Exercise sheet 5
(1) Let
$$f = u+iv$$
 be analytic in a domain
D. Assume that $v(z) = u(z)^2$ for all zeD.
Prove that f is a constant function.
(+1int: Differentiate $u(z)^2 - v(z)$ with respect
to x and y.)
Solution
We have $u(z)^2 - v(z) = 0$ for all $z = x + iy$
in D. Differentiate first with respect to x.
Use get (1) $2uu_x - v_x = 0$
Now with respect to y
(i) $2uu_y - v_y = 0$
Msing the CR-equations $u_x = v_y$; $u_y = -v_x$ we
get
(i) $2uu_x + u_y = 0$
(ii) $2uu_x + u_y^2 = 0$
(iii) $2uu_x + u_y^2 = 0$
(iv) $2uu_x + u_y^2 = 0$
(iv) $2uu_x + u_y^2 = 0$
(v) $2uu$

(2) Let
$$f = u + iv$$
, where $u(z) = x^3 + axy^2$ and
 $V(z) = bx^2y + cy^3 + 1$. Determine the values of
the real numbers a_1b_1 and c that make f an entire
function. Then express f as a polynomial function
of z . (Hint: $x = 0$ ne you have determined
 a_1b_1 and c start think about how $z^n = (x+iy)^n$
looks. Here the binomial theorem is useful.)
Solution: We calculate $u_x = 3x^2 + ay^2$, $u_y = 2axy$,
 $v_x = 2bxy$, and $v_y = bx^2 + 3cy^2$.
The Cauchy-Riemann equations must hold for
all x and y . So $u_x = v_y$ and $u_y = -v_x$
gives
(i) $3x^2 + ay^2 = bx^2 + 3cy^2$
(ii) $2axy = -2bxy$
for all x and y . Therefore $b=3$ and
 $a = 3c$ from (i) and $a = -b$ from (ii).
That means $a = -3$, $b = 3$, and $c = -1$.
So $f(z) = x^3 - 3xy^2 + i(3x^2y - y^3)$
So $f(z) = z^3 + i$.

3) For each of the tollowing functions
determine the largest open set in which it is
analystic, and compute its derivative in that
set: a)
$$f(z) = \frac{e^{z}-1}{e^{z}+1}$$

b) $g(z) = \frac{\sin(iz+1)}{z^{2}+1}$
Solution: a) $f(z)$ is analytic if $e^{z}+1 \neq 0$
We save $e^{z}+1=0 \iff e^{z}=-1 \iff$
 $z = \log(-1) + i2\pi\pi = i\pi + i2\pi\pi =$
 $= i(2\pi+1)\pi$
Therefore $f(z)$ is analytic in the set
 $C \setminus \{z = i(2\pi+1)\pi; n \in \mathbb{Z}\}$
We have $f'(z) = \frac{e^{2}(e^{z}+1)-e^{z}(e^{z}-1)}{(e^{z}+1)^{2}} = \frac{2e^{z}}{(e^{z}+1)^{2}}$

b) Remember that 1. is the principal square root that is analytic in C {x+i0; x≤of Therefore sin liz+1 is analytic outside the set where Im(iz+1)=0 and ke(iz+1) <0 Since iz+1 = i (x+iy)+1=(1-y) + ix we get that sinvizion is analytic outside the set { x+iy; x=0, 1-y ≤ 0} = { x+iy, x=0, y≥1} That is sinvizin is analytic have For g(z) to be analytic also $z^2 + 1 \neq 0$. Since $z^2 + 1 = 0$ iff $z = \pm i$ we get that g(z)is analytic here 1 Since $d(\sqrt{iz+1}) = \frac{i}{2\sqrt{iz+1}}$ we get

$$\frac{d}{dz} \sin \sqrt{iz+1} = \frac{i}{2\sqrt{iz+1}} \cos \sqrt{iz+1} \text{ and}$$

$$g'(z) = \frac{i}{2\sqrt{iz+1}} \cdot (z^{1}+1) - 2z \sin \sqrt{iz+1}}{2\sqrt{iz+1}} = \frac{i}{(z^{2}+1)^{2}}$$

$$= \frac{i}{(z^{2}+1)^{2}} \frac{i}{(z^{2}+1)^{2}\sqrt{iz+1}} = \frac{i}{(z^{2}+1)^{2}\sqrt{iz+1}} = \frac{i}{(z^{2}+1)^{2}\sqrt{iz+1}} = \frac{2}{(z^{2}+1)^{2}\sqrt{iz+1}} = \frac{2}{(z^{2}+1)^{2}\sqrt{iz+1}$$