Aalto university

Björn Ivarsson

Exercise sheet 6

Complex Analysis, MS-C1300.
Hand in exercise 1 and 2 in separate files for grading. Deadline Wednesday 8.11 at $23: 59$. The exercises should be uploaded to the correct folder on MyCourses as pdf-files with name and student number in the file name. Submission via MyCourses is the only accepted way. Done during class Thursday 9.11 or Friday 10.11.
(1) Let $\gamma(t)=t e^{i t}$ for $0 \leq t \leq \pi$ and calculate:
(a)

$$
\begin{equation*}
\int_{\gamma} \bar{z} d z \tag{2p}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\int_{\gamma}|z||d z| \tag{2p}
\end{equation*}
$$

(c)

$$
\begin{equation*}
\int_{\gamma} z d z \tag{2p}
\end{equation*}
$$

(2) Let $\gamma(t)=-2 e^{i t}$ for $0 \leq t \leq 2 \pi$. Evaluate

$$
\int_{\gamma} \frac{1}{z^{2}-1} d z
$$

(Hint: Partial fractions simplifies calculations.)
(3) Let a and b be real numbers satisfying $a<b$, and let $I(c)$ be defined for any real number c by

$$
I(c)=\int_{\gamma_{a, b}(c)} e^{-z^{2}} d z
$$

where $\gamma_{a, b}(c)$ is the straight line with initial point $c+i a$ and terminal point $c+i b$. Show that $\lim _{c \rightarrow \infty}|I(c)|=0$ and $\lim _{c \rightarrow-\infty}|I(c)|=$ 0
(4) Evaluate the integrals (where $\gamma(t)=e^{i t}, 0 \leq t \leq 2 \pi$):
(a)

$$
\int_{\gamma} \frac{1}{(z-2)^{2}} d z
$$

(b)

$$
\int_{\gamma} \frac{1}{z^{2}-4} d z
$$

(c)

$$
\int_{\gamma}\left(z+\frac{1}{z}\right)^{n} d z
$$

where $n=1,2,3, \ldots$.

