A⊤v)

}
(43)

and the corresponding dual problem becomes

min.
x≥0

θ(x) = min.
x≥0

{
c⊤x+max.

v

{
(b−Ax)⊤v

}}
(44)

Since the variable vector v is unrestricted, the inner maximization problem becomes ∞ unless
b−Ax = 0. Thus, the dual of the dual problem becomes

min.
x

c⊤x

subject to: Ax = b

x ≥ 0

which is exactly the original primal problem.

(c) For any pair of feasible primal and dual solutions x and v, respectively, we have

v⊤b = v⊤Ax = x⊤A⊤v ≤ x⊤c = c⊤x

which is exactly the definition of weak duality.
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