Problem 8.1: Robust LP with Polyhedral Uncertainty

Consider the following *robust* linear optimization problem with *polyhedral uncertainty*:

$$
\min_{x} \ c^{\top} x \tag{1}
$$

subject to:
$$
\max_{a_i \in \mathcal{P}_i} a_i^\top x \le b_i, \quad i = 1, \dots, m
$$
 (2)

with decision variables $x \in \mathbb{R}^n$ and polyhedral sets

$$
\mathcal{P}_i = \{a_i : C_i a_i \leq d_i\}, \text{ for all } i = 1, \dots, m.
$$

The problem data are $c \in \mathbb{R}^n$, $C_i \in \mathbb{R}^{m_i \times n}$, $a_i \in \mathbb{R}^n$, $d_i \in \mathbb{R}^{m_i}$, and $b \in \mathbb{R}^m$. We assume that the polyhedral sets P_i are nonempty for all $i = 1, \ldots, m$. Notice that the problem $(1) - (2)$ $(1) - (2)$ $(1) - (2)$ is an example of a bilevel optimization problem that we studied in Exercise 7.

Show that the problem $(1) - (2)$ $(1) - (2)$ $(1) - (2)$ is equivalent to the following linear optimization problem:

$$
\min_{x,u} c^\top x \tag{3}
$$

$$
subject to: d_i^{\top} u_i \le b_i, \ i = 1, \dots, m
$$
\n⁽⁴⁾

$$
C_i^{\top} u_i = x, \ i = 1, \dots, m \tag{5}
$$

$$
u_i \ge 0, \ i = 1, \dots, m \tag{6}
$$

with variables $x \in \mathbb{R}^n$ and $u_i \in \mathbb{R}^{m_i}$ for all $i = 1, ..., m$.

Hint: Replace the inner optimization problems in the constraints (2) :

$$
\max_{a_i \in \mathcal{P}_i} a_i^\top x, \ i = 1, \dots, m \tag{7}
$$

by writing their Lagrangian dual problems with dual variables u_i for all $i = 1, \ldots, m$.

Solution.

We can express the problem $(1) - (2)$ $(1) - (2)$ $(1) - (2)$ as

$$
\min_{x} \ c^{\top} x \tag{8}
$$

$$
subject to: g_i(x) \le b_i, \quad i = 1, \dots, m,
$$
\n⁽⁹⁾

where $g_i(x)$ is the optimal value of the linear optimization problem

$$
g_i(x) = \max_{a_i} a_i^{\top} x \tag{10}
$$

$$
subject to: C_i a_i \le d_i,
$$
\n
$$
(11)
$$

for all $i = 1, \ldots, m$. The Lagrangian dual function of $(10) - (11)$ $(10) - (11)$ $(10) - (11)$ is

$$
\theta(u_i) = \max_{a_i} \{ a_i^\top x + u_i^\top (d_i - C_i a_i) \}
$$
\n(12)

and the corresponding Lagrangian dual problem is

$$
\min_{u_i} \theta(u_i) \tag{13}
$$

$$
subject to: u_i \ge 0. \tag{14}
$$

We can write the problem $(13) - (14)$ $(13) - (14)$ $(13) - (14)$ as

$$
\min_{u_i} \{ \max_{a_i} \{ x^\top a_i + u_i^\top (d_i - C_i a_i) \} \}
$$
subject to: $u_i \geq 0$,

which can be rewritten as

$$
\min_{u_i} \{ \max_{a_i} \{ x^\top a_i + u_i^\top d_i - u_i^\top C_i a_i \} \}
$$
\nsubject to: $u_i \geq 0$

or

$$
\min_{u_i} \{ d_i^\top u_i + \{ \max_{a_i} \left(x^\top - u_i^\top C_i \right) a_i \} \} \tag{15}
$$

$$
subject to: u_i \ge 0. \tag{16}
$$

Now, since the values of a_i are not restricted, the value of the inner maximization problem in [\(15\)](#page-1-0) becomes ∞ unless $x^{\top} - u_i^{\top} C_i = 0$ or $C_i^{\top} u_i = x$. Thus, we can write $(15) - (16)$ $(15) - (16)$ $(15) - (16)$ as the following linear optimization problem

$$
\min_{u_i} d_i^{\top} u_i \tag{17}
$$

$$
subject to: C_i^{\top} u_i = x \tag{18}
$$

$$
u_i \ge 0,\tag{19}
$$

which is the dual of $(10) - (11)$ $(10) - (11)$ $(10) - (11)$. As strong duality holds between linear optimization problems, the optimal value of $(17) - (19)$ $(17) - (19)$ $(17) - (19)$ is equal to $g_i(x)$ in $(10) - (11)$ $(10) - (11)$ $(10) - (11)$. Therefore, we have $g_i(x) \leq b_i$ in [\(9\)](#page-0-6) if and only if there exists a u_i with

$$
d_i^\top u_i \le b_i, \qquad C_i^\top u_i = x, \qquad u_i \ge 0 \tag{20}
$$

for all $i = 1, \ldots, m$. Now, replacing $g_i(x)$ in $(8) - (9)$ $(8) - (9)$ $(8) - (9)$ with the constraints [\(20\)](#page-1-4) for all $i = 1, \ldots, m$, we finally get

