Aalto university

Björn Ivarsson

Exercise sheet 5

Complex Analysis, MS-C1300.
Hand in exercise 1 and 2 in separate files for grading. Deadline Monday 6.11 at 23:59. The exercises should be uploaded to the correct folder on MyCourses as pdf-files with name and student number in the file name. Submission via MyCourses is the only accepted way. Done during class Tuesday 7.11 or Wednesday 8.11.
(1) Let $f=u+i v$ be analytic in a domain D. Assume that

$$
v(z)=u(z)^{2}
$$

for all $z \in D$. Prove that f is a constant function. (Hint: Differentiate $u(z)^{2}-v(z)$ with respect to x and y.)
(2) Let $f=u+i v$ where $u(z)=x^{3}+a x y^{2}$ and $v(z)=b x^{2} y+c y^{3}+1$. Determine the values of the real numbers a, b, and c that make f an entire function. Then express f as a polynomial function of z. (Hint: Once you have determined a, b, and c start thinking about how $z^{n}=(x+i y)^{n}$ looks. Here the binomial theorem is useful.)
(3) For each of the following functions determine the largest open in which it is analytic, and compute its derivative in that set:
(a)

$$
f(z)=\frac{e^{z}-1}{e^{z}+1}
$$

(b)

$$
g(z)=\frac{\sin (\sqrt{i z+1})}{z^{2}+1}
$$

(4) If a function f is analytic in a domain D and satisfies the differential equation

$$
f^{\prime}(z)-\alpha f(z)=0
$$

in D for a constant $\alpha \in \mathbb{C}$ show that f takes the form $f(z)=$ $A e^{\alpha z}$ for some constant $A \in \mathbb{C}$. (Hint: Study the function $\left.g(z)=e^{-\alpha z} f(z).\right)$

