Exerase sheet 5
(1) Let $f=u+i v$ be analytic in a domain D. Assume that $v(z)=u(z)^{2}$ for all $z \in D$. Prove that f is a constant function.
(lint: Differentiate $u(t)^{2}-v(z)$ with respect to x and y.)
Solution
We have $u(z)^{2}-v(z)=0$ for all $z=x+i y$ in D. Difterenticte first with respect to x.
We get (1) $2 u u_{x}-v_{x}=0$
Now with respect to y
(ii) $2 u u_{y}-v_{y}=0$

Using the CR-equations $u_{x}=v_{y} ; u_{y}=-v_{x}$ we get
(i) $2 u u_{x}+u_{y}=0$
(ii) $2 u u_{y}-u_{x}=0$

Multiply (i) by u_{y} and (ii) by $-u_{x}$ and get
(1) $2 u u_{x} u_{y}+u_{y}^{2}=0$
(ii) $-2 u u_{x} u_{y}+u_{x}^{2}=0$

Add (i) and (ii) and we see $u_{x}^{2}+u_{y}^{2}=0$ for all points in D. Hence $u_{x}=u_{y}=0$ in D and u is constant. Therefore also v is constant and we see that $f=u+i v$ is constant.
(2) Let $f=u+i v$, where $u(z)=x^{3}+a x y^{2}$ and $v(z)=b x^{2} y+c y^{3}+1$. Determine the values of the real numbers a, b, and c that make f an entire function. Then express f as a polynomial function of z. (Hint: $x=$ Once you have determined a, b, and C start think about how $Z^{n}=(x+i y)^{n}$ looks. Here the binomial theorem is useful.)

Solution: We calculate $u_{x}=3 x^{2}+a y^{2}, u_{y}=2 a x y$, $v_{x}=2 b x y$, and $v_{y}=b x^{2}+3 c y^{2}$.
The Cauchy-Riemann equations must hold for all x and y. So $u_{x}=v_{y}$ and $u_{y}=-v_{k}$ gives
(i) $\int 3 x^{2}+a y^{2}=b x^{2}+3 c y^{2}$
(ii) $2 a x y=-2 b x y$
for all x and y. Therefore $b=3$ and $a=3 c$ from (i) and $a=-b$ from (ii).
That means $a=-3, b=3$, and $c=-1$.
So $f(z)=x^{3}-3 x y^{2}+i\left(3 x^{2} y-y^{3}+1\right)$ is
entire. Now $z^{3}=(x+i y)^{3}=x^{3}+3 i x^{2} y+3 i^{2} y^{2} x+i^{3} y^{3}$

$$
=x^{3}-3 x y^{2}+i\left(3 x^{2} y-y^{3}\right)
$$

So $f(z)=z^{3}+i$.
(3) For each of the following functions determine the largest open set in which it is analytic, and compute its derivative in that set:
a) $f(z)=\frac{e^{z}-1}{e^{z}+1}$
b) $g(z)=\frac{\sin \sqrt{i z+1}}{z^{2}+1}$

Solution: a) $f(z)$ is analytic if $e^{z}+1 \neq 0$
We save $e^{z}+1=0 \Leftrightarrow e^{z}=-1 \Longleftrightarrow$

$$
\begin{aligned}
z=\log (-1)+i 2 \pi n & =i \pi+i 2 \pi n= \\
& =i(2 n+1) \pi
\end{aligned}
$$

Therefore $f(z)$ is analytic in the set

$$
\mathbb{C} \backslash\{z=i(2 n+1) \pi ; n \in \mathbb{Z}\}
$$

We have $f^{\prime}(z)=\frac{e^{z}\left(e^{2}+1\right)-e^{z}\left(e^{z}-1\right)}{\left(e^{z}+1\right)^{2}}=\frac{2 e^{z}}{\left(e^{z}+1\right)^{2}}$
b) Remember that $\sqrt{\text {. }}$ is the principal square root that is analytic in $\mathbb{C} \backslash\{x+i 0 ; x \leq 0\}$ Therefor $\sin \sqrt{i z+1}$ is analytic outside the set where $\operatorname{Im}(i z+1)=0$ and Re $(i z+1) \leq 0$.
Since $i z+1=i(x+i y)+1=(1-y)+i x$ we get that $\sin \sqrt{i z+1}$ is analytic outside the set $\{x+i y ; x=0,1-y \leq 0\}=\{x+i y, x=0, y \geq 1\}$
That is $\sin \sqrt{i z+1}$ is analytic le ere?

For $g(z)$ to be analytic also $z^{2}+1 \neq 0$. Since $z^{2}+1=0$ iff $z= \pm i$ we get that $g(z)$ is analytic here

Since $\frac{d}{d z}(\sqrt{i z+1})=\frac{i}{2 \sqrt{i z+1}}$ we get

$$
\begin{aligned}
& \frac{d}{d z} \sin \sqrt{i z+1}=\frac{i}{2 \sqrt{i z+1}} \cos \sqrt{i z+1} \quad \text { and } \\
& g^{\prime}(z)= \\
& =\frac{i \cos \sqrt{i z+1} \cdot\left(z^{2}+1\right)-2 z \sin \sqrt{i z+1}}{2 \sqrt{i z+1}}= \\
& \left(z^{2}+1\right)^{2} \\
& =
\end{aligned}
$$

(4) If a function f is analytic in a domain D and satisfies the differential equation $f^{\prime}(z)-\alpha f(z)=0$ in D for a constant $\alpha \in \mathbb{C}$ show that f takes the form $f(z)=A e^{\alpha z}$ for some constant $A \in \mathbb{C}$. (Hint: Study the function

$$
g(z)=e^{-\alpha z} f(z)
$$

Solution: The function $g(z)=e^{-\alpha z} f(z)$ is
defined on D. Also

$$
\begin{aligned}
g^{\prime}(z) & =-\alpha e^{-\alpha z} f(z)+e^{-\alpha z} f^{\prime}(z)= \\
& =e^{-\alpha z} \underbrace{\left(f^{\prime}(z)-\alpha f(z)\right)}_{=0}=0
\end{aligned}
$$

Since $g^{\prime}(z)=0$ on D we know that $g(z)$ is constant on D. That is $g(z)=A$ and

$$
e^{-\alpha z} f(z)=A \quad \text { or } \quad f(z)=A e^{\alpha z}
$$