> $\min_{x,u} c^{\top}x$ subject to: $d_i^{\top} u_i \leq b_i, i = 1, \ldots, m$ $C_i^{\top} u_i = x, \ i = 1, \dots, m$ $u_i > 0, i = 1, \ldots, m.$

Problem 8.2: Lagrangian of a Quadratic Optimization Problem

Consider the following quadratic optimization problem with inequality constraints:

$$
\min_{x} \frac{1}{2} x^\top H x + d^\top x \tag{21}
$$

$$
subject to: Ax \le b \tag{22}
$$

with decision variables $x \in \mathbb{R}^n$. The problem data are $d \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $H \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix. The objective function

$$
f(x) = \frac{1}{2}x^{\top}Hx + d^{\top}x
$$

is thus a strictly convex function (why?). Write the Lagrangian dual problem of of $(21) - (22)$ $(21) - (22)$ $(21) - (22)$ and derive its dual explicitly.

Solution

The objective function is strictly convex since its Hessian $\nabla^2 f(x) = H > 0$ for all $x \in \mathbb{R}^n$, which is a necessary and sufficient condition for strict convexity. The Lagrangian dual function of (21) – [\(22\)](#page-1-6) can be written as

$$
\theta(u) = \min_{x} \left\{ \frac{1}{2} x^\top H x + d^\top x + u^\top (Ax - b) \right\}
$$

and the corresponding Lagrangian dual problem becomes

$$
\max_{u} \ \{\theta(u) : u \ge 0\}
$$

or

$$
\max_{u} \left\{-u^{\top}b + \min_{x} \left\{\frac{1}{2}x^{\top}Hx + d^{\top}x + u^{\top}Ax\right\}\right\} \tag{23}
$$

$$
subject to: u \ge 0 \tag{24}
$$

Let us define

$$
g(x) = \frac{1}{2}x^{\top}Hx + d^{\top}x + u^{\top}Ax
$$

which allows us to write the inner minimization problem of [\(23\)](#page-2-0) as

$$
\min_{x} g(x) \tag{25}
$$

We can solve the inner minimization problem [\(25\)](#page-2-1) by taking the gradient of $g(x)$ and setting it to zero:

$$
\nabla g(x) = \nabla \left(\frac{1}{2}x^{\top} H x + d^{\top} x + u^{\top} A x\right)
$$

$$
= H x + d + A^{\top} u = 0.
$$
 (26)

Since $H > 0$ is invertible, we get the unique optimal primal solution from [\(26\)](#page-2-2):

$$
x = -H^{-1}(d + A^{\top}u)
$$
 (27)

Moreover, by multiplying [\(26\)](#page-2-2) with x^{\top} we get

$$
x^{\top} H x + x^{\top} d + x^{\top} A^{\top} u = 0
$$

which can be written as

$$
x^{\top}Hx + d^{\top}x + u^{\top}Ax = 0
$$
\n(28)

Now, by first substituting (28) to the Lagrangian dual problem $(23) - (24)$ $(23) - (24)$ $(23) - (24)$, we get

$$
\max_{u} \left\{-u^{\top}b + \min_{x} \left\{-\frac{1}{2}x^{\top}Hx\right\}\right\} \tag{29}
$$

$$
subject to: u \ge 0
$$
\n
$$
(30)
$$

and by further substituting (27) to $(29) - (30)$ $(29) - (30)$ $(29) - (30)$, the Lagrangian dual becomes

$$
\max_{u} \left\{ -u^{\top}b - \frac{1}{2}(-H^{-1}(d + A^{\top}u))^{\top}H(-H^{-1})(d + A^{\top}u) \right\}
$$
(31)

$$
subject to: u \ge 0 \tag{32}
$$

Let us define the function inside [\(31\)](#page-2-8) as

$$
h(u) = -u^{\top}b - \frac{1}{2}(-H^{-1}(d + A^{\top}u))^{\top}H(-H^{-1})(d + A^{\top}u)
$$

Noticing that $(H^{-1})^{\top} = H^{-1}$ since H is symmetric, we can further simplify $h(u)$ as:

$$
h(u) = -u^{\top}b - \frac{1}{2}(d + A^{\top}u)^{\top}H^{-1}(d + A^{\top}u)
$$

\n
$$
= -u^{\top}b - \frac{1}{2}(d^{\top} + u^{\top}A)(H^{-1}d + H^{-1}A^{\top}u)
$$

\n
$$
= -u^{\top}b - \frac{1}{2}(d^{\top}H^{-1}d + d^{\top}H^{-1}A^{\top}u + u^{\top}AH^{-1}d + u^{\top}AH^{-1}A^{\top}u)
$$

\n
$$
= -u^{\top}b - \frac{1}{2}(d^{\top}H^{-1}d + u^{\top}AH^{-1}d + u^{\top}AH^{-1}d + u^{\top}AH^{-1}A^{\top}u)
$$

\n
$$
= -u^{\top}b - \frac{1}{2}(d^{\top}H^{-1}d + 2u^{\top}AH^{-1}d + u^{\top}AH^{-1}A^{\top}u)
$$

\n
$$
= -u^{\top}b - u^{\top}AH^{-1}d - \frac{1}{2}d^{\top}H^{-1}d - \frac{1}{2}u^{\top}AH^{-1}A^{\top}u
$$

\n
$$
= -u^{\top}(b + AH^{-1}d) - \frac{1}{2}u^{\top}AH^{-1}A^{\top}u - \frac{1}{2}d^{\top}H^{-1}d
$$
 (33)

Now, by defining

 $D = AH^{-1}A^{\top}$ and $c = b + AH^{-1}d$

we can write [\(33\)](#page-3-0) as

$$
h(u) = -c^{\top}u - \frac{1}{2}u^{\top}Du - \frac{1}{2}d^{\top}H^{-1}d
$$
\n(34)

and substituting [\(34\)](#page-3-1) back to the Lagrangian dual problem [\(31\)](#page-2-8), it becomes

$$
\max_{u} \quad \left\{ -c^{\top}u - \frac{1}{2}u^{\top}Du - \frac{1}{2}d^{\top}H^{-1}d : u \ge 0 \right\} \tag{35}
$$

Now, we can further notice that $(-1/2)d^{\top}H^{-1}d$ is a constant, so it has no effect on the optimization problem [\(35\)](#page-3-2). We can thus finally write the dual [\(35\)](#page-3-2) as

$$
\max_{u} \quad -c^{\top}u - \frac{1}{2}u^{\top}Du
$$
\n
$$
\text{subject to: } u \ge 0
$$

or, as a minimization problem:

$$
\min_{u} \frac{1}{2} u^{\top} Du + c^{\top} u
$$

subject to: $u \ge 0$

which is of similar form as the primal problem but simpler constraint structure.

Problem 8.3: Duality in Linear Optimization

Consider the following linear optimization problem:

$$
\min_{x} \, c^{\top} x \tag{36}
$$

$$
subject to: Ax = b \tag{37}
$$

$$
x \ge 0\tag{38}
$$

with decision variables $x \in \mathbb{R}^n$. The problem data are $c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$. We will call $(36) - (38)$ $(36) - (38)$ $(36) - (38)$ the *primal* problem.

(a) Derive the dual problem of the primal $(36) - (38)$ $(36) - (38)$ $(36) - (38)$ by using Lagrangian duality.

- (b) Show that the dual of the dual problem derived in part (a) is equivalent to the primal problem $(36) - (38)$ $(36) - (38)$ $(36) - (38)$. *Hint*: Use Lagrangian duality.
- (c) Show that weak duality holds between the primal $(36) (38)$ $(36) (38)$ $(36) (38)$ and its dual problem.

Solution.

(a) The Lagrangian dual function of $(36) - (38)$ $(36) - (38)$ $(36) - (38)$ can be written as

$$
\theta(v) = \min_{x \ge 0} \left\{ c^\top x - v^\top (Ax - b) \right\} \tag{39}
$$

and the corresponding Lagrangian dual problem becomes

$$
\max_{v} \theta(v) = \max_{v} \left\{ v^\top b + \min_{x \ge 0} \left\{ (c - A^\top v)^\top x \right\} \right\} \tag{40}
$$

In [\(40\)](#page-4-0), the inner term must be non-negative: $c - A^{\top}v \geq 0$, because otherwise the value of the inner minimization problem becomes $-\infty$. Thus, the dual of the LP problem [\(36\)](#page-3-3) – [\(38\)](#page-3-4) becomes

$$
\max_{v} v^{\top} b \tag{41}
$$

$$
subject to: ATv \le c
$$
\n
$$
(42)
$$

(b) The Lagrangian dual function of the dual $(41) - (42)$ $(41) - (42)$ $(41) - (42)$ can be written as

$$
\theta(x) = \max_{v} \{v^{\top}b + x^{\top}(c - A^{\top}v)\}\tag{43}
$$

and the corresponding dual problem becomes

$$
\min_{x \ge 0} \ \theta(x) = \min_{x \ge 0} \ \left\{ c^\top x + \max_v \ \left\{ (b - Ax)^\top v \right\} \right\} \tag{44}
$$

Since the variable vector v is unrestricted, the inner maximization problem becomes ∞ unless $b - Ax = 0$. Thus, the dual of the dual problem becomes

$$
\min_{x} c^{\top} x
$$

subject to: $Ax = b$
 $x \ge 0$

which is exactly the original primal problem.

(c) For any pair of feasible primal and dual solutions x and v , respectively, we have

$$
v^\top b = v^\top Ax = x^\top A^\top v \le x^\top c = c^\top x
$$

which is exactly the definition of weak duality.